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a b s t r a c t 

Common to much work on land-cover classification in multispectral imagery is the use of single satellite 

images for training the classifiers for the different land types. Unfortunately, more often than not, decision 

boundaries derived in this manner do not extrapolate well from one image to another. This happens for 

several reasons, most having to do with the fact that different satellite images correspond to different 

view angles on the earth’s surface, different sun angles, different seasons, and so on. 

In this paper, we get around these limitations of the current state-of-the-art by first proposing a new 

integrated representation for all of the images, overlapping and non-overlapping, that cover a large ge- 

ographic ROI (Region of Interest). In addition to helping understand the data variability in the images, 

this representation also makes it possible to create the ground truth that can be used for ROI-based 

wide-area learning of the classifiers. We use this integrated representation in a new Bayesian framework 

for data classification that is characterized by: (1) learning of the decision boundaries from a sampling 

of all the satellite data available for an entire geographic ROI; (2) probabilistic modeling of within-class 

and between-class variations, as opposed to the more traditional probabilistic modeling of the “feature 

vectors” extracted from the measurement data; and (3) using variance-based ML (maximum-likelihood) 

and MAP (maximum a posteriori) classifiers whose decision boundary calculations incorporate all of the 

multi-view data for a geographic point if that point is selected for learning and testing. 

We show results with the new classification framework for an ROI in Chile whose size is roughly 10,0 0 0 

square kilometers. This ROI is covered by 189 satellite images with varying degrees of overlap. We com- 

pare the classification performance of the proposed ROI-based framework with the results obtained by 

extrapolating the decision boundaries learned from a single image to the entire ROI. Using a 10-fold 

cross-validation test, we demonstrate significant increases in the classification accuracy for five of the 

six land-cover classes. In addition, we show that our variance based Bayesian classifier outperforms a 

traditional Support Vector Machine (SVM) based approach to classification for four out of six classes. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Our interest in pixel-level classification of satellite images 1 is

riven by the role that such classifications can play in solving
∗ Corresponding author. Tel.: +17654 9136 80. 

E-mail addresses: chang177@purdue.edu (T. Chang), bcomandu@purdue.edu (B. 

omandur), jpark@purdue.edu (J. Park), kak@purdue.edu (A.C. Kak). 
1 In reality, pixel-level classification of a satellite image amounts to carrying out 

and-type classification of an array of points in that portion of the earth’s surface 

hat is viewed in the image. Before classification, the multispectral data in a satel- 

ite image goes through a processing step called orthorectification that “maps” the 

rray of pixels in an image to an array of latitude/longitude (lat/long for short) co- 

rdinates. 
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roblems related to the geolocalization of everyday photographs

nd videos of outdoor scenes. Using spatial relationships between

ifferent land-types - say between arable land, a pond, and a

earby road - to establish correspondences between the “objects”

een in a photograph and those extracted from the satellite images

an significantly reduce the candidate locations for where the pho-

ograph was taken. For obvious reasons, reliable pixel level classi-

cation of satellite data is a necessary prerequisite to the develop-

ent of such solutions to geolocalization problems. 

While there has been much work during the last several

ecades on the classification of multispectral data in satellite im-

ges Anderson (1976) ; Unsalan (2003) , as such this work cannot

irectly be used for solving geolocalization problems in general.

http://dx.doi.org/10.1016/j.cviu.2016.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.04.001&domain=pdf
mailto:chang177@purdue.edu
mailto:bcomandu@purdue.edu
mailto:jpark@purdue.edu
mailto:kak@purdue.edu
http://dx.doi.org/10.1016/j.cviu.2016.04.001
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Before we explain the reasons for why that is the case, note that

the traditional approaches to satellite data classification use stan-

dard statistical pattern recognition techniques, with the more re-

cent contributions also using decision trees, random forests, neural

networks, support vector machines, and so on DeFries and Chan

(20 0 0) ; Duro et al. (2012) ; Huang et al. (2002) ; Marchisio et al.

(2010) . 

One thing that is common to practically all these traditional ap-

proaches is that the training and the testing data for constructing

a classifier are drawn from the same satellite image. There are very

few examples where authors have derived the decision boundaries

in one satellite image and shown usable classification results in a

different satellite image in a given geographic area. 2 In practically

all these cases, the classifiers derived for one satellite image fail

to perform adequately on the other satellite images even in the

same general geographic region. And, when such results have been

shown, it is usually for an adjacent area for which the satellite im-

ages were captured at the same time as for the image from which

the training data was drawn. 

While these traditional approaches may suffice for solving, say,

land-cover resource management and forecasting problems, they

come up short when solving problems related to the geolocaliza-

tion of photographs and videos. The reason has to do with the fact

that the data in satellite images is affected by the change of sea-

sons, the off-nadir/elevation angle associated with a satellite view,

the sun angle, and so on. The logic of the algorithms that one

might use for geolocalizing a photograph becomes simpler if the

information extracted from the satellite images is invariant to all

of the aforementioned changes to the maximum extent possible.

The easiest way to achieve such invariance is to use ALL of the

satellite data that may be available for a given geographic region.

When decision boundaries in a feature space are based on all of

the data - meaning data recorded at different times of the year,

with different off-nadir/elevation angles, with different sun angles,

etc. - any discriminations one is able to make in that feature space

are likely to possess the desired properties of invariance. Said an-

other way, our classifier would be able to make distinctions between

the variances associated with the objects that look more or less the

same around the year and the variances associated with the objects

that change significantly with, say, seasons. 

An additional aspect related to using satellite imagery for solv-

ing the problems of geolocalization is that a photograph (or a

video) may have been recorded anywhere in a large geographic re-

gion of interest whose area may far exceed what is typically as-

sociated with a single satellite image. This requires that the land-

cover classifications be carried out for the entire ROI using all of

the satellite data available for the region. 

For reasons stated above, this paper addresses the problem

of land-cover classification from a larger geographical perspective

than has traditionally been the case in the past. We want to be

able to classify all of the data in an ROI (Region of Interest) that

can be much larger than the area covered by a typical single satel-

lite image. Consider, for example, the Chile ROI shown in Fig. 1 .

This ROI, of size 10,0 0 0 km 

2 is covered by a total of 189 satel-

lite images in the WorldView2 dataset. Our goal is to see if it is

possible to create decision boundaries from all of this data taken
2 We draw the reader’s attention to Wilkinson’s survey Wilkinson (2005) whose 

major conclusions are just as valid today as they were when the survey was pub- 

lished in 2005. This survey covered 574 experiments in satellite image classification 

as reported in 138 publications over a period of 15 years. Wilkinson concluded that 

despite the large body of published research, virtually no progress had been made 

in satellite image classification over the time period covered by the survey. One of 

the reasons he highlighted for this lack of progress was the common practice of 

the researchers drawing their training and testing data sets from the same satellite 

image. 
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ogether so that the overall classification rate for the entire ROI

hown in Fig. 1 would be at a usable level of accuracy. 

Obviously, before we can design a classifier at the level of an

OI, we must first come to grips with the data variability over

he ROI. Understanding data variability at the scale of a large ROI

resents its own challenges and can be thought of as a “Big Data”

roblem. The challenges are created by the typical fast-response

nd dynamic-storage needs of any human-interactive computer

ystem that must work with very large variable-sized datasets. 3 

e have addressed these challenges by developing a special soft-

are tool (named PIMSIR for “Purdue Integrated MultiSpectral Im-

ge Representation” tool) that is custom designed to achieve the

ollowing: 

• Rapid visualization of all of the data in an ROI 
• Rapid visualization of the geographic area overlaps between the

satellite images. Understanding the overlaps is important be-

cause any probabilistic modelling of the data at any given ge-

ographic point is predicated on how much data is available at

that point through overlapping satellite views. 4 

• Rapid visualization of the variability of the spectral signatures 5 

both spatially and across the views. 

This tool is run on a cloud-based cluster of five physical com-

uting nodes, each with up to 48 cores and 256 GB of RAM, that

re connected with a 10 Gb network switch. The system is sup-

orted by a network storage server with 24 TB of storage. 

Even after understanding the extent of data overlap and vari-

bility, there remains the big issue of what classification strategy

o use for the data. Machine learning now gives us tens of choices

or classifiers and it’s not always clear at the outset as to which

hoice would work the best for a given problem. In this paper,

ased on our analysis of the data overlap and of the view-to-view

ariability that we have seen, we chose to design ML (maximum-

ikelihood) and MAP (maximum a posteriori) classifiers by proba-

ilistic modeling of NOT the spectral signatures themselves, but of

he variability in the spectral signatures. We show our ROI based

esults obtained with this Bayesian classifier, and for comparison,

lso with the more commonly used SVM classifiers in Section 8 of

his paper. As the reader will see, this comparison justifies our in-

uition regarding the superiority of variance-based Bayesian clas-

ification vis-a-vis the more traditional approaches (as exemplified

y SVM-based classification). 

Moreover, even after a choice is made regarding the classifica-

ion strategy, there remains the complex problem of how to gen-

rate on an ROI basis the positive and negative examples for the

ifferent land-cover types for training and testing a classifier. Obvi-

usly, it would be very challenging for a human to scan through an

ntire ROI and manually select such examples. What is needed is a

uman-in-the-loop random sampling strategy that has the power

o yield positive and negative samples that adequately represent

OI based distributions for the different land-cover types. In our

lassifier training protocol, we use a random sampler based on

he Metropolis-Hastings algorithm to select a small number of ROI

ubregions for presentation to a human and it is for the human

o decide whether or not to use that subregion for generating the

ositive examples for a given land-cover label. (What if a randomly

elected subregion is mostly over water while the human is seek-

ng positive examples of high vegetation?) After the human has ac-
3 By very large, we mean datasets that are hundreds of gigabytes in size. 
4 In general, probabilistic modelling is with respect to spatial distribution of the 

bserved data. However, in order to address view-to-view data variability issues, 

ne can also talk about probabilistic modeling with respect to the viewing dimen- 

ion. 
5 We use the term spectral signature to refer to the 4 or 8 spectral band values 

t each pixel. 
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Fig. 1. The entire Chile ROI (Region of Interest) covering about 10,0 0 0 square kilometers. 
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epted a subregion, he/she can zoom into the subregion and with

uick mouse clicks mark the positive and negative examples. This

ntire process takes about 30 minutes for each land-cover label for

 large ROI of the size that we will show experimental results on

ater in this paper. 

In the rest of this paper, Section 2 presents the details of

he PIMSIR tool for understanding data overlaps and variability in

ll the satellite images available for a given ROI. Section 3 then

resents the ROI-based protocol we use for generating the positive

nd the negative examples for training and testing the classifiers.

ubsequently, in Section 4 we discuss the theoretical framework

sed for probabilistic modeling of the variances and how these

robabilities can be used for ML and MAP classifiers for land-cover

lassification. Section 5 briefly describes the SVM classifiers that

e used to compare our Bayesian classifier with. Section 6 dis-

usses the notion of “compatible classes.” The point here is that

ertain types of geographical points can be expected to show pre-

ictable seasonal variations that are best handled by defining a

et of compatible classes. This is particularly the case for agricul-

ural land. So we suggest that the geographical points that pos-

ess this property be given compound land-class labels that reflect

hese predictable variations. For experimental validation, we first

resent an overview of how the experiments were conducted in

ection 7 and then proceed to show the actual results in Section 8 .

he results shown demonstrate that ROI based wide-area learning

e  
ignificantly outperforms single satellite image based learning us-

ng both our Bayesian and the more traditional SVM classifiers. In

ddition we show that our Bayesian classifier outperforms the tra-

itional SVM based classification for four out of six classes. 

. The PIMSIR tool for understanding multispectral data 

verlap and variability at the scale of a large ROI 

As alluded to in the Introduction, we have created a software

ool called PIMSIR for the purpose of understanding data variabil-

ty at the ROI level. On the one hand, PIMSIR gives us a holistic

epresentation of all the satellite images that cover an ROI, and, on

he other, it allows the data provided by multiple satellite images

n any given subregion to be viewed and manipulated easily re-

ardless of whether that subregion has to pull in information from

verlapping or non-overlapping images. 

What makes PIMSIR versatile is that the data structure it cre-

tes for an ROI is dynamic - in the sense that an ROI is allowed

o be covered by an arbitrary number of satellite images, with ar-

itrary degrees of overlap between the images. As to the size of

he ROI that can be accommodated in this representation, that de-

ends on the number of images. For example, the Chile ROI cov-

rs about 10,0 0 0 km 

2 and consists of 189 overlapping images, each
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with a spatial resolution of two meters per pixel. 6 Its correspond-

ing PIMSIR structure takes 208 GB of disk storage. As mentioned

in the Introduction, PIMSIR runs on a cloud-based cluster of high-

performance physical nodes, each with up to 48 cores and 256 GB

of memory. This allows a large ROI to be accommodated entirely in

the fast memory of just one node. For obvious reasons, that speeds

up the construction of the PIMSIR structure. However, it is not a

necessary requirement that an entire ROI fit in the fast memory of

a single node. 

In what follows, we will describe how we create the PIMSIR

structure for a given ROI. Subsequently, we will describe the infor-

mation that is stored in PIMSIR for each geographical point in the

ROI. 

Given a raw WorldView2 Multispectral Image (MSI), the first

necessary preprocessing step is to apply the Top-of-Atmosphere

(ToA) reflectance correction Updike and Comp (2010) to the im-

ages in order to normalize out the view-angle (with respect to the

sun angle) variability. Then, the corrected image goes through the

orthorectification process that maps the pixels to geo lat/long co-

ordinates. 7 

After all of the corrections mentioned above have been applied

to the data, creating the PIMSIR structure involves the following

steps: 

1. Construct a bounding box for an ROI. 

2. Rasterize the bounding box with a matrix of sampling points,

taking into account implicitly the spatial resolution desired. The

results we show in this section are for the case when each cell

in the bounding box represents a 2 m x 2 m area. 

3. Scan the bounding box and, for each cell, calculate its geo lat-

long coordinates. 

4. Fetch the list of satellite images for the lat-long coordinates at

a sampling point. Project the bounding-box sampling point into

each image and: 
• Record the four MSI pixels that are nearest to the projected

point in the satellite image. (The point projected into an im-

age will, in general, not correspond exactly to any of the

pixel locations in the image.) 
• Apply bilinear interpolation to the spectral signatures at the

four nearest neighbors and return this answer for the image

in question. 

5. Pool together the spectral signatures collected from all the

satellite images that see the geo-point and store them in a

compact data structure whose pointer is held by the bounding-

box point in question. 

Each location in the PIMSIR array points to a linked list of

nodes, the number of nodes being equal to the number of images

that can see that location. At each node, we allocate N bytes for

the spectral signatures extracted from the corresponding satellite

image, where the value of N is declared in the header segment
6 Most of the satellite images in this dataset contain four band data: Red, Blue, 

Green, and Near Infrared (NIR). We plan to incorporate satellite images with arbi- 

trary number of bands in the next version of PIMSIR. 
7 The satellite images used for the experiments in this paper were orthorectified 

by Ryan Smith and Nathan Campbell of GeoEye using the functionality provided 

by the publicly available GDAL library. The orthorectification formulas that convert 

pixel coordinates of the raw satellite images into lat/long coordinates utilize a DEM 

(Digital Elevation Map) model of the portion of the earth’s surface that corresponds 

to the satellite image. These formulas are iterative and involve various approxima- 

tions for warping the image data onto the earth’s surface, in addition to the in- 

terpolation needed to create a uniformly sampled array in the lat/long coordinates. 

The errors in orthorectification computations are exacerbated by any errors in the 

DEM model. For this study, the GMTED2010 DEM at 7.5 arc-sec resolution was used. 

One could achieve better orthorectification using carefully selected ground control 

points, but this was not done for the images used in this study. The ToA reflectance 

correction is based on an implementation of the algorithm in Updike and Comp 

(2010) by Craig Stutts of ARA. 
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N

p

f the file that carries the .pimsir suffix. In our current imple-

entation, we use N = 17 bytes per satellite image. Four of these

ytes are reserved for the spectral value in each of the four pri-

ary bands, and one byte reserved for the pointer to a file that

ontains the meta data for that satellite image. 8 

For an ROI of size, say, 10,0 0 0 km 

2 
, the resulting representation

ay take a couple of hundred gigabytes - the precise value de-

ending on how many satellite views need to be accommodated.

hould this amount of memory not be available as RAM, we can

lways resort to using the virtual memory address space with the

elp of POSIX functions like mmap with some loss of performance

ith regard to the time taken for construction of the integrated

epresentation. 

Given the PIMSIR representation for an ROI, one can then inves-

igate how the data varies with respect to any of the independent

ariables such as the view angle, the time of the year, etc., as the

eader will see in the rest of this paper. What is even more signif-

cant, this representation allows for fast construction of probability

istributions of special signatures over an ROI. Subsequently, these

istributions can be plugged directly into various machine learning

lgorithms for the learning of classification boundaries. 

.1. Viewing image overlaps with PIMSIR 

PIMSIR makes it very convenient to view how much data is

vailable in the different subregions of an ROI. This is an important

ssue since the applicability of the different types of approaches for

OI-based pixel and object classification depends on the extent of

he data that is available at the ground level. To elaborate, suppose

ll of the geographical points in a subregion were covered by, say,

 single satellite view, that subregion would not lend itself to the

pplication of multi-view logic as described in Section 6 . 

Using the PIMSIR representation, this section shows the data

ariability results for the Chile ROI. PIMSIR for the Chile ROI was

onstructed using all 189 satellite images that intersect with this

OI. Just for the purpose of visualization, what is displayed in

ig. 1 is the RGB part of the spectral signature in just the first

atellite image at each point of the ROI-based bounding box. The

atellite images relevant to each sampling point are sorted by their

ames (that, in general, may be considered to be arbitrary strings).

e refer to the display that is constructed from all the first images

n this sorted list at each sampling point as the ‘1-overlap display’

in order to distinguish it from a more general N-overlap display

o be shown presently). For the N-overlap display, we show pixels

t only those geographic sampling points where there exists data

n all of the first N overlapping images in the sorted list - the pixel

alue chosen for display is the RGB value in the Nth image. It is

n this manner that Fig. 2 shows the first 16 overlap displays. The

mage at the upper left corner is for the 1-overlap display; it is the

ame image that was shown earlier in Fig. 1 . The second image

n the top row is for the 2-overlap display, and so on. Note that

hat’s being displayed at each sampling point in an N-overlay dis-

lay for any N has no bearing whatsoever on the data variability

alculations at the point. 

The blocky artifacts in Fig. 2 (and in Fig. 1 also) are caused

y several factors: (1) The image-to-image variability that can be

ttributed to the different look angles for the sensors aboard the

atellites, sun angle variations, and the time of the year when the

ata was recorded; (2) Small errors in the application of the Top-

f-Atmosphere correction to the pixels; and (3) small errors in the

mage rectification process. 
8 This obviously limits us to a maximum of 256 overlapping satellite images for 

ny geo-point. We have yet to see a case where that condition would be violated. 

onetheless, in order to “future-proof” PIMSIR, we plan to use two bytes for the 

ointer to the metafile in the next version of PIMSIR. 
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Fig. 2. A collage of the first 16 (out of 49) overlaps: 1-overlap, 2-overlap, ..., 16-overlap. 
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When we examine the overlaps in all of the satellite images

or the Chile ROI, we go from one extreme where there is only

 single image at a given geo-point to the other extreme where

e have 49 satellite images looking at the same geo-point. Since

t would occupy too much space to show all of these overlaps, in

hat follows we will show the results for just the case of 49 over-

aps. Fig. 3 shows the portions of the Chile ROI where we have data

rom 49 images. At each cell of the ROI-based bounding box, we

rbitrarily selected the RGB from one of the 49 satellite images for

onstructing the display in Fig. 3 . Note again that the goal of this

isplay is merely to indicate where we have a total of 49 views

ooking at the same geo-point. The spectral variability results that

re shown in the next subsection correspond to this case of the

eo-points covered by these 49 images. 

.2. Viewing data variability heat maps with PIMSIR 

We now show results of our spectral variability investigation

ver the set of geo-points depicted in Fig. 3 . Recall, we have a total

f 49 satellite images contributing MSI data to each of these points.

e will report on the data variability as produced by the following

hree sources: 
1. Seasonal changes 

2. View angle changes 

3. Content changes 

However, before showing the variability as caused separately by

ach of these three sources, we will first show the overall data

ariability through what we refer to as variability heat maps. Fig. 4

hows an example of such a heat map. The values depicted in

ig. 4 correspond to maximum spectral range, r max , at each point.

his parameter is calculated using the formulas : 

 i = max ( SS i ) − min ( SS i ) (1) 

 max = max 
i 

({ r i } ) (2)

n these formulas, SS i is the set of 49 spectral measurements for

 band i at a given point. The value max ( SS i ) is the maximum of

9 such band values at a given point and min ( SS i ) is the minimum

f the same set of spectral signatures. Therefore, the value of r i is

he largest variation within the i th band across all 49 satellite im-

ges. And the largest of these variations among the four spectral

ands is the maximum range, denoted r max . Note that these calcu-

ations are carried out after the spectral values are normalized to
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Fig. 3. The 49-overlap display shows the area with 49 overlapping satellite images. What is shown in the lower plot are all the spectral signatures (that is, the Top-of-the- 

Atmosphere reflectance measurements) for a particular geo-location within the area. The full range of the Y-axis is [0,1]. 

Fig. 4. Variability heat map for 49 overlapping satellite images in the region shown in 

Fig. 3 : Green = maximum range r max < 0.15 . 

 

 

 

 

 

 

a  

R  

m  

a

 

t  

c  

o  

t  

F  

t  

i  

i  

r  

s

 

6  

n  

b  

t  

fi  

t  

u  

d  
lie between 0 and 1.0. The data normalization for each image is a

part of what is accomplished by the Top-of-Atmosphere correction

mentioned earlier in Section 2 . The red areas in Fig. 4 correspond

to the heat map values above 0.15. On account of the data normal-

ization, this means that we have more than 15% within-band vari-

ation at the points that are shown as red in Fig. 4 . The points that
re shown as green have their within-band variability under 15%.

apid visualization of the variability allows us to systematically try

any different cutoff thresholds and, in this case, 0.15 was chosen

s it produced the most visually informative heatmap. 

Comparing the images in Figs. 3 and 4 , one can infer that

he orthorectification errors in the 49 satellite images are suffi-

iently small and can be ignored - this is an important by-product

f this study since one is always concerned about the quality of or-

horectification. If this error had been large, the green strands in

ig. 4 would not correspond to the roads in Fig. 3 . Also note that

he spectral signatures are significantly “invariable” across the 49

mages for the road pixels. In other words, for this particular area

n the ROI, the points of the earth’s surface that correspond to the

oads produce the same spectral signatures regardless of when the

atellite image was taken and the look angle for the image. 

We can draw the same conclusion in urban areas. Figs. 5 and

 show an urban area covered by 25 overlapping satellite images

ear the center of the city of Santiago. This area contains many tall

uildings. While the major roads in Fig. 5 are easily visualized in

he heat map of Fig. 6 , notice also the lining up of some of the

ner detail in the heat map and how it matches the scene struc-

ure shown in Fig. 5 . This leads us to conclude that even in dense

rban areas the orthorectification errors are not so large as to ren-

er our integrated representation completely useless. It would be
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Fig. 5. A dense urban area containing many tall buildings in the city of Santiago 

in Chile. The area is centered at lat-long: (–33.4372, –70.6526). This area is covered 

by 25 overlapping satellite images taken at different times and from different view 

angles. 

Fig. 6. Variability heat map for the dense urban area shown in Fig. 5 . While the 

major roads are clearly visible in the heat map, note also the lining up of several 

pixels in the heat-map in a way that corresponds to the finer structure in Fig. 5 . The 

variability that is visible can be attributed to the occlusions caused by tall buildings. 

Green = maximum range r max < 0.15. 

Fig. 7. Examples of variation due to seasonal change. The same geo-location may 

need to be labeled as light vegetation and soil at different times of the year. 
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Fig. 8. Example of data variation due to view-angle change. In this case, the small 

areas in the middle of the two image patches shown should correspond to the same 

geo-location. But due to different view angles, the area in the right image is oc- 

cluded by part of the tall building that can be seen in the left image. This results 

in different spectral signatures for the same geo-point. 

Fig. 9. Example of land-cover change caused by urban development. The area in 

the middle of the image patches shown changes from road/parking lot (left image) 

to building (right image). 

Fig. 10. The three image patches cropped from three different satellite images cen- 

tered at the same geo-location over a road surface. 
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afe to attribute the variability that is visible in Fig. 6 to the differ-

nt occlusions caused by tall buildings in the satellite images from

ifferent view angles. 

Fig. 7 shows an example of data variation in a vegetation cov-

red area as caused by seasonal change and Fig. 8 shows varia-

ion due to view-angle change. For the latter case especially, even

hen the actual land-cover remains the same, the occlusions cre-

ted by tall structures cause the spectral signatures collected for a

eo-point to vary from one image to another. Data variations may

lso be caused by a piece of land being under development during

he time when the images were recorded. In this case, the same

rea can completely change from one land type to another. Fig. 9

hows such an example. 
While all the previous examples illustrated data variability

aused by different sources, it’s also good to know that there can

xist areas where the data stays constant, more or less. Fig. 10

hows the same road area in three different images (selected ran-

omly from the 49 satellite images for the subregion shown earlier

n Fig. 3 ). In Fig. 11 we plot the spectral signatures with respect

o the view angles and with respect to time at a particular geo-

ocation at the center of the three image patches in Fig. 10 . 

The left plot of Fig. 11 shows the variability with respect to

he look angle and the right shows the variability with respect

o the month in which the data was recorded. As the reader can

ee, there is much less variation in the data for the point chosen.

his result is consistent with the overall data variability heat map

hown in Fig. 4 . 

. An ROI-based protocol for generating the ground-truth for 

raining and testing a classifier 

We now present a data annotation procedure for creating pos-

tive examples for the different land-types for the training of the

lassifiers presented in the next section. Since ROI based wide-

rea learning involves a very large amount of data, and since it

ould be much too frustrating for a human to have to scan all of

he images that cover an ROI for identifying the positive examples,

he procedure we present samples the ROI and throws up small

atches, along with their contexts, for a human to see and catego-

ize. 

The system starts out by showing the entire ROI (as, for exam-

le, shown in Fig. 1 ) to the annotator. The annotator can zoom in

nd out in order to become familiar with the general content of

he ROI. At any given geo-point, the annotator can also scan across
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Fig. 11. Road spectral signature versus the off-nadir view angle and versus the month of the year in which the image was recorded. 

Fig. 12. An example of the satellite image overlap distribution used in a sampler based on the Metropolis-Hastings algorithm. This distribution is for the Chile ROI. The X 

and Y axes have units in km and the Z axis indicates the number of all 2m-by-2m cells from all overlapping images in a given 1km-by-1km area. 
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all of the overlapping views. Subsequently, the system throws up

M randomly chosen subregions for each land-type for the human

to annotate, M is typically a small user-specified integer. (We used

M = 3 for the experimental results in Section 7 .) The size of such

subregions is set at system initialization time. 9 The randomization

is carried out by the Metropolis-Hastings algorithm that is applied

to the image coverage histogram of the sort shown in Fig. 12 . 10 

The annotator then visually examines the geographical content

in the vicinity of the drawn subregion and is given the option of

rejecting the subregion if it lacks the land-type for which the an-

notator is seeking positive examples. 

For each of the subregions thus accepted, the system randomly

generates up to 20 1km-by-1km patches. To give the reader a sense

of the size of these patches, for 2m/pixel data, each patch is repre-

sented by a 500 × 500 array of pixels that can easily be displayed
9 As we will mention in greater detail later, we typically set the size of a subre- 

gion to be approximately 64 square kilometers. 
10 Drawing samples according to the image coverage distribution yields a larger 

amount of training data in less time. The greater the number of overlaps at a geo- 

point, the larger the number of training samples that can be labeled at once at that 

geo-point. For Metropolis-Hastings sampling, we used the Perl-based implementa- 

tion presented in Kak (2014) . 

 

o  

l  

t  

t  

i  

6  

s  
ully in a typical 1024 × 768 computer monitor display. This allows

he annotator to clearly see and recognize the land-types within a

atch and its vicinity. The annotator can also zoom into a patch

n order to resolve any ambiguities regarding the land-type of a

ixel or a group of pixels. When the annotator sees a blob of pixels

n which all pixels appear to possess the same land-type, he/she can

raw a polygon around the blob and mark the entire blob as consti-

uting a set of positive instances for that land-type. The annotator can

lso quickly check the overlapping satellite images and decide whether

o mark the blob within the same polygon in all the overlapping im-

ges as well. In this manner, the annotator collects around 20 0 0

amples from the images within the patches and their vicinity in

ach subregion for each land class. When the parameter M is set to

, that makes for a total of 60 0 0 positive instances for each land-

ype collected from three subregions. 

Obviously, one must exercise some care with regard to the size

f the subregions used. If this size is too small, the samples col-

ected may not capture sufficient variability needed for properly

raining a classifier. Fig. 13 shows some marked subregions within

he Chile ROI that were used for training the classifiers described

n the next section. The subregions shown in the figure are of size

4 square kilometers, which is roughly 25% of the size of a typical

atellite image. The size of a typical satellite image is about 10 0 0 0
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Fig. 13. The subregions (shown in white outlines, each of size 8km-by-8km) used 

in the Chile ROI for extracting the positive instances for the six different land-types. 

They include: water, active crop field, dormant crop field (aka soil), building, road, 

and tree (aka forest). There are three subregions per land-type and a subregion may 

be shared by more than one land-type. 
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70 0 0 pixels (or 20 km × 14 km ) at 2 meters per pixel spatial res-

lution. 

. A probabilistic framework for modeling within-class and 

etween-class variations 

In this section, we describe in detail the Bayesian framework

hat we have developed for land-type classification. Instead of di-

ectly using feature vectors for classification, we model the varia-

ions in the feature space for each class and use these models for

and-type classification. The intuition behind this approach is that

ifferent classes exhibit different variations in their spectral sig-

atures (and therefore in any derived feature space). Our results

resented in Section 8 show that this reasoning is well-founded. 

We group the variations into two categories, within-class and

etween-class variations. To understand this distinction, without

oss of generality, consider one particular class of land-type, for

xample ‘Trees’. One can definitely expect inter-image and inter-

iew differences in spectral signatures for pixels belonging to this

lass due to different categories of trees, different angles of satel-

ite views, seasonal changes and so on. For example, perpetually

reen trees such as pine trees are likely to produce the same spec-

ral signature across seasons, whereas other trees are more likely

o exhibit large variations in their spectral signatures in different

easons. We refer to such variations as within-class variations . Cor-

espondingly, differences in the spectral signatures between two

ifferent land-types, such as between buildings and trees, are re-

erred to as between-class variations . It is important to realize that

he nature of within-class variations itself might be different from

lass to class. 

We chose a Bayesian framework for classification as it offers

 practical and powerful way of modelling both within-class and

etween-class variations in a single unified framework. In addition,

s mentioned earlier, we aim to develop a system that can fuse in-

ormation from multiple views and the Bayesian framework easily

ends itself to fulfilling this objective. 

The foundations of our Bayesian framework lie in the prior con-

ributions by Mogahaddam Moghaddam et al. (20 0 0) , Mogahad-

am et al. Moghaddam (2002) , and Aksoy and Haralick Aksoy and

aralick (20 0 0) ; 20 01 ). In Moghaddam (20 02) ; Moghaddam et al.

20 0 0) , the authors use the difference in feature vectors for face

ecognition and show good performance. In Aksoy and Haralick

20 0 0) ; 20 01 ), the authors use a similar probabilistic approach for

mage retrieval. They use a likelihood-based similarity measure to
lassify the difference between two feature vectors (images) as ‘rel-

vant’ or ‘irrelevant’. The authors demonstrate better performance

sing this metric when compared to a geometric-distance based

etric. In those works, a difference between two feature vectors

an belong to one of two classes, a relevant or irrelevant class. For

xample, in Moghaddam (2002) ; Moghaddam et al. (2000) all vari-

tions between any two images are grouped together irrespective

f the identity of the human subject. 

Our Bayesian framework differs from these prior contributions

n that we model the probability distributions of the within-class

nd between-class variations for each land-type class separately.

his helps us to capture the intuition that the nature of variations

hemselves could be different for each class. For example the vari-

tions within the ‘Trees’ class due to seasonal changes or due to

ifferent varieties of trees are very different from the variations

ithin the ‘Buildings’ class due to the usage of different construc-

ion materials. 

Before discussing the details of our Bayesian framework, in

hat follows, we will first present details about the feature space

nd the target classes used for classification. We will also introduce

he symbolic notation used later in this section. 

Feature space - The Normalized Difference Vegetation Index

NDVI) was developed specifically to identify and characterize veg-

tation in aerial images DeFries and Townshend (1994) ; Kerdiles

nd Grondona (1995) . Essentially it exploits the difference in how

lants respond to incident light in the photosynthetically active

egion (PAR) and infrared region. The index is based on easy-to-

ompute spectral band ratios that show good performance for clas-

ifying vegetation. More recently in Marchisio et al. (2010) ; Wolf

2010) the authors have extended the NDVI like features and ap-

lied them for general land-type classification. We use these fea-

ures for our framework. In subsequent discussions, we will refer

o these features as Band Difference Ratios (BDR). Our dataset con-

ists of 4-band satellite images (Red, Blue, Green, and NIR), which

ields a 10-dimensional feature vector for each geo-point. The 10

imensions correspond to the six band ratios (two bands taken to-

ether at a time) plus the four spectral signatures themselves. 

Since each geo-point in our PIMSIR representation can receive

ata from multiple overlapping views, each geo-point can have

ultiple 10-dimensional feature vectors associated with it. This is

 significant departure from conventional methods that focus on

electing the best visually representative satellite image for each

eo-point. Our probabilistic framework enables us to easily fuse

ata from all available views at the same time. 

Target classes - We use six land-type classes, namely Buildings,

Asphalt) Roads, Active Crop Field, Soil, Water, and Trees. The class

Active Crop Field’ refers to both crop fields and areas that con-

ain grass and shrubs. Obviously the framework can be extended

o an arbitrary number of classes. We have selected classes that

ne would expect in any meaningful attempt at land-type classifi-

ation. 

Similarity measures for classification - In general, Bayesian

lassifiers make a probabilistic assessment of the class assignment

f a test sample based on its “distance” from the distributions for

he target classes. In this paper we have investigated two different

imilarity measures and analyzed their performance on land-type

lassification. In one case, we only model the within-class varia-

ions, and, in the second, we use a similarity measure that incor-

orates both within-class and between-class variations. 

Notation - We denote a feature vector by � F . The difference be-

ween two feature vectors � F a and 

�
 F b will be represented by �

 �ab =
�
 

 a − �
 F b . C 

W 

i 
will denote the within-class variations for the i th class

nd C B 
i 

will denote the between-class variations for the i th class

ie., the variation between class i and all the other classes taken

ogether). 



12 T. Chang et al. / Computer Vision and Image Understanding 147 (2016) 3–22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Training using Within-Class Variations. 

M i is a matrix whose columns correspond tothe spectral signatures 

of the samples of the i th target class. 

1: procedure TrainWithinClass 

2: for i ∈ {Target Land Classes} do 

3: Compute 10-D feature vectors from M i 

4: �i ← A matrix of pairwise differences between feature 

vectors. Each column of �i is one such difference vector. 

5: N i ← number of columns of �i 

6: E W 

i 
≈ 1 

N i 
�i �i 

T 

7: Calculate E W 

−1 

i 
and det(E W 

i 
) 

Algorithm 2 Testing using Within-Class Variations. 

P k is a test geo-point. M 

o 
k 

is the spectral signature for P k from the 

o th overlapping view. 

1: procedure TestWithinClass 

2: for o ∈ {Overlapping views} do 

3: 
# »

F o 
k 

← Compute 10-D feature vector from M 

o 
k 

4: for 
# »

F i ∈ {Training feature vectors} do 

5: 
# »

�o 
k,i 

← 

# »

F o 
k 

− # »

F i 

6: S( 
# »

�o 
k,i 

) ← P ( 
# »

�o 
k,i 

| C W 

i 
) 

7: l abel o 
k 

← argmax i S( 
# »

�o 
k,i 

) 

8: label k ← Combine label o 
k 
’s asdescribed in Section 6. 

Note: Repeat Algorithm 2 for each P k in the test data set. Addition- 

ally, we can use matrix operations toimplement the above algo- 

rithm using a single for-loop. 

4

b
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c

 

c  

o  

o  

o

S  
4.1. ML and MAP classifiers using only within-class variations 

For this case, we do not take the between-class variations into

account. We only model the within-class variations. The underlying

assumption is that any given 

�
 �ab must belong to one of the C W 

i 
for

some i . 

Training - For each class, we model the probability distribution

of the within-class variations as a unimodal multivariate Gaussian

distribution with a zero-mean and an estimated covariance matrix.

Given two feature vectors � F a and 

�
 F b that belong to two geo-points

of the same class i , both 

�
 �ab = 

�
 F a − �

 F b and 

�
 �ba = 

�
 F b − �

 F a = −�
 �ab

belong to the within-class variations of class i . Therefore the prob-

ability distribution of the within-class variations will have a zero

mean value. Obviously one can use more complex distributions

than the Gaussian distribution to model the variations. Our exper-

imental results validate our assumption of a Gaussian distribution.

The covariance matrix for each class is estimated from its positive

training samples. For the i th class, the probability distribution of

the within-class variations is denoted as 

p( � �| C W 

i ) = N (0 , E W 

i ) , (3)

where E W 

i 
denotes the estimated covariance matrix for the within-

class variations of class i and C W 

i 
is as described in the Notation in

Section 4 . 

Testing - For a candidate geo-point P k , we compute the 10- di-

mensional feature vector for each available overlapping view. For

each such view, we then compute the difference between the cor-

responding feature vector of P k and each feature vector in our

training database. The maximum a-posteriori probability that one

such difference vector �
 � belongs to the within-class variations of

class i is given by 

S i ( � �) = P (C W 

i | � �) = 

P ( � �| C W 

i 
) P (C W 

i 
) 

P ( � �) 
(4)

Recall that in this case we model only the within-class varia-

tions. Using the above stated assumption that �
 � must belong to

one of the C W 

i 
for some i , the denominator in Eq. 4 is given by 

P ( � �) = 

∑ 

i 

P ( � �| C W 

i ) P (C W 

i ) (5)

Since the denominator term in Eq. 4 is the same for each class,

we do not have to compute it explicitly. If we assume equal prior

probabilities for each class, then Eq. 4 reduces to a Maximum Like-

lihood measure as shown below. 

S i ( � �) = P ( � �| C W 

i ) . (6)

We compute this probability for each training feature vector

from each class. The class label assigned to this view of P k is

then the class label of the training feature vector that maximizes

this probability. 11 Since a geo-point can have multiple overlapping

views and thus multiple feature vectors, it is possible to assign

multiple class labels to the same geo-point. Thus an interesting

problem with using multi-view data is to find an optimum way to

combine multiple class labels from multiple feature vectors for a

particular geo-point. In Section 6 , we present a practical and novel

approach to handle this problem. 

Shown in Algorithms 1 and 2 is a brief algorithmic description

for designing the classifier based on only the within-class varia-

tions. 
11 Since we are modeling the within-class variations as unimodal Gaussians, this 

calculation is done efficiently through the computation of Mahalanobis distances 

using the covariances for the different classes. Note that this cannot be done for 

the case where we model both the within-class and between-class variations. 

 

p  

v  

t  
.2. ML and MAP classifiers using both within-class and 

etween-class variations 

In this strategy, we incorporate both within-class and between-

lass variations in the similarity measure. We again model the

etween-class variations as unimodal multivariate Gaussian distri-

utions. One could argue that between-class variations are better

epresented by a more complex multi-modal distribution. For this

aper, as a starting point, we use the simpler unimodal distribu-

ion for computational convenience. However, extending this part

f the classifier design to multi-modal distributions for between-

lass variations is one of our future goals. 

Training - The within-class variations are modeled as in the

revious case. The probability distribution of the between-class

ariations for the i th class, is denoted as 

p( � �| C B i ) = N (0 , E B i ) , (7)

here E B 
i 

denotes the estimated covariance matrix for the varia-

ions between the feature vectors of class i and those of the other

lasses and C B 
i 

is as described in the Notation in Section 4 . 

Testing - For each view of a test candidate geo-point P k we

ompute the difference between the corresponding feature vector

f P k and all the training feature vectors. The MAP probability that

ne such difference vector � � belongs to the within-class variations

f class i is defined as 

 i ( � �) = P (C W 

i | � �) = 

P ( � �| C W 

i 
) P (C W 

i 
) 

P ( � �) 
(8)

Now comes the key difference between this strategy and the

revious strategy. Since we explicitly model the between-class

ariations, therefore � � can either belong to the within-class varia-

ions of class i or the between-class variations of class i . Hence we
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an rewrite the similarity measure as 

 i ( � �) = 

P ( � �| C W 

i 
) P (C W 

i 
) 

P ( � �| C W 

i 
) P (C W 

i 
) + P ( � �| C B 

i 
) P (C B 

i 
) 

(9) 

To this view of P k we can then assign the class label of the

raining feature vector that maximizes the above probability. 

However, it is possible that P k does not belong to any of the

lasses under consideration. Thus we can go a step further with

he observation that for �
 � to actually be a within-class variation

f class i , we require 

 (C W 

i | � �) > P (C B i | � �) (10)

Using Eq. 10, Eq. 9 reduces to 

 i ( � �) > 

1 

2 

(11) 

If the above condition is not satisfied for any class i , then geo-

oint P k can be assigned a label ‘Other’. Note that this could be

sed to identify geo-points that belong to unmodeled classes such

s clouds. 

We use the majority voting notion as mentioned in Section 6 to

ombine the information from multiple class labels. 

We present a brief algorithmic implementation of the above de-

cribed strategy in Algorithms 3 and 4 . 

lgorithm 3 Training using both Within-Class and Between-Class

ariations. 

 i is a matrix whose columns correspond to thespectral signatures

f the samples of the i th target class. 

1: procedure TrainBetweenClass 

2: Estimate E w 

i 
’s as in Algorithm 1 

3: for i ∈ {Target Land Classes} do 

4: Compute 10-D feature vectors from M i . 

5: Calculate all possible pairwise differences between

the 
# »

F ’s belonging to class i and the 
# »

F ’s belonging tothe remain-

ing classes. 

6: Create matrix �i such that each columnof �i is one such

difference vector. 

7: N 

B 
i 

← number of columns of �i 

8: E B 
i 

≈ 1 

N B 
i 

�i �i 
T 

9: Calculate E B 
−1 

i 
and det(E B 

i 
) 

lgorithm 4 Testing using both Within-Class and Between-Class

ariations. 

 k is a test geo-point. M 

o 
k 

is the spectral signature for P k from the

 

th overlapping view. 

1: procedure TestBetweenClass 

2: for o ∈ {Overlapping views} do 

3: 
# »

F o 
k 

← Compute 10-D feature vector from M 

o 
k 

4: for 
# »

F i ∈ {Training feature vectors} do 

5: 
# »

�o 
k,i 

← 

# »

F o 
k 

− # »

F i 

6: S( 
# »

�o 
k,i 

) ← P (C W 

i 
| # »�o 

k,i 
) 

7: l abel o 
k 

← argmax i S( 
# »

�o 
k,i 

) 

8: label k ← Combine label o 
k 
’s asdescribed in Section 6. 

ote: Repeat Algorithm 4 for each P k in the test data set. Addition-

lly, we can use matrix operations toimplement the above algo-

ithm using a single for-loop. 
. Support vector machines for classification 

Since the variance based Bayesian framework presented in

ection 4 is novel - novel in the context of satellite imagery -

e must compare it with the current practice in satellite im-

ge classification. Considering that Support Vector Machines (SVM)

re widely used for classifying satellite data, our Section 8 will

ompare the wide-area classification results obtained with our

ayesian framework and with SVM. As we will show in that sec-

ion, using the same training and testing data sets, the Bayesian

ramework of Section 4 outperforms SVM for four out of six

lasses. This section provides a brief overview of how we have

sed SVM in our comparison studies. 

Note that, in contrast to our variance based framework in which

lassification rules are applied to the differences of feature vec-

ors, SVM as popularly used are meant to be applied directly to

eature vectors. We should also point out that since we apply the

oA reflectance correction to the data ( Section 2 ), the resulting re-

ectance values are already normalized to the 0–1 range. By their

efinition, the BDR features that we extract have values between

1 and 1. Thus additional data normalization is not required for

he SVM classifiers. 

We trained two different SVM classifiers, one with a Radial Ba-

is Function (RBF) kernel and the other with a linear kernel. For

ulti-class classification, the former uses a “one-against-one” ap-

roach Knerr et al. (1990) . Thus if we have n classes, the system

ses n (n −1) 
2 classifiers, each of which acts on two classes. For the

inear kernel SVM, we use a “one-versus-the-rest” approach. We

iscuss the performance of our Bayesian classifier vis-a-vis both

ypes of SVM classifiers in Section 8 . 

. Combining multi-view class labels - compatible classes 

For the reasons discussed in Section 2 , we can expect that the

ifferent satellite views of the same geo-location will yield dif-

erent classes for some of the points on the earth. While some

f these variations in the class labels can be attributed to classi-

cation errors, others are due to genuine seasonal differences in

he land-cover types. We now present the notion of “Compatible

lasses” for dealing with the latter case. 

Say that for a particular geo-point, two different views give

ise to the two labels ‘Soil’ and ‘Active Crop Field’. We can think

f them as compatible class labels. Such geo-points can be clas-

ified as belonging to a super-class ‘Agricultural Land’. Choice of

uch compatible classes can be based on prior knowledge about

he geographic area under consideration. For example, in Taiwan

here paddy fields are very common, ‘Water’ can be considered

s compatible with ‘Active Crop Field’. The notion of compatible

lasses enables us to bring in information from meta-data, such as

he time of year when the satellite images were taken, in order to

ake better judgments on the compatibility of multiple class la-

els. 

When the number of target classes is large, one could try to de-

ign a system that automatically learns such rules of compatibility.

his would require collecting ground-truth labels in a more exten-

ive and elaborate manner and then using data mining techniques

o detect any regular/periodic relationships between different class

abels. For example, seasonal alternations between the ‘Active Crop

ield’ and the ‘Soil’ labels will exhibit periodicity that could be

earned. 

In cases where labels obtained from multiple views cannot co-

xist, that is, when the labels are incompatible, ordinarily we ap-

ly majority voting to the labels from each view - unless the data

t that location lends itself to the following logic: When several

iews are available at a geo-point, if the temporally earlier views
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Fig. 14. ‘Buildings’ (last row) and ‘Soil’ (first two rows) are incompatible land-types. This particular location has nine overlaps. The overlaps were contrast-enhanced for 

better visualization and sorted by year and month. 
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consistently 12 give a vegetation label to a geo-point and the later

views consistently call it a building or a road, we could safely as-

sume that the land-type has changed permanently and we could

just use the more recent label for that location. 

Fig. 14 shows an example of incompatible land-types. In the ex-

ample, ‘Soil’ and ‘Buildings’ are incompatible. Fig. 15 shows an ex-

ample of compatible land-types. In the example, ‘Soil’ and ‘Active

Crop Field’ can fall into a more general class such as ‘Agricultural

Land’. 

The accuracy of using temporal consistency to combine labels

will be affected by how well the orthorectified overlapping views

line up together. This is especially true for pixels near the bound-

aries of objects as, for instance, the edge pixels of the building in

Fig. 14 . One can use additional higher level logic such as morpho-

logical operations and spatial filters to clean up such noisy pixels.

In any case, from the standpoint of what is needed for geolocal-

ization, the benefits of developing classifiers that are invariant to
12 By ‘consistent’ we mean that there are no temporal changes in the class labels. 

 

s  

t  

c  
nter-view and inter-image variations far outweigh the effects of

uch noisy pixels. 

. Experiments 

Our main goal is to compare two different strategies for land-

over classification from satellite images: (1) We train the classifier

sing the data from a single satellite image and then test the clas-

ifier on a wide-area basis. And (2) We train the classifier using the

ide-area training samples as made available by the Metropolis-

astings sampler and then test the classifier on a wide-area basis. 

We want to make the above mentioned comparison first with

he variance-based Bayesian classifiers of Section 4 and then

ith the more conventional SVM classifiers of Section 5 . For the

ariance-based Bayesian approach, we will also compare the re-

ults obtained using only within-class variations and the results

btained using both within-class and between-class variations. 

For learning based on a single satellite image, we draw 20 0 0

amples per class from a single image. For wide-area learning, on

he other hand, generating the training and the test data is more

omplex and, as stated previously, we follow the ground-truth data



T. Chang et al. / Computer Vision and Image Understanding 147 (2016) 3–22 15 

Fig. 15. ‘Active Crop Field’ (overlap1 and overlap2) and ‘Soil’ (overlap0) are compatible land-types. They can be grouped into a more abstract class such as ‘Agricultural Land’. 

This particular location has three overlaps. The overlaps were contrast-enhanced for better visualization and sorted by year and month. 
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Fig. 16. An unseen region (3394m by 3356m) not sampled from the satellite images 

used for training the classifiers. 
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ollection procedure described in Section 3 . To make that explana-

ion specific to the experiments reported in this section, we use

hree different subregions 13 that do not overlap with the image

sed for the single-satellite-image based learning. That the subre-

ions returned by the sampler not overlap with that single satellite

mage is important because the total ground truth used for wide-

rea learning contains all of the samples drawn from the three

ubregions, as picked by the Metropolis-Hastings sampler, and the

amples from the single satellite image used for single-satellite-

mage based learning. As is the case for the single-satellite-image

earning experiment, we draw 20 0 0 samples per class from each of

he three subregions, for a total of 60 0 0 samples per class from the

hree subregions. When pooled with the 20 0 0 samples per class

rawn from the aforementioned single satellite image, we end up

ith a total of 80 0 0 samples per class for wide-area learning. 

For each classifier used, we use the stratified 10-fold cross-

alidation to assess its performance. Specifically, we divide the

round-truth data into 10 parts and use nine parts for training and

ne part for testing. This is done for all the ten ways in which the

ata can be partitioned in such a manner. Each part in the ten-part

ivision of the ground-truth data consists of equal number of ran-

om samples drawn from each of the three subregions and from

he single satellite image for each land-type. As a result, each clas-

ifier in each run of the 10-fold cross-validation test is trained with

20 0 (80 0 0 × (9/10)) training samples from each class. 

We also ran the Bayesian and SVM classifiers on a region from

hich no samples were collected for training the classifiers - we

efer to this region as the “unseen region” and any data collected

rom this region as the “unseen data.” This region, presented in

ig. 16 , is about 3.3km by 3.3km and is viewed in six satellite im-

ges whose intersections with the region are shown in Fig. 17 . We

ssess the performance of the classifiers on this region both qual-

tatively (that is, visually) and quantitatively. The quantitative as-

essment was carried out with the help of a small ground-truth

ata set we created separately for this region. This dataset consists

f roughly 20 0 0 samples per class. 

We use the same stratified 10-fold cross validation strategy

iscussed above for evaluating the SVM classifiers described in

ection 5 . Results for both the single-satellite-image and wide-area

earning cases are presented in Section 8 . 

. Results and comparisons 

This section shows the results obtained with the different clas-

ifiers. As the reader will recall, our main goal is to compare the

ide-area based learning of the classifiers with the single-satellite-
13 As mentioned toward the end of Section 3 , a subregion is what is returned by 

he Metropolis-Hastings algorithm based sampler at each randomly selected point 

hosen by the sampler. It is roughly of size 64 sq km. 

8

 

t  

d  
mage based learning of the same. Our additional goal is to com-

are the performance of the variance-based Bayesian formalism for

lassification of Section 4 with the performance of the SVM ap-

roach outlined in Section 5 . 

In what follows, we will first take up the issue of wide-area

earning versus single-satellite-image based learning in Section 8.1 .

his will be followed by a comparison of the Bayesian based clas-

ification with SVM in Section 8.2 . Section 8.3 will present the

esults obtained on the unseen data as defined and specified in

ection 7 . Note that for the computation of average accuracies and

onfusion matrices, majority voting was used to combine class la-

els from overlapping views. 

.1. Wide-area learning versus single-satellite-image based learning 

In this and the next subsection, we compare the performance

f the classifiers based on the two different approaches outlined in

ection 4 . In one, we only consider within-class variations and, in

he other, we also include the between-class variations. 

.1.1. Learning based on Bayesian modeling of within-class variations 

Table 1 is the average confusion matrix obtained when we

rain on only one single satellite image. (Average is over the ten

ata sets in the 10-fold cross validation). We model only the



16 T. Chang et al. / Computer Vision and Image Understanding 147 (2016) 3–22 

Fig. 17. All six overlaps in the unseen region. Images were contrast-enhanced for better visualization. 
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Table 1 

Average Confusion Matrix using a Single Satellite Image for Training with only Within-Class 

Variations. 

ActiveCropField Soil Trees Water Buildings Roads 

ActiveCropField 60.875 0.0 39.087 0.0 0.0375 0.0 

Soil 0.0 38.038 0.1125 0.0 59.975 1.875 

Trees 1.113 0.0 97.838 0.0 1.050 0.0 

Water 0.0 0.0 0.0 41.087 57.125 1.788 

Buildings 0.55 1.613 0.475 0.4625 81.287 17.925 

Roads 0.2125 0.25 0.0875 0.0 4.838 94.612 

Table 2 

Average Confusion Matrix using a Wide Area Region for Training with only Within-Class Vari- 

ations. 

ActiveCropField Soil Trees Water Buildings Roads 

ActiveCropField 64.0 0 0 0.0 34.138 0.0 0.0 1.863 

Soil 0.0 99.987 0.0125 0.0 0.0 0.0 

Trees 0.0875 0.025 99.775 0.0 0.0 0.1125 

Water 0.0 0.0 0.0375 99.938 0.0 0.025 

Buildings 0.0125 6.362 0.0 0.0125 64.250 29.363 

Roads 0.0875 0.625 0.0125 0.0 0.0375 99.237 

Table 3 

Average Confusion Matrix using a Single Satellite Image for Training with Both Between-Class 

and Within-Class Variations. 

ActiveCropField Soil Trees Water Buildings Roads 

ActiveCropField 62.188 0.0 37.763 0.0 0.05 0.0 

Soil 0.0 37.175 0.0875 0.0 60.888 1.850 

Trees 0.875 0.0 98.050 0.0 1.075 0.0 

Water 0.0 0.0 0.0 38.888 59.587 1.525 

Buildings 0.55 1.450 0.475 0.4625 82.412 16.962 

Roads 0.225 0.25 0.05 0.0 5.188 94.287 

Table 4 

Average Confusion Matrix using a Wide Area Region for Training with both Between-Class and 

Within-Class Variations. 

ActiveCropField Soil Trees Water Buildings Roads 

ActiveCropField 67.125 0.0 31.962 0.0 0.0 0.9125 

Soil 0.0 99.987 0.0125 0.0 0.0 0.0 

Trees 0.125 0.025 99.763 0.0 0.0 0.0875 

Water 0.0 0.0 0.0375 99.950 0.0 0.0125 

Buildings 0.025 6.487 0.0 0.0125 66.338 27.137 

Roads 0.1 0.8625 0.0125 0.0 0.075 98.950 
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ithin-class variations in this case. The average classification ac-

uracy obtained was 68.88%. 

Table 2 is the average confusion matrix obtained when we train

n multiple satellite images that cover a wide area. (Average is

ver the ten data sets in the 10-fold cross validation). Again, we

odel only the within-class variations in this case. The average

lassification accuracy was 87.86%. 

We observe good improvement in classification accuracy for five

ut of six classes, with significant improvement for the ‘Soil’ and

Water’ classes. We also see that the classifier exhibits some confu-

ion between the ‘Active Crop Field’ class and the ‘Trees’ class. This

s understandable as our feature space is derived from spectral sig-

atures. Texture-based features and spatial features can be used in

n additional step to separate these two classes. But it is encour-

ging that the vegetation classes exhibit minimal confusion with

an-made classes such as buildings and roads. For the ‘Buildings’

lass alone, we notice a decrease in classification accuracy. How-

ver, comparing Tables 1 and 2 , we observe a decrease in confusion

etween the ‘Buildings’ class and the two vegetation classes. Con-

usion for the ‘Buildings’ class is now mostly with the ‘Roads’ class.

ne possible reason for this is the fact that the building rooftops

o

ome in a wide variety of colors. When we collect samples for the

Buildings’ class from multiple regions, that increases the range of

ooftop colors in the positive examples of buildings and this range

an intersect with the spectral signatures in the positive examples

or the roads. Since our feature space is purely spectral in nature,

his overlap in the spectral signatures can be expected to cause

onfusion between some of the buildings and the roads. One solu-

ion to this problem would be to train on separate classes of build-

ngs on the basis of the colors of the rooftops. In future extensions

f the research reported in this paper, one could conceive of aug-

enting the spectral features with spatial features in order to bet-

er separate the building and the road classes Fauvel et al. (2013) . 

.1.2. Also modelling the between-class variations 

Table 3 is the average confusion matrix obtained when we

odel both within-class and between-class variations in classifier

raining based on a single satellite image. The average classification

ccuracy obtained in this case was 68.76%. 

And Table 4 is the average confusion matrix obtained when

e model both within-class and between-class variations in wide-

rea based classifier training. The average classification accuracy

btained in this case was 88.69%. 
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Table 5 

Average Confusion Matrix Using a Single Satellite Image for an SVM classifier with RBF Kernel. 

ActiveCropField Soil Trees Water Buildings Roads 

ActiveCropField 82.450 0.0 17.550 0.0 0.0 0.0 

Soil 0.1625 99.838 0.0 0.0 0.0 0.0 

Trees 1.887 0.0 98.112 0.0 0.0 0.0 

Water 0.0 0.0125 0.0125 95.213 0.0 4.763 

Buildings 0.4125 10.088 0.0 0.25 81.862 7.388 

Roads 1.113 8.363 0.275 0.0 8.088 82.162 

Table 6 

Average Confusion Matrix using a Wide Area Region for a SVM classifier with a RBF kernel. 

ActiveCropField Soil Trees Water Buildings Roads 

ActiveCropField 98.575 0.0 1.425 0.0 0.0 0.0 

Soil 0.0 99.963 0.0375 0.0 0.0 0.0 

Trees 6.862 0.025 93.112 0.0 0.0 0.0 

Water 0.0 0.0 0.025 98.725 0.0 1.250 

Buildings 0.2125 6.537 0.0125 0.625 84.025 8.588 

Roads 0.5125 2.312 0.5375 0.0125 3.475 93.150 

Fig. 18. Majority vote result from Fig. 14 . 

Fig. 19. Majority vote result from Fig. 15 . 
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out of six classes when we use a SVM classifier with an RBF ker- 
By comparing Tables 1 and 3 , as well as Tables 2 and 4 , we

observe that we do not get any significant improvement by mod-

elling the between-class variations. One reason for this might be

that between-class variations span a more complex multi-modal

distribution and hence the unimodal approximation described in

Section 4 might not capture the information in between-class vari-

ations. If our speculation is correct, using the Expectation Maxi-

mization algorithm to model between-class variations with a mix-

ture of Gaussians would be one way to resolve this issue. A similar

observation was made by the authors of Moghaddam (2002) in the

context of face recognition. Figs. 18 and 19 show the classification

results using majority voting for the images shown in Figs. 14 and

15 . 

8.1.3. SVM classifiers 

We now show classification results obtained using the SVM

classifiers described in Section 5 . We will use ‘SVM-RBF’ to denote
he SVM classifier with an RBF kernel and ‘SVM-Linear’ to denote

he SVM classifier with a linear kernel. 

Table 5 is the average confusion matrix obtained using the

VM-RBF classifier by training on a single satellite image. From the

ntries shown in the table, we conclude that the average accuracy

n this case is 88.93%. Table 6 is the average confusion matrix ob-

ained using the SVM-RBF classifier by training on a wide area re-

ion. The average accuracy in this case is 94.59%. Table 7 is the

verage confusion matrix obtained using the SVM-Linear classifier

y training on a single satellite image. The average accuracy in this

ase is 88.33%. Table 8 is the average confusion matrix obtained

sing the SVM-Linear classifier by training on a wide area region.

he average accuracy in this case is 93.76%. 

Comparing Tables 5 and 6 , we note that wide-area learning pro-

ides good improvement in average classification accuracy for five
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Table 7 

Average Confusion Matrix Using a Single Satellite Image for an SVM classifier with a Linear 

Kernel. 

ActiveCropField Soil Trees Water Buildings Roads 

ActiveCropField 78.700 0.0875 21.212 0.0 0.0 0.0 

Soil 1.812 94.050 0.0125 0.0 0.025 4.100 

Trees 1.587 0.2375 98.175 0.0 0.0 0.0 

Water 0.0 0.0125 0.0375 94.600 0.0 5.350 

Buildings 0.325 6.325 0.0 0.0875 87.963 5.300 

Roads 0.5125 8.025 0.4375 0.0 14.488 76.537 

Table 8 

Average Confusion Matrix using a Wide Area Region for a SVM classifier with a Linear kernel. 

ActiveCropField Soil Trees Water Buildings Roads 

ActiveCropField 97.213 0.6125 2.175 0.0 0.0 0.0 

Soil 0.0 96.375 0.0125 0.0 0.125 3.487 

Trees 5.787 0.075 94.112 0.0 0.0 0.025 

Water 0.0 0.0125 0.025 99.075 0.0 0.8875 

Buildings 0.2 5.825 0.0125 0.225 85.425 8.312 

Roads 0.375 2.400 0.3625 0.0 6.487 90.375 

n  

‘

 

c  

e  

n  

c  

c  

t  

i

8

 

c  

c  

a  

s

 

S  

c  

c  

‘  

s  

t  

c  

r  

c  

‘  

t  

c  

W  

fi  

o  

t  

l  

o  

f  

r  

e

 

S  

a  

o  

c  

W  

T  

w  

r  

u

 

d  

e  

K  

i  

b  

t  

a

 

f  

s  

a  

i  

fi  

r  

a  

b  

c  

r  

f  

s  

s  

e  

s

 

t  

d  

S  

c  

a  

m  

w  

14 The conclusions were similar when we compared the Bayesian classifier using 

only the within-class variations with the SVM-RBF classifier. When we compared 

the linear SVM classifier against both versions of the Bayesian classifier, all observed 

performance differences were deemed statistically significant. 
el, with significant improvements for the ‘Active Crop Field’ and

Roads’ classes. 

Comparing Tables 7 and 8 , we see that when we use a SVM

lassifier with a linear kernel, wide-area learning improves av-

rage classification accuracy for 4 out of 6 classes, with sig-

ificant improvements for the ‘Active Crop Field’ and ‘Roads’

lasses. Thus for both our Bayesian framework and for SVM

lassifiers, the results indicate that wide-area learning is bet-

er than learning that is based on just a single satellite

mage. 

.2. Bayesian versus SVM 

For comparing the performance of the Bayesian with the SVM

lassifiers, we only consider the wide-area learning paradigm. This

omparison tells us that for the four classes ‘Soil’, ‘Trees’, ‘Water’

nd ‘Roads’, the Bayesian framework exhibits greater average clas-

ification accuracies than the SVM classifiers. 

Using Tables 2 and 8 to compare the Bayesian classifier and the

VM-Linear classifier, we observe that the Bayesian classifier in-

reases the classification accuracies by roughly 6% for the ‘Trees’

lass, 9.8% for the ‘Roads’ class and 3.7% for the ‘Soil’ class. For the

Water’ class, both classifiers yield high accuracies and we only ob-

erve a marginal increase ( < 1%). Using Tables 2 and 6 to compare

he Bayesian and SVM-RBF classifiers, we observe that the Bayesian

lassifier yields an increase of roughly 7% in the classification accu-

acy for the ‘Trees’ class, an increase of roughly 6.5% for the ‘Roads’

lass and an increase of roughly 1.2% for the ‘Water’ class. For the

Soil’ class, both classifiers yield very high accuracies ( > 99%) and

he increase is very marginal. We do note a decrease in classifi-

ation accuracies for the ‘Active Crop Field’ and ‘Buildings’ classes.

e believe that the Bayesian classifier loses out to the SVM classi-

er for the case of ‘Active Crop Field’ because the former is based

n differences of the feature vectors as opposed to the feature vec-

ors directly. Since the variations within the ‘Trees’ class are simi-

ar to the variations within the ‘Active Crop Field’ Class when using

nly spectral features, there is confusion between the two classes

or the Bayesian approach. With regard to the reduction in accu-

acy observed for the ‘Buildings’ class, see the discussion at the

nd of Section 8.1.1 . 

At first glance, it appears as if the average accuracies of the

VM classifiers are better than those of the Bayesian classifiers by

round 4 –5% . However we believe that the per class comparison

f accuracies described above presents a more complete and ac-
urate picture than merely comparing the total average accuracies.

e have used an equal number of testing samples for each class.

herefore despite the better performance of our Bayesian frame-

ork for four out of six classes, the lower accuracy rates for the

emaining two classes bring down the overall average accuracy val-

es for the Bayesian classifiers. 

We used randomization-based significance testing and the Stu-

ent’s t-test to evaluate the statistical significance of the differ-

nces in performance between the Bayesian and SVM classifiers

ak (2015) . In what follows, we present the results of these tests

n a comparison of the wide-area trained Bayesian classifier using

oth within-class and between-class variations with the wide-area

rained SVM classifier with an RBF kernel. The corresponding aver-

ge confusion matrices are shown in Tables 4 and 6 . 14 

For each type of classifier (Bayesian or SVM), we obtain a con-

usion matrix in each run of the 10-fold cross validation test de-

cribed in Section 7 . For each land-type class, we can therefore cre-

te a 10 element vector consisting of the classification accuracies

n each of the ten runs. This is shown in Table 9 . To elaborate, the

rst row, labeled “Active Crop Field (B)” in the first column, cor-

esponds to using a Bayesian classifier based on both within-class

nd between-class variations. Similarly, the second row of this Ta-

le, labeled “Active Crop Field (S)”, corresponds to the 10 classifi-

ation accuracies for the “Active Crop Field” class obtained with 10

uns of the SVM-RBF classifier. The remaining rows of the table are

or the other land-type classes. We use these values for statistical

ignificance testing. As is normally done in such testing, we fix the

ignificance value α at 0.05. If the p-value for any observed differ-

nce in performance is less than α, that observation is deemed as

tatistically significant. 

Table 10 shows the result of randomization-based significance

esting. Comparing the p-values to α, we see that the performance

ifferences in all classes are statistically significant except for the

oil class. This makes sense since as shown in Table 9 , the Soil ac-

uracies in the samples from both the classifiers are very similar

nd tied at 100% in 8 out of 10 runs. Thus the observed perfor-

ance improvements for the ‘Trees’, ‘Roads’ and the ‘Water’ class

hen comparing Tables 4 and 6 are statistically significant. Since
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Table 9 

Classification accuracy samples from Bayesian (B) and SVM (S) classifiers. B = Wide-Area Bayesian classifier trained with both within-class 

and between-class variations. S = Wide-Area SVM classifier with RBF kernel. 

Land-type class (Classifier) 10 fold cross-validation accuracies 

ActiveCropField (B) 65.750 69.0 0 0 66.500 67.375 65.625 67.500 67.500 69.750 64.375 67.875 

ActiveCropField (S) 98.500 99.0 0 0 98.375 98.375 98.500 98.625 98.125 98.750 98.375 99.125 

Soil (B) 100 100 100 99.875 100 100 100 100 100 100 

Soil (S) 99.875 100 100 99.875 100 100 99.875 100 100 100 

Trees (B) 99.875 99.875 99.875 99.875 99.875 99.625 99.750 99.500 99.500 99.875 

Trees (S) 93.250 91.750 92.125 93.625 93.375 93.500 93.125 92.375 95.125 92.875 

Water (B) 100 99.875 100 100 99.875 100 100 99.750 100 100 

Water (S) 98.875 99.0 0 0 98.875 98.875 99.125 98.250 98.500 99.0 0 0 98.0 0 0 98.750 

Buildings (B) 68.125 65.500 64.500 65.500 66.625 66.375 68.625 67.750 65.125 65.250 

Buildings (S) 84.0 0 0 85.625 83.125 84.375 84.625 84.125 84.625 84.375 84.125 81.250 

Roads (B) 98.750 98.875 99.250 98.750 99.500 99.0 0 0 98.750 98.750 98.750 99.125 

Roads (S) 92.875 92.500 93.375 93.625 92.500 94.250 92.750 92.625 94.625 92.375 

Table 10 

Result of Significance Testing with Randomization. 

Class ActiveCropField Soil Trees Water Buildings Roads 

p-value 0.00195 0.50 0 0 0 0.00195 0.00195 0.00195 0.00195 

p-value < 0.05 ? Yes No Yes Yes Yes Yes 

Better classifier SVM – Bayesian Bayesian SVM Bayesian 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Majority vote result using wide-area learning with the Bayesian classifier 

on Fig. 16 . 
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the Student’s t-test yielded similar results we will not show them

here for the sake of brevity. 

These results thus provide credible evidence to support our in-

tuition that different land-classes not only possess different spec-

tral signatures, but, even more importantly, exhibit different types

of variations in their spectral signatures. Modeling these variations

using a Bayesian framework provides us with a robust novel clas-

sifier that outperforms state-of-the-art approaches like SVM classi-

fiers in identifying as many as four out of six important land types

in satellite images. 

Next, we show results on unseen data using the Bayesian and

SVM classifiers. 

8.3. Results on unseen data 

8.3.1. Bayesian classifiers 

As mentioned in Section 7 , we tested our Bayesian classifiers

on unseen data, that is, data that was not used in the training

and the testing involved in the previously described 10-fold cross-

validation test. The unseen data image was shown earlier in Fig. 16 .

Fig. 20 shows the classification output for this dataset. 

Again as mentioned previously, for quantitative analysis, a small

ground-truth dataset was collected from a portion of this un-

seen image. Table 11 shows the average confusion matrix obtained

when the wide-area trained classifiers are applied to this unseen

data. Table 12 shows the average confusion matrix obtained when

the single-satellite-image classifier is applied to the unseen data.

We modeled only the within-class variations for these tests. 

Comparing Tables 11 and 12 , we see that, for three out of six

classes, wide-area learning of the classifiers gives us superior re-

sults compared to the case when the classifiers are trained on data

collected from just a single satellite image. The wide-area-learning

improvements we get for the ‘Active Crop Field’ and ‘Soil’ classes

are very significant. However, we also notice that the performance

of wide-area learning decreases for the remaining three classes. So,

for the unseen data example of Fig. 16 , choosing between wide-

area learning and single-satellite-image learning for classification

would appear to be a toss-up at first thought. However, upon fur-

ther thought, all that this comparison tells us is that the statistical

properties of the data actually used for training were not truly re-

flective of all of the within-class variations in the unseen data. 
Comparing classifier performance on unseen segments of data,

s we just did with the help of Tables 11 and 12 , would be an

mportant part of the protocol we plan to develop in follow-up re-

earch for ensuring that the number of subregions used for wide-

rea learning is sufficient to represent all of the statistical varia-

ions in the entire ROI. 

.3.2. SVM classifier 

In this section we present the results of wide-area learn-

ng using the SVM-RBF classifier on the same unseen dataset as

n Section 8.3.1 . Fig. 21 shows the classification output for this

ataset. 

A quantitative evaluation was also carried out on the

mall ground-truth dataset collected from this unseen data.
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Table 11 

Average Confusion Matrix for Unseen Data using a Wide Area Region for Training with Within- 

Class Variations. 

ActiveCropField Soil Trees Water Buildings Roads 

ActiveCropField 43.937 0.0 56.063 0.0 0.0 0.0 

Soil 0.0 99.682 0.0 0.0 0.0 0.3181 

Trees 16.078 0.0522 83.800 0.0 0.0 0.0696 

Water 0.0 0.0 0.1309 99.866 0.0035 0.0 

Buildings 0.0 5.349 0.047 0.0 66.312 28.291 

Roads 0.0294 17.404 0.0 0.0 0.0 82.566 

Table 12 

Average Confusion Matrix for Unseen Data using a Single Satellite Image for Training with 

Within-Class Variations. 

ActiveCropField Soil Trees Water Buildings Roads 

ActiveCropField 31.521 0.0 68.479 0.0 0.0 0.0 

Soil 0.0 75.736 0.0 0.0 24.264 0.0 

Trees 6.110 0.0 93.423 0.0 0.4669 0.0 

Water 0.0 0.0 0.0071 96.730 3.263 0.0 

Buildings 4.537 4.670 4.537 4.537 75.107 29.297 

Roads 0.295 0.5605 0.0 0.0 3.451 95.693 

Table 13 

Average Confusion Matrix for Unseen Data using a Wide Area Region for a SVM classifier 

with a RBF kernel. 

ActiveCropField Soil Trees Water Buildings Roads 

ActiveCropField 100.0 0.0 0.0 0.0 0.0 0.0 

Soil 0.0 100.0 0.0 0.0 0.0 0.0 

Trees 63.745 0.0 36.255 0.0 0.0 0.0 

Water 0.0 0.0 0.3154 97.375 0.0 2.310 

Buildings 0.0 7.267 0.047 0.166 67.822 24.699 

Roads 0.393 14.110 0.0 0.0 16.726 68.771 

Fig. 21. Majority vote result using wide-area learning with the SVM-RBF classifier 

on Fig. 16 . 
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able 13 shows the average confusion matrix obtained for this ex-

eriment. 

Comparing Tables 11 and 13 , we can see that for wide-area

earning, the Bayesian classifier shows better performance than the

VM classifier for the ‘Trees’, ‘Roads’ and ‘Water’ class. We ob-
erve comparable performances for the ‘Soil’ and the ‘Buildings’

lasses. For the ‘Active Crop Field’ class, we notice lower accuracy

ates for the Bayesian classifier. We have already discussed possi-

le reasons and solutions for this in Section 8.2 and at the end of

ection 8.1.1 . These observations are in sync with our observations

n Section 8.2 and thus lend additional credibility to the benefits

f our wide-area based Bayesian learning paradigm. 

Finally we would like to briefly revisit the discussion on or-

horectification errors in Section 2.2 . The variability heat maps in

hat section as well as our results presented here lend credence to

he fact that our approach can handle orthorectification errors to a

ood extent. Obviously, extreme misregistration between two over-

apping images will create confusion for our proposed classifiers.

s mentioned in Section 3 , we address this issue during the data

nnotation process by visually inspecting the overlapping satellite

mages beneath the marked polygons and excluding images that

re significantly misaligned. Subsequently, we collect pixels within

he polygon only from the remaining subset of the overlapping im-

ges. Also note that the effect of misregistration depends on the

ize of the target class/object as well. For example, in our experi-

ents, we observed that one should be more careful when collect-

ng training data for small individual objects (such as, say, red-roof

uildings) compared to collecting data for extended objects such as

arge water bodies or forests. Additionally, for each pixel, as long

s a sufficient percentage of overlapping images are aligned rea-

onably well, combining class labels using majority voting provides

easonable protection against misclassification. 

. Conclusions and future work 

This paper first presented the PIMSIR tool for creating an inte-

rated representation for all satellite images, including those that
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are overlapping, that cover a large geographic area. We showed

how this tool can be used to understand the data variability in

the images - variability that runs across the images wherever they

are overlapping, spatial variability, and temporal (and seasonal)

variability. Subsequently, we showed how one’s understanding of

this variability can be used to design Bayesian classifiers that are

trained on a wide-area basis, as opposed to the more traditional

approach of training classifiers using the data in just a single im-

age. A necessary requirement of wide-area learning is statistical

sampling of all of the satellite data for generating the ground truth.

The overall training framework we provided included a Metropolis-

Hastings random sampler for generating the points to be used for

training and testing in proportion to the extent of satellite cov-

erage over the different parts of the geographic area. Despite the

fact that we used only a small number of subregions thus selected

for generating the ground truth, we showed that wide-area based

learning classifiers gave us better classifications for five out of six

classes compared to the traditional approach of using a classifier

based on the data extracted from just one image. 

Using the same training and the testing data sets, we also com-

pared the performance of the variance-based Bayesian classifiers

with the more traditional SVM classifiers. The conclusion here was

that the variance-based framework led to superior classifications

for four out of six land-cover classes. 

With regard to future extensions of this research, a very impor-

tant issue that remains to be addressed is testing for sufficiency of

the ground-truth data as yielded by the Metropolis-Hastings based

random sampler. We want the ground-truth data to represent all

of the diversity - speaking statistically, of course, - that exists in

an ROI for each land-cover class. At the same time, we do not wish

to collect any more ground-truthed data than is necessary on ac-

count of the high cost of the human labor involved in supplying

the human judgments. We therefore need some sort of a feedback

loop that uses the “test on unseen data” sort of strategy presented

in Sections 7 and 8.3 to evaluate the quality of the data collected

for ground-truthing up to a given point so that a decision can be

made whether or not to collect additional data. 

For another future direction of investigation, we believe that, in

the variance-based Bayesian classifier, we would get superior re-

sults when we also incorporate between-class variations provided

we create a multi-modal model for such variations. As we men-

tioned earlier in the paper, perhaps the best future approach would

be to use the EM algorithm for creating such a multi-modal model.

For yet another future direction, we think our results would

become even more impressive if we could enrich the spectral-

signatures based feature space with spatial features. It is impos-

sible to take into account the spatial context of a geo-point when

classification is carried out just on the spectral signatures at each

point. As we saw in Section 8 , it is rather easy for the building

pixels to be confused with the road pixels since we can expect the

spectral signatures of certain kinds of rooftops (say, the flat roofs

that are made with concrete slabs) to yield nearly the same signa-

tures as the roads. Using spatial and, perhaps, texture properties of

the blobs that surround the pixels would be one way to mitigate

such inter-class confusions. 
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