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Abstract—Word embeddings produced by the word2vec algo-
rithm provide us with a strong mechanism to discover relation-
ships between the words based on the degree to which they are
contextually related to one another. In and of itself, algorithms
like word2vec do not give us a mechanism to impose ordering
constraints on the embedded word representations. Our main
goal in this paper is to exploit the semantic word vectors obtained
from word2vec in such a way that allows for the ordering
constraints to be invoked on them when comparing a sequence
of words in a query with a sequence of words in a file for source
code retrieval. These ordering constraints employ the logic of
Markov Random Fields (MRF), a framework used previously
to enhance the precision of the source-code retrieval engines
based on the Bag-of-Words (BoW) assumption. The work we
present here demonstrates that by combining word2vec with the
power of MRF, it is possible to achieve improvements between
6% and 30% in retrieval accuracy over the best results that
can be obtained with the more traditional applications of MRF
to representations based on term and term-term frequencies.
The performance improvement was 30% for the Java AspectJ
repository using only the titles of the bug reports provided by
iBUGS, and 6% for the case of the Eclipse repository using titles
as well as descriptions of the bug reports provided by BUGLinks.

Index Terms—Source code search, word embeddings, informa-
tion retrieval, bug localization

I. INTRODUCTION

Representing textual words with their real-number based
embeddings has emerged as a powerful approach for associat-
ing context-based meanings with the words and for comparing
words for their similarity on the basis of such meanings.
What is perhaps the most commonly used algorithm today for
creating such embeddings is the word2vec algorithm proposed
by Mikolov et al. [1].

Given the semantically rich representation for the words
created by, say, word2vec, one is led to wonder if a retrieval
framework based on such representations can be made even
more powerful if it is subject to term-term ordering constraints
modeled by, say, Markov Random Fields (MRF).

As we demonstrate in this paper, the answer to the question
posed above is a categorical yes.

The retrieval framework that we present in this paper for
establishing the above claim invokes MRF based ordering con-
straints on the query terms and the file terms that are matched

on the basis of contextual semantics using the word2vec
generated numeric vectors for the terms. This is facilitated
by two “layers” that we refer as the “Match Layer (ML1)”
and the “Match Layer 2 (ML2)”. In the form of a 2D numeric
array, ML1 is simply a record of the similarities between the
terms in a query and the terms in a file, with the similarities
being computed by applying the Cosine distance measure to
the numeric vectors produced by word2vec. Subsequently, in
the spirit of convolutional neural networks, we convolve the
ML1 layer with a 2×2 kernel — whose elements must possess
certain pre-specified properties — to yield another 2D numeric
array that is ML2. As we argue in this paper, the numbers
in the ML2 layer become high only for those sequences of
terms in the query and a file, which is being evaluated for
retrieval vis-a-vis the query, when there is significant simiarlity
between the two both respect to the terms and with respect
to the ordering constraints on the terms. As we show in this
paper, convolving the 2D arrary of numbers in ML1 with a
2 × 2 operator produces the same effect as what would be
achieved with MRF based logic as presented in [2], [3].

We have established the superiority of the “semantics plus
order” approach for source-code retrieval over the more tra-
ditional methods by comparing the following retrieval frame-
works in the context of automatic bug localization:1 (1) the
best-known approach based on the BoW (Bag-of-Words) as-
sumption; (2) an approach based on MRF modeling using term
and term-term frequencies; (3) a retrieval framework that uses
contextual semantics through the word embeddings produced
by the word2vec algorithm; and, finally, (4) a framework that
uses MRF modeling on top of the word embeddings produced
by the word2vec algorithm.

While the first three retrieval methods in the comparison
mentioned above refer to frameworks that are already well
known, the last — which combines MRF with the word
embeddings produced by word2vec — is something that has

1Automatic bug localization is convenient for testing source-code retrieval
algorithms on account of the relative ease with which ground-truthed datasets
can be constructed for testing the performance of such algorithms. Nonethe-
less, it can be argued that, in general, source-code retrieval is a larger problem
and not all of our conclusions may be applicable to it.



not been attempted before. Combining MRF with word embed-
dings allows us to jointly model the semantic and the ordering
relationships in a single source code retrieval framework.

For our experiments, we use approximately 4000 bug
reports of the Eclipse software library obtained from the
BUGLinks dataset and approximately 300 bug reports of
AspectJ obtained from the popular iBUGS dataset. We report
results based on retrievals with (1) just the titles of the bug
reports as queries; and (2) the entire description of the bug
reports as queries. With both software libraries, we show
that the retrieval precision can be improved between 6% and
30% over the best results that can be obtained with the more
traditional applications of MRF to the representations based
on term and term-term frequencies.

Comparing our SCOR (Source COde Retrieval) model with
the best of what the literature has to offer, it significantly
outperforms the purely MRF based framework presented in
Sisman et al. [3]. SCOR also outperforms the more advanced
BoW based techniques — BugLocator [4], BLUiR [5], and
SCP-QR [6]. We also compare our retrieval model with
semantic embeddings based bug localization algorithms —
LSA (Latent Semantic Analysis) [7], and Ye et al’s semantic
retrieval algorithm [8]. Our results show that our retrieval
algorithm can significantly outperform the LSA algorithm pre-
sented in [7], while the performance of our retrieval algorithm
with respect to Ye et al’s [8] semantic retrieval algorithm is
comparable in terms of retrieval precision.

The work we report in this paper also involves training the
word2vec model on what is perhaps the largest source code
dataset ever put together; it consists of approximately 35000
Java repositories downloaded from GitHub. We learned word
vectors for approximately 0.5 million software-centric terms
from 1 billion word tokens. The reason for generating word
vectors for such a large software vocabulary is to ensure that
our semantic word embeddings are sufficiently generic so that
they can be applied to new software repositories that were not
used for generating the embeddings. Our results demonstrate
that to be the case.

With this introduction the rest of the paper is organized
as follows. In the “Related Works” section that follows, we
briefly review some of the more prominent past investigations
in bug localization. In section III we explain the word2vec
model we used for constructing semantic word embeddings
from large software corpora. In section IV we explain our
novel retrieval model. We present our experimental results in
section V and, finally, conclude in section VI.

II. RELATED WORKS

Today there exist several BoW based source code retrieval
methods [4]–[7], [9]–[12]. However, since all of these methods
are based on the simple bag-of-words assumption, they only
consider the frequencies of the individual query terms in
the source-code files. In other words, these methods do not
take into account the ordering and the semantic relationships
between the terms.

As it turns out, it is possible to enhance the BoW based
methods with the modeling approaches developed by the
researchers in the IR community [2], [13]–[15] that allow for
the retrieval decisions to factor in the inter-term positional and
ordering relationships. The earliest and the most popular of
these dependency models, by Metzler and Croft [2], uses the
notion of Markov Random Fields (MRF) to generate a second-
order probabilistic model for a corpus, which is in contrast
to the first-order probabilistic models that are generated by
the BoW assumption. Sisman et al. [3] used the basic MRF
modeling proposed by Metzler and Croft [2] and combined it
with a query conditioning (QC) technique appropriate to the
software context to report large improvements in retrieval pre-
cision. Note that the retrieval framework proposed in Sisman
et al. [3] does not model the semantic relationship between
the terms.

The notion of generating corpus-based semantic embed-
dings to model semantic relationships in a retrieval framework
dates back to 1990’s when Latent Semantic Analysis (LSA)
was first published. Since then, LSA has successfully been
applied to solve the problem of software search [7], [16].

The use of neural networks to learn semantic word em-
beddings was first proposed by Bengio et al. [17], with
several modifications made to their neural network architecture
by the contributions in [1], [18], [19]. From amongst these
contributions, the word2vec implementation of [1] is auguably
the most successful and the most commonly used today.

Several authors have investigated using word2vec in differ-
ent application domains [20]–[24] that include web search,
questing-answering systems, and paraphrase identification.
Authors have also reported using word2vec for software search
[8], [25]–[27]. These contributions, however, do not include
ordering constraints.

Finally, note that researchers have also proposed using
deep-learning based frameworks for solving the IR problem
[28]–[33]. In general, such techniques, when applied to the
domain of software search, require large training datasets that
may not always be available. For example, the deep-learning
based method reported by Lam et al. [34] used a training
dataset consisting of around 20,000 bug reports. Other similar
contributions are by Gu et al. [35] and Xiao et al. [36].

III. CONSTRUCTING 0.5 MILLION WORD EMBEDDINGS
FOR SOFTWARE-CENTRIC TERMS FROM 1 BILLION WORD

TOKENS

In this section we discuss the construction of neural word
embeddings from large corpora of software repositories using
the word2vec model [1], [37]. Word2vec is based on a single-
layer neural network and it gives us a vector space that holds
contextually semantic relationships between the words in a
vocabulary. By “semantic relationships” we mean that the
numeric vectors for the words that are contextually related
should appear close together in the vector space. Two different
words are contextually related if the words in their contexts are
contextually related. The recursion implied by this definition
is grounded by the statement that two words are contextually



Fig. 1: An illustration of a context window of size 5 around
the target term “initialize”. The four terms “this”, “method”,
“model”, and “parameters” are the context terms of the target
term “initialize” and will be used to train the model.

related if there exist common words in their respective con-
texts.

We trained the word2vec neural network by scanning each
of the approximately 35000 Java source code repositories
downloaded from GitHub for the training samples. Each
training sample consists of a term in a repository along with
a list of its context terms. The context terms are all the terms
that appear in a context window whose width is a user defined
parameter. The term around which a window is placed is
called the “target” term, while the terms appearing inside the
window other than the target term are called the “context”
terms with respect to that target term. Figure 1 illustrates a
context window.

The training pairs consisting of target and context terms
are used to train the neural network to predict either the
context terms from the target terms or the target terms from
the context terms. The word2vec model, therefore, comes in
two different flavors depending on whether the neural network
predicts target terms from a given set of context terms — this
is referred to as a CBoW (Continuous Bag Of Words) model,
or predicts the context terms from a target term — this is
called a skip-gram model. After training finishes, the learned
weights in the neural network are used to construct meaningful
vector representations of the terms in a vocabulary set.

In our retrieval experiments we use the skip-gram flavor of
word2vec which we discuss in the subsection that follows.
However, note that the CBoW model can also be used to
produce similar results. The skip-gram and CBoW word
embeddings are available online [38].

A. word2vec for Constructing a Skip-Gram

As mentioned above, for a skip-gram, the word2vec neural
network is designed to predict the context terms for a given
target term. The context terms are the terms that can be
expected to appear with high likelihood in a small window
around the relevant target term. The neural network, shown in
Figure 2, consists of three layers: input, projection, and output.
The nodes in the adjacent layers are fully connected.

In a skip-gram neural network, the sizes of the input and
the output layers are equal to the size V of the vocabulary,
while the size of the projection layer in the middle is N —
a user set parameter. The parameter N actually controls the
dimensionality of the word vectors that we want to learn from
the neural network as we explain later in this section. The
terms in the vocabulary are arranged in alphabetical order and
each term assigned the index that corresponds to its position
in the vocabulary.

Fig. 2: The neural layout for the skip-gram constructor. A
skip-gram predicts the context terms for given target terms.
The one-hot encoding of context terms are provided at input,
while the softmax probabilities of terms in the vocabulary are
computed at output.

The input to the neural network is a V dimensional one-
hot encoding vector for a term. One-hot encoding consists
of a single entry of 1 at the position of the term in the
alphabetized vocabulary listing, with all the other entries set to
0. As mentioned earlier, the output layer of the neural network
also consists of V nodes. In the V -dimensional output each
node represents the probability of prediction for each term in
the vocabulary.

The input layer is commonly represented by the vector
x = {x1, ..., xV }, the projection layer by the vector h =
{h1, ..., hN}, and output layer by the vector y = {y1, ..., yV }.
The weights between the input and projection layers are
denoted by a V × N matrix W. Each row of W is the N -
dimensional input vector vw for the term w in the vocabulary.
This follows from the fact that if we represent the one-hot
vector for a target term by wI , the projection layer output
would be given by h = WT x = vwI

, which is the Ith row of
the matrix W .

We also have another matrix W′ with dimensions N × V
for the weights between the projection layer and the output
layer. Each column of W′ is an N -dimensional output vector
representation v′w for the term w. As a result of applying the
weights in W′ to the outputs of the projection layer we end
up with a net score uj for each term j in the vocabulary
uj = v′

T
wj

h = v′
T
wj

vwI
, where v′

T
wj

denotes the j-th column
of W′. The net score uj for a term wj is equivalent to the
product of the input vector vwI

of the target term wI (provided
at the input) and the output vector v′wj

of the term wj we want
to predict at the output.

The softmax nonlinearity function is applied to the net
scores at the output layer to convert them into probability
estimates p(wj |wI):

p(wj |wI) = yj =
exp(uj)∑V

j′=1 exp(uj′)
=

exp(v′
T
wj

vwI
)∑V

j′=1 exp(v′Twj′
vwI

)
(1)



Notice that yj is the output of j-th unit of output layer
and represents the probability that term wj is the context term
given the target term wI at input. We want to maximize the
above conditional probability p(wj |wI).

Rong [39] provides a detailed explanation of how the pa-
rameters of a word2vec skip-gram neural network are learned
using the backpropagation algorithm with stochastic gradient
descent and a “negative sampling” efficiency optimization
trick [1], [37]. After the learning process converges, the
resulting vectors vw and v′w correspond to the terms w in
the vocabulary. In our retrieval experiments, we discard the
output vectors v′w and use only the input vectors vw as the
vector representations of terms in the vocabulary. We refer to
each vector vw as the semantic embedding for the term w.
The contextual semantic relationship between any two terms
w1 and w2 may be obtained by comparing the vectors vw1

and vw2
using an appropriate metric.

IV. MODELING ORDERING AND SEMANTIC
RELATIONSHIPS FOR SOFTWARE RETRIEVAL

In this section we present how we jointly model the two
seemingly disparate aspects of our framework for source code
retrieval: the term-term ordering constraints and the word2vec
generated semantic relationships between the terms. The term-
term ordering constraints are imposed using the MRF frame-
work described by Sisman et al. [3], whereas the semantic
relationships between the terms are modeled by comparing
the semantic word embeddings [1] of the query and the file
terms using cosine similarity measure.

A. Modeling Ordering Relationships Between Terms
In the context of IR based bug localization, a Markov

Random Field is an undirected graph G in which one of the
nodes represents a source-code file f that is being evaluated for
its relevance to a given query Q and all other nodes represent
the individual terms Q = {q1, q2, ..., q|Q|} in the query. The
arcs between the nodes represent probabilistic dependencies
between the nodes [3].

The MRF framework gives us the liberty to choose different
kinds of probabilistic dependencies we want to encode in
the retrieval model. Figure 3 shows two possible dependency
assumptions that we can make about the construction of the
MRF graph G. One is called the “Full Independence” (FI)
assumption in which all the query terms are independent of
one another. Notice the absence of arcs between nodes that
stand for the query terms q1, q2, and q3. The other is called
the “Sequential Dependence” (SD) assumption in which the
nodes for the consecutive query terms are connected to each
other via arcs as shown. We use the SD model to incorporate
term-term ordering relationships between the query terms that
may be present in the file f .

The Dirichlet smoothed BoW based Full Independence (FI)
relevance score is calculated as:

scorefi(Q, f) =

|Q|∑
i=1

log
tf(qi, f) +

µfitf(qi,C)
|C|

(|f |+ µfi)
tf(qi,C)
|C|

(2)

(a) Full Independence (b) Sequential Dependence

Fig. 3: Using a three-term query as an example, illustrated
here are the two different inter-term dependency assumptions
for MRF modeling of a software library.

where tf(qi, f), and tf(qi, C) are, respectively, the frequen-
cies of the term qi in the source code file f and in the
collection C. The notations |f | and |C| stand for the size
of the file and the collection, respectively. Finally, µfi is the
smoothing parameter.

Denoting a pair of sequential terms qiqi+1 by ρ, the MRF
SD model gives us the following formula for the relevance of
a file f to a query Q:

scoresd(Q, f) =

|Q|−1∑
i=1

log
tfw(ρ, f) + µsdtfw(ρ,C)

|C|

(|f |+ µsd)
tfw(ρ,C)
|C|

(3)

where tfw(ρ, f) and tfw(ρ, C) are, respectively, the frequen-
cies of the pair of terms ρ = qiqi+1 in a file f and in the
collection C. The notation µsd is for the smoothing parameter.

B. Modeling Semantic Relationships Between the Terms

With the help of Figure 4, we now illustrate with an example
our semantic retrieval framework that includes ordering con-
straints. The example used in the figure assumes that the query
consists of just four terms. That is, Q = {q1, q2, q3, q4}. And
that a file being evaluated for its relevance to the query consists
of just five terms. That is, f = {t1, t2, t3, t4, t5}. We also
assume that the dimensionality of the numeric term vectors
provided by word2vec is N . As we explain later in Section
III, we will obtain these vectors by training a word2vec skip-
gram model on a large corpus of Java source code repositories.

As shown in the figure at its left, the numeric vectors for the
query terms and the file terms serve as inputs to the processing
chain in Figure 4. The query terms qi and the file terms tj are
compared pairwise using the cosine similarity measure shown
below to produce the “Match Layer 1” (ML1):

σ1(vqi , vtj ) =
vqi · vtj
||vqi ||||vtj ||

(4)

Each row of ML1 corresponds to the cosine similarity
between a given query term qi and all the terms in the file f .
The layer ML1 is then treated as described below to produce
a semantic relevance score.

As shown in the top row of Figure 4, we take the maximum
of ML1 across all the file terms to produce the “Best-matching
vector”. In this vector, we retain only the largest cosine
similarity value for each query term that corresponds to its
best matched file term. The cosine similarity values for all



Fig. 4: An illustration of a semantic retrieval framework with ordering constraints: The N -dimensional numeric vectors
for the terms in a query Q and a file f are provided as inputs as shown at left. The query terms and file terms are compared
pairwise using cosine similarity to produce ML1. As shown in the top row, we perform further processing on ML1 to produce
relevance score based on matching terms individually scorepwsm(f,Q). As shown in the bottom row we convolve ML1 with
a pre-defined 2×2 kernel to produce ML2, which is subsequently processed to produce the relevance score scoreordsm(f,Q).

other file terms are discarded and, therefore, do not influence
the final relevance score.

Afterwards, only the largest ξ1 values from the “Best-
matching vector” are retained. This second maximum selection
operation discards the cosine similarity values for all those
query terms that are deemed to not match the file sufficiently.
In this manner, the terms that may negatively influence the
final relevance score are dropped.

We refer to the vector obtained by the second maximum
operation as the “Best-of-best vector” since it is obtained as a
result of two successive maximum operations on array ML1
of cosine similarity values: (1) The first maximum is taken
across all file terms for each query term to produce the best
cosine similarity value for each query term that corresponds to
its best-matched file term, (2) The second maximum is taken
across all the query terms to produce a vector Ω(qi) of cosine
similarity values for only those ξ1 query terms qi ∈ Q′, where
Q′ ⊆ Q, that best match the file. The parameter ξ1 is tunable.

The retained ξ1 cosine similarity values are summed and
normalized to obtain the relevance score scorepwsm(f,Q)
based on our Per-Word Semantic Model (PWSM):

1

ξ1

∑
qi∈Q′

Ω
(
qi ∈ argmax

Q′⊆Q
|Q′|≤ξ1

∑
qi∈Q′

max
tj∈f

σ1(vqi , vtj )
)

(5)

where Q′ is a subset of query Q composed of only those ξ1
query terms for which we get the largest cosine similarities.

The great thing about the array of numbers in ML1 is that it
lends itself to further processing that allows the incorporation
of the MRF based term-term ordering constraints in how a
query is matched with a file.

As shown in the bottom row of Figure 4, we now convolve
the array of numbers in ML1 with a pre-defined 2 × 2
kernel K to produce another layer “Match Layer 2” (ML2).
Each element in the array of numbers in ML2 represents
the similarity measure between two consecutive query terms
qiqi+1 and two consecutive file terms tjtj+1. This obviously
implies incorporating ordering relationships between the query
terms that semantically match the file terms.

The 2× 2 kernel K mentioned above is designed such that
it has non-zero values on its diagonal, while its off-diagonal
elements are either zero or very close to zero. This is a key
condition on K that allows the ordering constraints to be
satisfied as explained below.

During the convolution of K with the array of numbers
in ML1, the output at a specific location (i, j) results in a
high value if the cosine similarity values between the terms
qi and tj , and terms qi+1 and tj+1 are both high. The
convolution operation, which results in a weighted sum over
2 × 2 neighborhoods in ML1, is similar to what is used in
modern deep convolutional neural networks. The similarity



TABLE I: Stats related to the two different software libraries
used for retrieval experiments: Eclipse and AspectJ.

Eclipse AspectJ
Description IDE Java extension

Programming Language Java Java
Number of bug reports 4035 291

Average number of relevant files report 2.76 3.09
Number of bug reports with stack traces 519 89

Number of bug reports with patches 8 4

values σ2 in the ML2 are computed from the similarity values
σ1 of the ML1 as follows:

σ2(qiqi+1, tjtj+1) = K11σ1(vqi , vtj ) +K22σ1(vqi+1
, vtj+1

)

+K12σ1(vqi , vtj+1
) +K21σ1(vqi+1

, vtj )

The array of numbers in ML2 are treated in the same manner
as those in ML1 to produce the ordered-semantic (ORDSM)
relevance score scoreordsm(f,Q) based on comparing two
consecutive query terms ρi = qiqi+1 with two consecutive
file terms ej = tjtj+1. We use P and E to represent sets of
pairs of query terms and file terms, respectively. Notice that we
use a new parameter ξ2 that is different from ξ1 to obtain the
“Best-of-best vector” ∆(ρi) from the “Match Layer 2” (ML2).
Here, ρi ∈ P ′ are the ξ2 pairs of query terms that produce the
largest similarity values, and P ′ ⊆ P . The ordered-semantic
(ORDSM) score is computed as:

1

ξ2

∑
ρi∈P ′

∆
(
ρi ∈ argmax

P ′⊆P
|P ′|≤ξ2

∑
ρi∈P ′

max
ej∈E

σ2(ρi, ej)
)

(6)

C. Computing a Composite Score for a Repository File

The previous two subsections presented different formulas
for measuring the relevancy of a file to a query. The formulas
in Section IV-A showed how a file could be ranked vis-a-
vis a query using just the BoW modeling of the relationship
between the two and also using the MRF based ordering
constraints. And the formulas in Section IV-B showed how
a file could be ranked purely on the basis of the similarities
of the term-contextual relationships and on the basis when
ordering constraints are superimposed on top of the term-
contextual relationships.

We now combine all those measures of relevancy of a file
to query to create a composite file relevancy score. As shown
below, this composite formula uses a weighted aggregation of
the scores given by the Equations (2), (3), (5), and (6):

scorescor(f,Q) = α · scorefi(f,Q) + β · scoresd(f,Q)+

γ · scorepwsm(f,Q) + η · scoreordsm(f,Q)

where α, β, γ, and η are tunable parameters.

V. EXPERIMENTAL RESULTS

With the framework we have presented in the preceding sec-
tions, we now present our experimental results on source-code
retrieval for solving the problem of automatic bug localization.

TABLE II: Stats related to the large Java corpus that we used
to learn the semantic word vectors from the word2vec model.

Statistics
Number of repositories 34264
Programming Language Java

Size of raw dataset 368 GB
Number of source code files 3444730

Number of word tokens 940053404
Number of words in vocabulary 415554

We report results using two different software libraries: Eclipse
and AspectJ. The results for the Eclipse [40] and AspectJ [41]
libraries are for two different types of retrievals: using just the
titles of the bug reports as queries (“title-only”), and using the
entire bug reports as queries (“title+desc”).

The bug reports for Eclipse and AspectJ software libraries
were obtained from the publicly available BUGLinks [42] and
iBUGS [43] datasets, respectively. Table I presents the relevant
stats related to the two software libraries. Eclipse is a Java
based software with a large number of bug reports (4035) in
the BUGLinks dataset. The iBUGS dataset, on the other hand,
contains relatively smaller number of bug reports (291) for the
AspectJ repository, also in Java.2

In what follows, we first present the overall processing
pipeline of our bug localization framework. Then we describe
the metrics used for evaluating the source code retrieval re-
sults. That is followed by a motivating example that illustrates
the power of semantic modeling for retrieval. Lastly, we
present our experimental results.

A. Overall Framework

Figure 5 shows the steps involved in our bug localization
framework. The word2vec neural network shown at left takes
for its input a very large corpus of Java source code reposito-
ries and generates semantic word embeddings for the software-
centric words present in those repositories. Approximately
35000 open-source Java repositories were downloaded from
GitHub [44] were used in this study. Except for a few that are
now defunct, we downloaded the same repositories as those
listed in [45]. Table II shows the statistics of our Java source
code dataset.

We used the popular Gensim library [46] to learn the
word embeddings from the Java source-code dataset. The two
important parameters that we can tune for training the Skip-
gram model are: (1) vector size (N ), and (2) window size (w).
We set N = 1000, and w = 8 for all our retrieval experiments.
The word vectors learned from the Skip-gram model are stored
in a disk file.

The word embeddings along with the source-code files for
the library (such as Eclipse) that we are interested, and also
the bug reports, are fed into the retrieval engine.

The source-code files go through Porter stemming and stop
word removal. Subsequently, each source-code file is indexed,

2Although BugLinks dataset contains 4650 bug reports for Eclipse and
iBUGS dataset 350 bug reports for AspectJ, we chose 4035 from the former
and 291 from the latter for our analysis. We ignored the bug reports for which
we could not find in the repositories any of the source code files mentioned
in the bug reports.



Fig. 5: Block diagram for the retrieval framework.

TABLE III: Summary of retrieval models along with the
parameter settings that yielded the best results for each.

Method
Name,

Modeling
scheme

Parameters
Eclipse
(title)

Parameters
Eclipse

(title+desc)

Parameters
AspectJ
(title)

Parameters
AspectJ

(title+desc)

SCOR,
FI BoW +
MRF SD +
PWSM +
ORDSM

w = 8
µfi = 1k
µsd = 8k
ξ1 = 10
ξ2 = 3
α = 0.32
β = 0.12
γ = 3.2
η = 25

w = 8
µfi = 1k
µsd = 4k
ξ1 = 10
ξ2 = 3
α = 0.3
β = 0.12
γ = 2.5
η = 30

w = 8
µfi = 3.5k
µsd = 4k
ξ1 = 10
ξ2 = 5
α = 0.3
β = 0.15
γ = 2.8
η = 25

w = 8
µfi = 3.5k
µsd = 4k
ξ1 = 10
ξ2 = 5
α = 0.7
β = 0.04
γ = 2.8
η = 27

MRF SD,
FI + SD

w = 8
λsd = 0.2
µ = 4k

w = 20
λsd = 0.2
µ = 4k

w = 2
λsd = 0.2
µ = 4k

w = 16
λsd = 0.2
µ = 4k

PWSM,
FI BoW +

PWSM

µfi = 2.5k
ξ1 = 10
γ = 0.95

µfi = 4k
ξ1 = 10
γ = 0.9

µfi = 3.5k
ξ1 = 10
γ = 0.95

µfi = 3.5k
ξ1 = 10
γ = 0.8

FI BOW,
Dirichlet

smoothing
µ = 4000 µ = 4000 µ = 4000 µ = 4000

an inverted index constructed from the main index, and the
two stored in hash tables. On the other hand, the bug reports
are first subject to regular-expression based testing for the
detection of stack traces or code patches. If these are absent,
further testing is carried out for the detection of camel-cased
source code identifiers. In the absence of such identifiers, the
bug reports are subject to the same preprocessing steps as the
source code files.

B. Evaluation Metrics

We use precision based metrics — specifically MAP (Mean
Average Precision), P@r for precision at rank r, and R@r
for recall at rank r — for a quantitative characterization of
the performance of the different retrieval models. MAP and
P@1 would generally be considered to be the most important
metrics for evaluating the power of retrieval algorithms of the
type under investigation here [47].

In order to determine whether the improvement observed in
the retrieval results obtained using one model vis-a-vis another
is significant, we carried out significance testing based on the
Student’s Paired t-Test [48].

C. A Motivating Example

In this section we use a simple retrieval exercise to show
the power of semantic modeling in a source code retrieval
system. We use the title of a bug report with ID 106140 filed
for the Eclipse software library as a query to the two retrieval
models — FI-BOW and PWSM — and compare their results.
For reasons of space limitations we ignore the description of
the bug that is a part of the bug report.

The title of bug ID 106140 reads “[compiler] Eclipse3.1.0:
unrecognized class invisibility”, which after preprocessing pro-
duces the term tokens [“compiler”, “eclipse”, “unrecognized”,
“class”, “inivisibility”]. The Eclipse source code files that were
fixed in response to this bug are:

1) org.eclipse.jdt.core/compiler/../lookup/Scope.java
2) org.eclipse.jdt.core.tests.compiler/../LookupTest.java
Examining the top-ranked 100 retrievals, while the average

precision using the FI-BoW model for this bug report is just
0.0, when semantic relationships between terms are modeled
using Per-Word Semantic Model (PWSM) the AP increases
slightly to 0.03. What that means is that while FI BoW could
not retrieve any of the two relevant files, the PWSM model
could retrieve the “Scope.java” file.

Investigating further, we found that while the non-
discriminatory query terms “compiler”, “eclipse”, and “class”
did appear in the “Scope.java” source code, the important
discriminatory terms “unrecognized”, and “invisibility”, which
could rank “Scope.java” higher than the other files contain-
ing the non-discriminatory terms, did not. Examining the
“Scope.java” more closely, we found that even though it did
not contain the exact terms “unrecognized” and “invisibility”,
it did contain their semantically related terms “missed”, and
“visible”. In fact, the term “visible” appeared approximately
100 times in the file. Therefore, when “Scope.java” is scored
using PWSM, the semantic matching between terms “visi-
ble” and “invisibility” makes the overall score for the file
higher than the other files which only contained the non-
discriminatory query terms.

D. Retrieval Experiments

We provide experimental results for comparing the follow-
ing four retrieval models: (1) FI BOW, (2) MRF SD, (3)
PWSM, (4) SCOR. Table III displays the tunable parameter
values used for each model. These parameters were set to yield
the best performance from each model.

Through our experiments we attempt to answer the follow-
ing important research questions (RQs):

RQ1: How good are the software-centric word vectors?
RQ2: Does the IR model that only incorporates ordering
relationships improve the result over BoW IR models?
RQ3: Does the IR model that only incorporates semantic
relationships improve the result over BoW IR models?
RQ4: How does our novel SCOR retrieval model perform
against various BoW based source code retrieval models?
RQ5: How good is SCOR against pure MRF based retrieval
techniques that only model ordering relationships?



TABLE IV: Some pairs of words and their abbreviations
sampled from the SoftwarePairs-400 benchmark.

Abbr. Word Score
del delete 5
tmp temporary 5
rght right 2
min minimum 5
num number 5

Abbr. Word Score
med median 3
col column 5
tot total 4
acc accept 1
alloc allocate 5

TABLE V: Some words with their top 3 most (cosine) similar
words as learned from the word2vec Skip-gram model.

rank alexnet delete rotation add parameter
1 resnet remove angle list param
2 lenet update rot set method
3 imagenet copy lhornang create argument

RQ6: How does our SCOR retrieval model perform against
other semantic embeddings based retrieval models?
RQ7: Are word2vec based word vectors generic enough to
be used for searching in a new software library?

RQ1: How good are the software-centric word vectors?
To answer the question posed above we need to evaluate the

quality of the word embeddings generated by the word2vec
model for terms that occur in the software context. We,
therefore, need a semantic similarity benchmark with which
we can measure the quality of the word2vec generated word
embeddings.

In this section we present an evaluation benchmark for
word embeddings obtained for software-centric words. We
also evaluate the software-centric word vectors obtained from
word2vec model using our novel evaluation benchmark.

1) Semantic Similarity Benchmark: There exist in the
natural language processing (NLP) research literature [49]
many semantic similarity evaluation benchmarks for natural
language words that are found in the articles of general
interest, e.g. Wikipedia articles. There also exist domain-
specific evaluation benchmarks for semantic word embeddings
of a wide range of concepts in medicine, such as disease
names, and medical procedures [50]. However, to the best
of our knowledge, no such evaluation benchmark exists for
software-centric word embeddings. Therefore, we present in
this section for the first time a semantic similarity evaluation
benchmark exclusively for software-centric word vectors.

In NLP and also in the literature related to medicine, what
these human-created benchmarks contain are pairs of words

TABLE VI: Evaluation results on semantic similarity bench-
mark SoftwarePairs-400 for Skip-gram and CBoW models
while changing N , which is the dimension of the word vectors.

Model (N ) C@1 (%) C@5 (%) C@10 (%) Correlation
SG (1500) 105 (26%) 140 (35%) 161 (40%) 0.221
SG (1000) 112 (28%) 153 (38%) 172 (43%) 0.224
SG (500) 23 (5%) 52 (13%) 62 (15%) 0.108
SG (200) 19 (4%) 42 (10%) 53 (13%) 0.128
CBoW (1500) 38 (9%) 61 (15%) 69 (17%) 0.010
CBoW (1000) 45 (11%) 63 (15%) 67 (16%) 0.020
CBoW (500) 15 (3%) 37 (9%) 57 (14%) 0.053
CBoW (200) 19 (4%) 45 (11%) 53 (13%) 0.141

Fig. 6: Zoomed-in view of the word vectors in the first two
dimensions. Note the clusters:: (“write”, “output”, “close”),
(“open”, ”read”, “input”, “file”), (“polygon”, “shape”)

that are similar in meaning, and therefore, should have similar
word vectors. For example, a pair could contain the words
“female” and “woman”, or “tumor” and “cancer”, because
they are semantically similar. These benchmarks also contain
a human supplied semantic similarity score on a scale of 1
through 5 for each pair of such words. Therefore, to evaluate
the word embeddings obtained from a model like word2vec,
the word vectors of the semantically similar words in the list
of pairs in the benchmark are compared against each other
using a similarity measure, say the cosine similarity. Subse-
quently, these calculated similarity scores can be compared
with the human-supplied scores to measure the quality of the
embeddings.

With inspiration drawn from prior research in semantic
word embeddings in NLP and medicine, we have created
a benchmark called SoftwarePairs-400 for terms occuring
specifically in the software programs. In our novel benchmark,
we carefully compiled a list of pairs of 400 words along with
their commonly used abbreviations in programming languages.
A sample from this list of pairs along with their respective
human-assigned scores is given in Table IV.

2) Evaluation: We now evaluate the word embeddings
produced by word2vec for software-centric words using two
evaluation metrics — correct @r (C@r), and Pearson cor-
relation score. The correct at r (C@r) metric is defined
as the number of pairs in the list of 400 pairs, in which
the abbreviation appears in the top r ranked positions when
the vector for the term corresponding to the abbreviation is
compared with all the vectors in the database using cosine
similarity. The higher the value for C@r the better is the word
embedding model. On the other hand, the Pearson correlation
score is calculated by comparing the human-assigned scores to
the pairs of words, with the cosine similarity values obtained
when the vectors of words present in the pair are compared
against each other. Higher correlation values imply better word
embedding models.

In Table VI we provide evaluation results on SoftwarePairs-
400 for two different models: (1) Skip-gram (SG), and (2)
Continuous Bag of Words (CBOW). Both the models are run
with four different values of N — 200, 500, 1000, or 1500.
Our results show that the Skip-gram model with N = 1000
produces the best values for C@r. Therefore we run all our



TABLE VII: Retrieval accuracy for the “title-only” queries.

Method Eclipse
MAP (%) (p-value) P@1 P@5 R@10

SCOR 0.2709 (32.8%)∓∗ (3e-20) 0.238 0.115 0.332
FI + MRF SD 0.2493 (22.2%)∗ (1e-10) 0.211 0.108 0.315
FI + PWSM 0.2336 (14.5%)∗ (2e-5) 0.192 0.101 0.297

FI BoW 0.2039 0.169 0.088 0.258
AspectJ

SCOR 0.1802 (44.2%)∓∗ (8e-3) 0.206 0.092 0.193
FI + MRF SD 0.1348 (7.9%)∗ (6e-2) 0.134 0.079 0.167
FI + PWSM 0.1641 (31.3%)∗ (4e-2) 0.164 0.094 0.197

FI BoW 0.1249 0.137 0.070 0.149

∗ significantly different from FI BOW.
∓ significantly different from MRF SD.

retrieval experiments using the semantic word vectors learned
with the Skip-gram model with N = 1000. It can also be
observed from the experimental results that CBoW performs
worse than Skip-gram. Also, the SG model with N = 1500
performs worse than SG model with N = 1000. Therefore,
our results show that increasing the number of dimensions of
word vectors beyond 1000 actually reduces the performance
of the model.

3) Visualization: In addition to quantitatively evaluating the
word embeddings as described in the previous subsection, we
can visualize them after their dimensionality is reduced with
an algorithm like PCA (Principal Component Analysis). After
such a step, usually one retains only a very small number of
dimensions, typically 2 or 3.

A zoomed-in view for a few software-centric words when
considering only the top two dimensions of PCA is shown in
Figure 6. It can be readily observed from the figure that the
words with similar meanings form distinguishable clusters in
the 2-dimensional PCA space.

In addition to visualization, in Table V we show five
interesting software terms in the first row along with their
three most cosine similar terms in the following three rows.

To answer the questions that follow we will frequently refer
to Tables VII and VIII. Table VII shows the evaluation results
of the four different retrieval algorithms on two different
datasets — Eclipse and AspectJ — under “title-only” setting,
while Table VIII shows the same for “title+desc” queries. In
the tables we show the percentage improvements and the p-
values for each of the retrieval models vis-a-vis the FI BOW
model along with the MAP values.

RQ2: Does the IR model that only incorporates ordering
relationships improve the result over simple BoW IR model?

The IR model that only incorporates ordering relationships,
i.e. MRF SD model, significantly beats the traditional FI BoW
FI model in all four experiments — Eclipse title-only, AspectJ
title-only, Eclipse title+desc, and AspectJ title+desc.

The improvement observed using MRF SD over FI BoW
model ranges from 6% to 22% in different experiments with
respect to MAP values. The P@r and R@r values are also
significantly higher for MRF SD vis-a-vis FI BOW. We also
observe that MRF SD model shows more improvement when
run against Eclipse dataset as opposed to AspectJ dataset.

TABLE VIII: Retrieval accuracy for the “title+desc” queries.

Method Eclipse
MAP (%) (p-value) P@1 P@5 R@10

SCOR 0.3204 (29.1%)∓∗ (6e-20) 0.289 0.134 0.394
FI + MRF SD 0.3034 (22.2%)∗ (5e-31) 0.272 0.127 0.374
FI + PWSM 0.2713 (9.3%)∗ (1e-3) 0.233 0.116 0.341

FI BoW 0.2481 0.210 0.106 0.317
AspectJ

SCOR 0.2506 (17.6%)∓∗ (1e-3) 0.299 0.127 0.299
FI + MRF SD 0.2263 (6.24%)∗ (2e-2) 0.264 0.114 0.265
FI + PWSM 0.2334 (9.5%)∗ (1e-2) 0.244 0.125 0.283

FI BoW 0.2130 0.244 0.105 0.243

∗ significantly different from FI BOW.
∓ significantly different from MRF SD.

RQ3: Does the IR model that only incorporates semantic
relationships improve the result over simple BoW IR models?

To answer the question posed above we again refer to the
Tables VII and VIII. As we can observe from the tables
the PWSM model that only incorporates term-term semantic
relationships significantly outperforms the traditional FI BoW
model with improvements ranging from 9% to 31% in terms
of MAP values. The values for P@r and R@r are also
significantly higher for PWSM in relation to BoW model.

The biggest improvement is observed in the retrieval exper-
iment performed for the Aspectj software library using title-
only queries. It can also be observed that the improvements
for title+desc experiments are lower than the improvements
for title-only experiments.

RQ4: How does our novel SCOR retrieval model perform
against various BoW IR models?

This question requires comparing our SCOR retrieval model
against various BoW based source code retrieval models —
FI BOW, BugLocator [4], BLUiR [5], and SCP-QR [6].

Note that SCOR and FI BoW results are provided in Tables
VII and VIII. When comparing SCOR against the simple FI
BOW model we observe that the improvements observed in
term of MAP values, by SCOR over FI BOW range from
17% for AspectJ title+desc queries to even 44% for AspectJ
title-only queries.

For comparing SCOR with more advanced retrieval engines
— BugLocator [4] and BLUiR [5] — we refer to the Figure
7. Note that for comparison we evaluate our SCOR results
on the 3057 Eclipse and 286 AspectJ bug reports that were
evaluated by the authors of BugLocator and BLUiR, and not
on the entire 4035 Eclipse and 291 AspectJ bug report dataset
whose evaluation results are given in the Tables VII and
VIII. We observe from the chart provided in Figure 7, for
Eclipse title+desc dataset our SCOR retrieval algorithm with
MAP value of 0.343 beats BugLocator and BLUiR, which
have MAP values of 0.300, and 0.320, respectively. Also, for
AspectJ title+desc dataset, SCOR with MAP value of 0.255
outperforms BugLocator and BLUiR, which have MAP values
0.220 and 0.250, respectively. However, SCOR and BLUiR
retrieval accuracies on AspectJ dataset are quite comparable.

Finally, we compare SCOR with SCP-QR [6]. The MAP
value obtained using SCP-QR for 4035 Eclipse title-only



queries is 0.2296. In comparison, SCOR with MAP value of
0.2709 outperforms SCP-QR by 18%.

RQ5: How good is SCOR against pure MRF based
retrieval techniques that only model ordering relationships?

The answer to this question requires comparing SCOR
with the MRF based Sequential Dependence (SD) and Full
Dependence (FD) source code retrieval models presented in
[3]. Notice that the same MRF SD model used in [3] is an
important component inside our SCOR retrieval framework.

As shown in the retrieval results provided in Figure 8 our
SCOR retrieval model significantly outperforms both MRF SD
and FD models on Eclipse and AspectJ title-only as well as
title+desc queries. The improvements observed using SCOR
over MRF SD range from 5.6% for Eclipse title+desc queries
to 33% for AspectJ title-only queries, while the improvements
observed using SCOR over MRF FD range from 5.6% for
AspectJ title+desc to 27% for AspectJ title+desc queries. With
regard to significance testing with the Student’s Paired t-test
[48], the p-values obtained when comparing SCOR with MRF
SD model for different experiments are as follows: 3e-2 for
Eclipse title+desc, 4e-3 for Eclipse tite-only, 3e-2 for AspectJ
title+desc, and 3e-2 for AspectJ title-only.

RQ6: How does our SCOR retrieval model perform against
other semantic embeddings based retrieval models?

To answer this question we compare our retrieval algorithm
with two semantic embeddings based retrieval algorithms —
the neural embeddings based retrieval algorithm proposed by
Ye et al. [8], and Latent Semantic Analysis (LSA) based source
code retrieval model proposed by Rao and Kak [7].

Note that while the model presented in [8] is composed
of many relevance scores that linearly combine to produce
a single composite score, we limit our focus only to the
semantic portion of the model. Therefore, for the purpose
of a comparative study, we only implemented the semantic
embedding based scoring mechanism presented in [8] and
linearly combined it with our baseline Dirichlet smoothed
FI BoW model as provided in Equation (2). We compare
this model against our PWSM retrieval model instead of the
more powerful SCOR retrieval engine. We believe that such
a comparison is fair in nature. Notice that we use the same
word vectors we learn by applying the Skip-gram to 35000
repositories for both the algorithms. We notice that the MAP
value obtained for PWSM for Eclipse title+desc is 0.2713,
while the MAP value for Ye et al.’s algorithm is 0.2687.

With regards to comparing with LSA model proposed in
[7], we notice that Rao and Kak used the same iBUGS
AspectJ queries in their study as we have used in this paper.
Therefore, a direct comparison is possible between PWSM and
the models presented in [7]. The best MAP value reported by
Rao and Kak for LSA on iBUGS using 291 queries is 0.0700,
while the MAP value for PWSM on the same dataset with the
same 291 queries is 0.2334.

RQ7: Are word2vec based word vectors generic enough
to be used for searching in a new software library?

Fig. 7: Comparison of SCOR with various BoW models on
Eclipse and AspectJ “title+desc” queries using MAP values.

Fig. 8: Comparison of SCOR with MRF SD and FD models
on Eclipse and AspectJ queries using MAP values.

The answer to this question is yes, because the AspectJ
library on which we perform retrievals using iBUGS queries
was not present in the training set when we generated the word
embedding using the Skip-gram model. Yet, the improvements
observed in retrieval precision when semantic embeddings
based models are used for searching in the AspectJ library
are very impressive as shown in Tables VII and VIII.

VI. CONCLUSION

We presented a novel source code retrieval framework that
incorporates both ordering and semantic relationships between
the terms, and show that it significantly improves the retrieval
precision on two popular datasets —Eclipse and AspectJ. For
the purpose of retrieving a file that is relevant to a query,
our framework extends the basic word2vec neural architecture
with two additional layers that we have called ML1 and ML2.
While the ML1 layer is produced solely by comparing the
terms in a query with the terms in a file by applying the Cosine
distance measure to the numeric word embeddings produced
by word2vec, the ML2 layer is produced by applying a 2× 2
convolutional kernel to the ML1 layer. The convolutional
kernel is designed such that the elements of the array of
numbers in ML2 become high only when a file is sufficiently
similar to a query both with respect to the terms and also with
respect to the order in which the terms appear.

Our work reported here also involved running what is prob-
ably the largest experiment undertaken so far for creating the
word embeddings for software-centric terms. We downloaded
35,000 Java repositories from GitHub, processed over half
a million term involving about a billion tokens from these
repositories to generate the numeric vectors for the terms.
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