Presented at 2020 IEEE/ACM 17th International Conference on Mining Software Repositories

A Large-Scale Comparative Evaluation of IR-Based Tools for Bug
Localization

Shayan A. Akbar
Purdue University
West Lafayette, IN, USA
sakbar@purdue.edu

ABSTRACT

This paper reports on a large-scale comparative evaluation of IR-
based tools for automatic bug localization. We have divided the tools
in our evaluation into the following three generations: (1) The first-
generation tools, now over a decade old, that are based purely on the
Bag-of-Words (BoW) modeling of software libraries. (2) The some-
what more recent second-generation tools that augment BoW-based
modeling with two additional pieces of information: historical data,
such as change history, and structured information such as class
names, method names, etc. And, finally, (3) The third-generation
tools that are currently the focus of much research and that also
exploit proximity, order, and semantic relationships between the
terms. It is important to realize that the original authors of all these
three generations of tools have mostly tested them on relatively
small-sized datasets that typically consisted no more than a few
thousand bug reports. Additionally, those evaluations only involved
Java code libraries. The goal of the present paper is to present a
comprehensive large-scale evaluation of all three generations of
bug-localization tools with code libraries in multiple languages.
Our study involves over 20,000 bug reports drawn from a diverse
collection of Java, C/C++, and Python projects. Our results show
that the third-generation tools are significantly superior to the older
tools. We also show that the word embeddings generated using
code files written in one language are effective for retrieval from
code libraries in other languages.

KEYWORDS

source code search, word embeddings, information retrieval, bug
localization

ACM Reference Format:

Shayan A. Akbar and Avinash C. Kak. 2020. A Large-Scale Comparative
Evaluation of IR-Based Tools for Bug Localization. In 17th International
Conference on Mining Software Repositories (MSR °20), October 5—6, 2020,
Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages. https://doi.
org/10.1145/3379597.3387474

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR °20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7517-7/20/05....$15.00
https://doi.org/10.1145/3379597.3387474

Avinash C. Kak
Purdue University
West Lafayette, IN, USA
kak@purdue.edu

1 INTRODUCTION

Retrieving relevant source code files from software libraries in
response to a bug report query plays an important role in the
maintenance of a software project. Towards that end, the last fifteen
years have witnessed the publication of several algorithms for an
IR based approach to solving this problem. An examination of these
prior contributions reveals that (1) They mostly used datasets of
relatively small sizes for the evaluation of the proposed algorithms;
and (2) The datasets used consisted mostly of Java-based projects.

To elaborate on the dataset sizes used in the prior studies, at
the low end, the researchers have reported results using just a few
hundred bug reports, and, at the high end, the reported results were
based on just a few thousand bug reports. The studies presented in
[16], [43], and [35] are the only ones that include more than a few
thousand queries to evaluate the performance of their algorithms.

Regarding the above-mentioned studies that are based on large
datasets, Ye et al. [43] evaluated their bug localization algorithm on
around 20,000 bug reports drawn from six Java projects. The study
presented in [35] was performed on 8000 bug reports belonging
to three Java and C/C++ based projects. The most recent large-
scale comparative study carried out by Lee et al. [16] used around
9000 bug reports, all belonging to Java-based projects. These three
studies, however, evaluate bug localization methods belonging only
to the first and the second generations of tools, and are mostly
focused toward Java based projects. Therefore, a large-scale bug
localization study that involves code libraries in multiple languages
and that includes all three generation of tools has yet to be carried
out. The goal of our paper is to remedy this shortcoming.

In this paper we present a comprehensive large-scale evaluation
of a representative set of IR-based bug localization tools with the
set spanning all three generations. The evaluation dataset we use,
named Bugzbook, consists of over 20,000 bug reports drawn from a
diverse collection of Java, C/C++, and Python software projects at
GitHub. A large-scale evaluation such as the one we report here is
important because it is not uncommon for the performance numbers
produced by testing with a large dataset to be different from those
obtained with smaller datasets.

An important issue related to any large-scale evaluation is the
quality of the evaluation dataset — in our case, that would be the
quality of the bug reports — to make sure that the dataset does not
include duplicate bug reports and other textual artifacts that are not
legitimate bug reports. Our Section 4.2 describes how the raw data
was filtered in order to retain only the legitimate and non-duplicate
bug reports.

For the large-scale evaluation reported here, we chose eight
search tools, one from each generation of the now 15-year history of
the development of such tools. As mentioned previously, the earliest

https://doi.org/10.1145/3379597.3387474
https://doi.org/10.1145/3379597.3387474
https://doi.org/10.1145/3379597.3387474

of the tools — the first-generation tools — are based solely on BoW
modelling in which the relevance of a file to a bug report is evaluated
by comparing the frequencies of the terms appearing in the file with
the frequencies of the terms appearing in the bug report. In general,
a BoW approach may either be deterministic or probabilistic. For
the deterministic versions of such tools, we chose the TFIDF (Term
Frequency Inverse Document Frequency) approach presented in
[28]. And, for probabilistic BoW, we chose what is known as the
FI (Full Independence) version of the framework based on Markov
Random Fields (MRF) [19, 31]. The probabilistic version is also
referred to as the Dirichlet Language Model (DLM) [46].

For representing the second generation tools, we chose BugLoca-
tor [47] and BLUIR (Bug Localization Using information Retrieval)
[30]. In addition to the term frequencies, these tools also exploit the
structural information (when available) and information related to
the revision history of a software library.

That brings us to the third generation tools that, in addition to
the usual term frequencies, also take advantage of term-term order
and contextual semantics in the source-code files, on the one hand,
and in the bug reports, on the other. We have used the algorithms
described in [31] and [1] to represent this generation of tools.

In addition to generating the usual performance numbers for the
algorithms chosen, our large-scale evaluation also provides answers
to the six research questions that are listed in Section 5.3 of this
paper. Most of these questions deal with the relative importance
of the different components of the algorithms that belong to the
second and the third generation of the tools.

At this point, the reader may ask: What was learned from our
large-scale multi-generational evaluation that was not known be-
fore? To respond, here is a list of the new insights we have gained
through our study:

(1) Contrary to what was reported earlier, the retrieval effec-
tiveness of two different ways of capturing the term-term
dependencies [31] in software libraries — these are referred
to as MRF-SD and MRF-FD — is the same.

(2) The performance of second generation tools BugLocator
and BLUIR are not equivalent in terms of retrieval precision,
contradicting the finding presented in [16].
Including software libraries in different languages (Java, C++,
and Python) in our study has led to a very important new
insight: for the contextual semantics needed for the third-
generation tools, it is possible to use the word embeddings
generated for one language for developing a bug localiza-
tion tool in another language. We refer to this as the “cross-
utilization of word embeddings.”

3

~

Note that these are just the high-level conclusions that can be
made from the answers to the six questions listed in Section 5.3.

2 A TIMELINE OF PAST STUDIES IN
IR-BASED BUG LOCALIZATION

A timeline of important publications on the subject of automatic

bug localization is presented in Figure 1. The figure shows around

30 papers published between the years 2004 and 2019. These pub-

lications that appeared in roughly 15 highly-respected venues —

conferences and journals — belong to the three generations of soft-
ware bug localization. The names of these conferences and journals
are also shown in the figure.

From 2004 to 2011 — that’s when the first-generation tools came
into existence — one could say that research in automatic bug
localization was in its infancy. The algorithms presented in [13, 17,
18, 27] laid the foundations for such tools and these were based
purely on the Bag-of-Words (BoW) based assumption. Marcus et al.
[18] led the way through their demonstration that Latent Semantic
Indexing (LSI) could be used for concept location. Kuhn et al. [13]
extended the work of Marcus et al. and presented results in software
comprehension. Next came the Latent Dirichlet Allocation (LDA)
based bug localization algorithm proposed by Lukins et al. [17].
To round off this series of algorithms, Rao and Kak [27] compared
several early BoW based IR techniques for bug localization, and
showed that simpler BoW based approaches, such as Vector Space
Model (VSM) and Unigram Model (UM) outperformed the more
sophisticated ones, such as those using LDA.

The second-generation bug localization tools, developed between
the years 2010 and 2016 [8, 9, 21, 23, 30, 33, 38—40, 42, 45, 47],
exploit structural information embedded in the source code files
and in the bug reports as well as the software-evolution related
information derived from bug and version histories to enhance the
performance of BoW based systems. These studies suggest that the
information derived from the evolution of a software project such as
historical bug reports [9, 23, 42, 47] and code change [33, 38, 39, 45]
history plays an important role in localizing buggy files given a
bug report. These studies also suggest that exploiting structural
information embedded in the source code files [30, 38, 40, 45], such
as method names and class names, and in the bug reports [8, 21,
40, 45], such as execution stack traces and source code patches,
enhances the performance of a bug localization system. BugLocator
[47], DHbPd (Defect History based Prior with decay) [33], BLUIR
(Bug Localization Using information Retrieval) [30], BRTracer (Bug
Report Tracer) [40], LOBSTER (Locating Bugs using Stack Traces
and text Retrieval) [21], Amalgam (Automated Localization of Bug
using Various Information), [38], BLIA (Bug Localization using
Integrated Analysis) [45], and LOCUS (LOcating bugs from software
Change hUnkS) [39] are some of the prominent bug localization
tools developed during the second-generation.

The third and the most recent generation of bug localization tools
date back to roughly 2016 when term-term order and semantics
began to be considered for improving the retrieval performance
of such tools [1, 22, 31, 36, 44]. For exploiting the term-term order,
as for example reported in [31], these tools utilized the Markov
modeling ideas first advanced in the text retrieval community [19].
And for incorporating contextual semantics, as in [1, 22, 36, 44],
the tools used word embeddings based on the word2vec modelling
[20] of textual data.

For the sake of completeness, it is important to point out that
the organization of our evaluation study resulted in our having to
leave out the contributions in two additional and relevant threads
of research: (1) the query reformulation based methods for bug
localization, such as those reported in [26, 34] and (2) the machine-
learning and deep-learning based methods [10, 12, 14, 35, 41, 42, 44]
in which a ranking model is trained to produce relevance scores for
source code files vis-a-vis historical bug reports, and afterwards, the

Lukins [WCRE]
LDA based bug

loc:

Kuhn [WCRE]

LSl based software

comprehension
Marcus

[WCRE]
LSl based
concept
location

alization

Nochols [ACMSE]

Past bug histary for bug
localization

Rao [MSR]
Compares VSM, UM,
LSI, LDA, CBDM for
bug |ucTatmn

Zhou [ICSE]

_ (BugLocator)

Uses bug history for
bug localization

| Davies [WCRE]

Uses bug history for
bug localization

_ Sisman [MSR]

(DHbEd)

Uses code change
history for bug
localization

Wong [ICSME]
. (BRTracer)
Structured information
and stack trace extraction
Moreno [ICSME]
[(LOBSTER)
Uses stack traces and AST

Wang [ICPC]
(Bmalgam)

Bug and version history and
structured information

| Ye [FSE]

Learning to rank based bug

localization

Sisman [ISEP]
- (MRF)
Imposes ordering
constraints on retrieval
| Uneno [ICQRS]
(CombBL)

Imposes semantic
constraints on retrieval

Rahman [FSE]

I Wen [ASE
LOCU[S 1 (BLIZZARD)
() Context-aware query
Uses code change history reformulation
I Ye [ICSE]

Imposes semantic
constraints in LTR

‘2004 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018
Conferences: [Saha [ASE] (BLUiR) Xiao [IST
WCRE: Working Conference on Reverse Engineering. Structured information based Moreno [FSE] B (Dee [LOC]) [-Akbar [MSR]
ACMSE: ACM Software Engineering bug localization (Quest) B (SCOR)

MSR: Mining Software Repositories

ICSE: Int'l Conference on Software Engineering

ASE: Automated Software Engineering

FSE: Foundations of Software Engineering

ISSRE: Int'l Symp on Software Reliability Engineering
APSEC: Asia-Pacific Software Engineering Conference
ICQRS: Int'l Conf on Software Quality, Reliability and Security
Journals:

IST: Information and Software Technology

ISEP: Journal of Software Evolution and Process

TSE: Transactions on Software Engineering

localization

bug localization

| Sisman [MSR] (scegr)

Query reformulation based bug

- Kim [TSE] (Eugscout)
Uses Naive Bayes ta identify
LR,

- Thomas [TSE]

Combines classifiers to improve

_ Davies [ISSRE]

Stack trace extraction

Uses semantic vectors
and enhanced CNN for
bug localization

Nguyen [ICSE]
Imposes semantic
constraints on retrieval

Learn the best query
configuration for bug
localization

Youm [APSEC]
(BLIR)
Stack traces and comments

in bug reports, struetured L Lam [|CPC]
information of files, and (DNNLoc)

code;change htstory Uses neural network
to identify buggy files
given a bug report

Imposes semantics
and ordering
constraints

I Huo [TSE]
(TRANP-CNN)
Extracts transfarable

semantic features
from source project

Figure 1: A 15-year timeline of the cited publications in the field of IR-based automatic bug localization. We represent a
publication by the last name of the first author of the publication along with the venue in which the publication appeared.
The abbreviation inside square brackets, for example “WCRE” in “[WCRE]”, refers to the conference or the journal in which
the publication appeared, while the abbreviation inside round brackets, for example “BLUiR” in “(BLUiR)” indicates the name
of the tool presented in the publication. The list of publications mentioned in the timeline is, obviously, not complete and is
only a representative subset of the hundreds of publications on IR-based bug localization. Notice that we have only included
those publications in this timeline in which bug localization experiments were performed (with the exception of a few very
early publications — that appeared before the year 2010, such as [18] — which performed experiments for concept location).

learned model is used to test the relevance of a new bug report to a
source code file. We leave the evaluation of such bug localization
methods for a future study.

With regards to a large-scale comparative evaluation, we are
aware of only one other recent study [16] that evaluates six differ-
ent IR based bug localization tools on a dataset that involves 46
different Java projects that come with 61,431 files and 9,459 bug re-
ports. As the authors say, their work was motivated by the current
“lack of comprehensive evaluations for state-of-the-art approaches
which offer insights into the actual performance of the techniques”
However, this study only covers bug localization methods from the
second-generation of the tools, and therefore, does not include the
important developments in bug localization made possible by the
third-generation tools. That is, this study has left out the tools that
incorporate term-term order and contextual semantics to enhance
bug localization performance as in [1, 22, 31, 36, 44].

Additionally, note that the study carried out by Lee et al. [16]
considers only Java-based software projects. On the other hand,
our Bugzbook dataset based large-scale evaluation involves nine
different IR tools from all the three generations of software bug
localization systems, and is based on a diverse collection of Java,
C/C++, and Python based software projects that come with 4.5
million files and over 20,000 bug reports.

For yet another reason as to why we did not use the Bench4BL
toolchain, that toolchain was designed to work with the Jira issue
tracking platform. Because of our interest in cross-language effects

on retrieval platforms, we also wanted to download and process
the bug reports from GitHub.

We should also mention the past studies by Ye et al. [43] and
Thomas et al. [35] in which number of queries analysed are around
20,000 and 8,000, respectively. However, these studies are also fo-
cused mainly toward Java-based projects, and also do not consider
the tools from the most recent generation of tools that include
term-term order and semantics.

3 CATALOG OF THE BUG LOCALIZATION
TOOLS IN OUR EVALUATION

The comparative evaluation we report in this paper involves the
following bug localization tools:

1. TFIDF: TFIDF (Term Frequency Inverse Document Fre-
quency) [28] works by combining the frequencies of query
terms in the file (TF) and the inverse document frequen-
cies of the query terms in the corpus (IDF) to determine the
relevance of a file to a query.

2. DLM: DLM (Dirichlet Language Model) [31, 46] or FI (Full
Independence) BoW is a probabilistic model that estimates
a smoothed first order probability distribution of the query
terms in the file to produce the relevance score for the file
given the query.

3. BugLocator: BugLocator [47] takes into account the his-
tory of the past bug reports and leverages similar bug reports

Table 1: Comparison of the different bug localization tools
based on the logic components used for ranking files.

TI | DLM | BL | BR | MRF SCOR

SD | FD | PWSM | SCOR
BoW v v v | v |V v v
Order V4 v
Semantic v v
Trace v |/ v v
Structure v
Past Bugs v

TI - TFIDF, DLM - Dirichlet LM, BL - BugLocator, BR - BLUIR

that have been previously fixed to improve bug localization
performance.

4. BLUiR: BLUIR (Bug Localization Using information Re-
trieval) [30] extracts code entities such as classes, methods,
and variable names from source code files to help in localiz-
ing a buggy file.

5. MRF SD: MRF (Markov Random Field) based SD (Sequen-
tial Dependence) model [31] measures the probability dis-
tribution of the frequencies of the pairs of consecutively oc-
curing query terms appearing in the file to compute the
relevance score for the file given a query.

6. MRF FD: MRF based FD (Full Dependence) [31] is a term-
term dependency model that considers frequencies of all
pairs of query terms appearing in the file to determine the
relevance of the file to the query.

7. PWSM: PWSM (Per-Word Semantic Model) [1] uses word
embeddings derived from the word2vec algorithm to model
term-term contextual semantic relationships in retrieval al-
gorithm.

8. SCOR: SCOR (Source code retrieval with semantics and
order) [1] combines the MRF based term-term dependency
modeling, as described in [31], with semantic word embed-
dings as made possible by word2vec [20] to improve bug
localization performance.

In Table 1, we compare the bug localization tools in our eval-
uation based on the logic components they use to produce the
relevance score for a file vis-a-vis a given bug report.

4 BUGZBOOK: A LARGE DATASET FOR
RESEARCH IN SOFTWARE SEARCH

The Bugzbook dataset we have used for the comparative evaluation
reported in this paper consists of over 20,000 bug reports. That
makes it one of the largest datasets for research in software search,
in general, and automatic bug localization in particular. Table 2
compares Bugzbook with several other bug localization datasets.
The over 20,000 bug reports in Bugzbook were drawn from 29
projects. For each project, we kept track of the associations between
the bug reports and the version number of the project for which the
bug was reported. We believe Bugzbook will encourage researchers
to carry out large-scale evaluations of their software retrieval algo-
rithms. Given the size of the dataset, it may also encourage further
research in deep-learning based approaches for software search.

Table 2: Comparing Bugzbook with other datasets

Dataset | #projects | # bugs reports
moreBugs 2 ~400
BUGLinks 2 ~4000

iBUGS 3 ~400
Bench4BL 46 ~10000
Bugzbook 29 ~20000

In the subsection that follows, we highlight some unique features
of Bugzbook. In a later subsection, we then explain the process that
was used to construct this dataset.

4.1 Features of Bugzbook

As shown in Table 3, the Bugzbook dataset includes a large collec-
tion of Java, C/C++, and Python projects, 29 to be exact. The reader
should note that two of the Java based projects listed in the table,
Aspect] and Eclipse, were used previously in two datasets, iBugs
[37] and BUGLinks [32], that have frequently been used for testing
new algorithms for automatic bug localization.

Bugzbook includes several Apache projects. The reason for se-
lecting projects from Apache is because its software developer
community is believed to be the largest in the open-source software
world with regards to Java programming language. From Apache
we only selected those projects for which we could find the bug
reports online in the well managed Jira [5] issue tracking platform.

In addition to the Apache projects, Bugzbook also contains bug
reports from other large-scale open-source Projects, such as Ten-
sorflow, OpenCV, Chrome, and Pandas. The bug reports for these
projects are maintained on the GitHub platform!.

As shown in Table 3, the total number of bug reports in Bugzbook
is 21,253. The total number of source-code files in all of the projects
together adds up to 4,253,610. Note that the last column of the
table shows the number of versions for each project. As mentioned
earlier, we maintain the association between the bug reports and
the project versions they belong to. Finally, the data format used in
Bugzbook for storing the bug reports is the same XML schema as
used previously for BugLinks.

4.2 How the Bugzbook Dataset was
Constructed and, More Importantly,
Sanitized

The Bugzbook dataset was constructed from open-source software
repository archives and their associated issue tracking platforms.
The Apache project archive and the associated Jira issue tracking
platform would be prime examples of that.

In the material that follows in this subsection, we will address
the following steps used to create Bugzbook: (1) Gathering the raw
data for bug reports and source code files; (2) Filtering the raw
bug reports to eliminate any duplicates and other textual artifacts;
(3) Linking the bug reports with their respective source code files
after the files were fixed; (4) Matching each bug report with the
respective project version; and, finally, (5) carrying out a manual

!Chrome bug reports are obtained from BUGLinks website.

Table 3: Stats related to Bugzbook dataset.

Project [Description [# files [# bugs [# vers
Java projects
Ambari Hadoop cluster mgr 85113 2253 29
Aspectj Java extension 6636 291 1
Bigtop Big data manager 1291 5 5
Camel Integration library 1229503 | 2308 101
Cassandra | Database mgmt tool | 187150 514 133
Cxf Services framework 768444 1795 138
Drill Hadoop query 42360 300 17
Eclipse IDE 12825 4035 1
HBase Database mgmt tool | 265491 2476 95
Hive Data warehouse 114993 2221 32
JCR Content Repository 472680 457 104
Karaf Server-side app 63420 390 34
Mahout Machine learning 27263 162 10
Math Mathematics tool 16735 17 3
OpenNLP NLP library 10250 84 11
PDFBox PDF processor 38943 1163 35
Pig Database manager 25462 47 11
Solr Search server 404944 471 54
Spark Database manager 18737 185 29
Sqoop Database manager 7415 201 7
Tez Graph processor 14795 177 14
Tika Docs processor 16983 183 16
Wicket Web app 317975 567 63
WwW Web app 72838 87 23
Zookeeper Distr comp tool 9911 20 9
C/C++ and Python projects
Chrome Browser 7232 147 1
OpenCV | Computer vision tool 2865 8 1
Pandas Data analysis tool 523 179 1
Tensorflow | Deep learning tool 10833 10 1
Total 4253610 | 21253 976

verification of the dataset on randomly chosen bug reports and the
corresponding source code files.

4.2.1 Gathering Raw Bug Reports and Source Code Files. Jira, the
issue tracking platform for Apache, provides bug reports in XML
format with multiple fields. We wrote a script that automatically
downloaded all the bug reports that were marked as “FIXED” by
the issue tracker and stored them in a disk file. The reason we
downloaded only the fixed bug reports is because we could obtain
the relevant source code files that were fixed in response to those
bugs. With regard to downloading bug reports from GitHub, we
used a publicly available Python script [7]. We modified the script
so that it downloaded only those reports from GitHub that were
explicitly marked as “closed bugs” by the report filer. This overall
approach to the creation of an evaluation dataset has also been used
in the past for creating some well-known other datasets [16, 31, 47].

That brings us to the downloading of the source-code file. For
downloading these files for the Apache projects, we wrote another
script that automatically downloaded all the versions of the soft-
ware projects we use in this study from the Apache archives website

[3]. These software repositories were downloaded in the form of
compressed ZIP or TGZ archives. The compressed files belonging
to the different versions of the projects were then extracted from
the archives and stored in the disk.

In addition to downloading the archives for the software projects,
we also cloned the most recent snapshot of the projects from the
relevant version control platforms (GitHub, GitBox, etc.) in order to
obtain the most recent commit logs for the software repositories. As
explained later in this section, the commit logs are used to establish
associations between the bug reports and the files.

As for the Eclipse, Chrome, and Aspect] projects, we downloaded
their bug reports from the BUGLinks and the iBUGS datasets that
are available on the internet. Since these bug report relate to a single
version of the project, we downloaded just those versions from the
Eclipse, Chrome, and Aspect] archived project repositories.

4.2.2 Filtering the Raw Bug Reports. On the Jira online platform [4],
the individual filing a report has the option to label it as belonging
to one of the following categories: “task”, “subtask”, “story”, “epic”,
or “bug”. We made sure that we downloaded only those reports
that were labeled “bug” for the Bugzbook dataset.

On GitHub as well, the individual filing a report has the option
to assign labels to the report based on pre-defined categories?.
We select only those reports for Bugzbook that had been marked
explicitly as “bug” or “Bug” by whomsoever filed the reports.

Finally, in order to avoid including duplicate bug reports in the
Bugzbook dataset, we only selected those bug reports that were not
marked as a “duplicate” of another bug report by the report filer.

4.2.3 Linking Bug Reports with Source Code Files. The most difficult
part of what it takes to create a dataset like Bugzbook is the linking
of the bug reports with the source code files which were fixed in
response to the bug reports. This step is critical because it provides
the ground truth data with which a bug localization technique can
be evaluated.

The commit messages that are filed when the developers modify
or fix the files play an important role in linking the bug reports
with the relevant files. If a commit is about a bug having been
resolved, the developer who fixed the bug includes in the commit
message the ID of the bug that was fixed as a specially formatted
string. For most of the projects we examined, this string is in the
following format: “PROJECT-###", where “PROJECT” is the name
of the software project, such as “AMBARI”, and “###” is the ID of
the bug report that was resolved. An example of a commit message
with the bug ID and the names of the source code files fixed is
shown in the Figure 2.

A GIT based version control system that manages a software
project also attaches the names of the files that were modified in
response to a bug report with the commit messages. The associa-
tions thus created between the file names and the bug reports can
be used directly to link the bug reports with the relevant source
code files.

Although there are advanced techniques available in the software
engineering literature [15] that automatically link bug reports with
source code files on the basis of textual information contained in the
bug reports and the commit messages, we use the explicit method

2These categories are defined by the project administrators

Author: XXXX XXX <XXX@apache.org>

Date: ThuJan 31 14:54:24 2019 +0700
Bug ID

[AMBARI-25131] |Alert notification properties are wiped after enabling/

disabling the notification (dsen) (#2786)

ambari-server/src/main/java/org/apache/ambari/server/controller/internal/
AlertTargetResourceProvider.java

ambari-server/srcltest/java/org/apache/ambari/server/controller/internal/
AlertTargetResourceProviderTest.java

el

Source code files

Figure 2: A commit message with bug ID and source code
files highlighted in the text.

described above to establish the links between the bug reports and
the files. To elaborate further, by explicit we mean that if a commit
message mentions a file name along with the bug ID, then we can
match up the two and form a link. Otherwise, we discard the commit
message. The reason to use this explicit method for linking the bug
reports with the source code files is because we want to avoid false
positives in the linking process at the possible cost of incurring
false negatives.

4.2.4 Versioned Associations between the Bug Reports and the Files.
In much research in the past on automatic bug localization, the
practice was to use only the latest version of the software library
for the source code and for file identification. Bugzbook, on the
other hand, maintains all of the different versions of a software
project and the files relevant to a bug belong to a specific version
of the project.

The bug reports often come with either the version number
of the software that is presumably the source of the bug, or the
version number in which the bug is fixed. If the affected version
of the project that resulted in a bug is present in the bug report
description, we link the bug report with the version mentioned in
the report. On the other hand, if the bug report mentions the fixed
version of the software, we use the version that was released prior
to the fixed version as the linked version for the bug report. This
obviously is based on the assumption that the version that was
released prior to the fixed version contained the bug mentioned in
the bug report.

4.2.5 Manual Verification of the Bugzbook Dataset. For verification
of the steps described previously in this section to control the
quality of the dataset, we manually check a randomly chosen small
portion of the dataset by comparing the bug report entry in the
Bugzbook dataset with the bug report entry in the online bug
tracking platform like Jira and GitHub. In particular, we randomly
selected two bug reports from each software project present in
Bugzbook and manually verified its entry in the online platform. We
check if the bug ID associated with a bug report in Bugzbook indeed
belongs to the correct bug report in the online tracking system. We
also verify all the attributes, such as title and description entries, of
the bug reports. In addition to verifying the bug report entry in the
online tracking system, we also verify if the bug ID associated with
the bug report has a commit message associated with it in the GIT
commit log, and that the fixed files mentioned in the commit log

match the repaired files stored in the Bugzbook entry of the bug
report.

5 EXPERIMENTAL RESULTS

This section presents the experimental results of our large-scale
study on the effectiveness of modeling source code repositories
using first, second, and third generations of bug localization tools.
Also presented in this section is the evaluation metric used.

5.1 Implementation Details

For the first generation tools — DLM (FI BoW) and TFIDF — we
used the implementations provided by the popular open-source
search engine tool Terrier [24].

For the second generation tools we used the implementations
of BugLocator [11], and BLUIR [29] that have been made available
online by the authors of the tools. For these tools, we used the
parameter settings as suggested by the same authors.

For the third generation tools, for MRF-SD and MRF-FD we
used the implementations that are built into Terrier engine. And
for PWSM and SCOR, we used the implementation provided by
the authors of [1]. This implementation uses the DLM-FI BoW
model as the baseline model upon which enhancements are made
to introduce the semantic and ordering relationships between the
terms. For the word embeddings needed by PWSM and SCOR, these
were downloaded from the website where the authors of SCOR [1]
have posted the embeddings for half a million software terms [2].

We use the parameters recommended by the authors of the
respective tools to evaluate their performance on bug localization
dataset.

5.2 Evaluation Metrics

We use the Mean Average Precision (MAP) values to evaluate the
performance of retrieval algorithms. This metric is the mean of the
Average Precisions (AP) calculated for each of the bug report queries.
The MAP values are subject to statistical significance testing using
the Student’s Paired t-Test. Significance testing tells us whether
the measured difference in the results obtained with two different
retrieval models is statistically significant. Student’s t-Test has been
used in previous studies [31, 47] to establish the performance gain
of one algorithm over another.

5.3 Retrieval Experiments

We provide bug localization results for comparing the following
eight retrieval algorithms: (1) TFIDF, (2), FI BoW, (3) BugLocator, (4)
BLUIR, (5) MRF SD, (6) MRF FD, (7) PWSM, and (8) SCOR. Through
our retrieval experiments we attempt to answer the following 6
important research questions:

RQ1: In terms of retrieval precision, how do the first, second,
and third generation tools compare against each other?

RQ2: Does the performance of the retrieval algorithms depend
on the programming language used in the software?

RQ3: Are the word embeddings provided by SCOR really generic?

RQ4: How to best create a composite retrieval performance
metric for large-scale evaluations?

RQ5: Does changing the semantic word embeddings affect the
performance of the semantics-based retrieval algorithms?

Table 4: MAP values for the retrieval algorithms evaluated on Bugzbook dataset. Notice that the last two rows contain the
MAP values for the eight retrieval algorithms averaged across all projects, and the Mutual Information weighted (MI-wtd)
MAP values for the same, respectively. Also notice that the second column contains the MI values for each project. We also
show in the second to the last row and, in the 8th row from the bottom for just the Java-based projects, the results of significance
testing. The superscript denotes the significant difference when considering p-value less than 0.05, while the subscript denotes
significance difference when considering p-value less than 0.01. For example, in the second to the last row of MRF SD column,

we have 0.370?2]?; ? which specifies that MRF SD is significantly better than TFIDF, DLM, Buglocator, MRF FD, and PWSM
when considering p-value less than 0.05, while it is significantly better than only TFIDF, DLM, BugLocator, and PWSM when

considering p-value less than 0.01.

Project MI TFIDF | DLM | BugLocator | BLUIR | MRFSD | MRFFD | PWSM SCOR
Ambari 1.98 0.268 | 0.227 0.257 0.242 0.268 0.278 0.253 0.295
Aspectj 1.07 0211 | 0.216 0.220 0.250 0.226 0.230 0.233 0.250
Bigtop 0.47 0.456 | 0.079 0.080 0.567 0.304 0.300 0.110 0.560
Camel 1.90 0390 | 0.369 0.345 0.345 0.405 0.382 0.395 0.407
Cassandra 1.69 0364 | 0.394 0.361 0.394 0367 0310 0.356 0.411
Cxf 1.46 0332 | 0.287 0.319 0.303 0.348 0.342 0.329 0.363
Drill 1.58 0.196 | 0.210 0.170 0.169 0.218 0.189 0.223 0.240
Eclipse 1.30 0.284 | 0.248 0.310 0.320 0.303 0.305 0.271 0.320
HBase 1.74 0387 | 0.362 0.370 0.333 0.429 0.424 0.408 0.453
Hive 1.77 0332 | 0.278 0.219 0.224 0.335 0.346 0.269 0.345
JCR 1.88 0432 | 0.396 0.417 0.394 0.453 0.454 0.437 0.450
Karaf 1.80 0372 | 0.386 0.348 0.382 0.374 0.332 0.399 0.427
Mahout 1.27 0320 | 0.295 0.481 0.367 0.315 0.267 0.320 0.338
Math 0.81 0482 | 0.495 0.601 0.557 0.454 0.481 0.458 0.512
Opennlp 1.06 0435 | 0.456 0.500 0.261 0.433 0.347 0.437 0.498
PDFBox 1.57 0351 | 0.319 0.430 0.370 0.368 0.357 0.358 0.380
PIG 0.85 0.285 | 0.228 0.360 0.315 0.295 0312 0311 0.335
SOLR 1.20 0.343 | 0.305 0.323 0.331 0.371 0.370 0.344 0.394
Spark 1.77 0339 | 0.369 0.398 0.348 0.377 0.332 0.362 0.418
Sqoop 1.40 0358 | 0.385 0.379 0.406 0367 0.307 0.322 0.417
Tez 1.48 0373 | 0.373 0.376 0.277 0.424 0.428 0.401 0.431
Tika 1.27 0341 | 0.270 0.375 0.411 0.290 0316 0.333 0.326
Wicket 1.99 0439 | 0.420 0.489 0.411 0.450 0.389 0.399 0.440
WwW 1.34 0397 | 0.354 0.288 0.226 0.414 0.379 0.376 0.430
Zookeeper 0.99 0.468 | 0.494 0.502 0.456 0.565 0.527 0.532 0.529
Average MAP (Java) 0.3589" | 0.329 0.3572? 0.3464 0.366?35:;; P'| 0.3489" | 0.3459 0.3995%: j}fcﬁ
Chrome 0.58 0.113 | 0.118 0.039 - 0.119 0.101 0.122 0.137
OpenCV 0.16 0.481 | 0.802 0.195 - 0.845 0.680 0.818 0.819
Pandas 0.64 0.266 | 0.265 0.266 - 0.375 0.405 0.388 0.435
Tensorflow 0.23 0.208 | 0.166 0.111 - 0.246 0.163 0.189 0.182
Average MAP (C/C++/Python) | 0.267 | 0.338 0.153 - 0.396 0.339 0.379 0.393
Average MAP (Overall) 0.3464 | 0.330 0.328 - 0.370?% Pl 03474 0.3503}0 0.398;2532
MI-wtd MAP 0.447 | 0.424 0.447 - 0.467 0.442 0.446 0.500
t: > TFIDF d: > DLM (FI) I: > BugLocator r:>BLUIR s: > MRF SD f:>MRFFD p: > PWSM

RQ6: Does replacing DLM with TFIDF in MRF based frameworks
enhance the performance of bug localization systems?

The questions RQ1 and RQ2 are important because they repre-
sent the primary motivation for our research. As for RQ3, RQ5, and
RQ6, they are included because of the current focus of research in
software mining and text retrieval, which is exploiting semantics
and term-term ordering for retrieval. Finally, RQ4 reflects moving
from small-scale evaluations to large-scale evaluations.

The MAP performance numbers for the eight retrieval algo-
rithms evaluated on 29 Java, C/C++, and Python projects present
in Bugzbook are shown in Table 4. In the discussion that follows,
we use this table to answer the six important research questions
posed above.

Regarding the empty entries in the last six rows of the BLUIR
column in Table 4, since this tool was designed specifically for
Java source code, we do not report on its performance on non-Java

projects (these being Chrome, OpenCV, Pandas, and Tensorflow).
BLUIR uses a Java-specific parser to extract the method, the class,
and the identifier names, and the comment blocks from Java source
code files. Therefore, in all our comparison involving BLUIR, we
include only the Java based projects in Bugzbook.

RQ1: In terms of retrieval precision, how do the first, second,
and third generation tools compare against each other?

TFIDF and DLM are the two first generation tools whose average
MAP values across all software projects in Bugzbook are 0.346 and
0.330, respectively, as shown in the table. Our results show that
TFIDF outperforms DLM (or FI BoW) model by around 5%. The
performance difference between TFIDF and FI is significant even
when considering p-value less than 0.01. This implies that when
considering pure-BoW based tools one should choose TFIDF over
FI (DLM) model.

The second generation tools BugLocator and BLUIR that incor-
porate software-evolution history and structural information have
average MAP values across all Java projects of 0.357 and 0.346,
respectively. The MAP value for BugLocator on all the projects
present in Bugzbook is 0.328. Both these bug localization tools per-
form significantly better than the FI BoW (DLM) model when only
Java projects are considered in evaluation and when p-value is 0.05.
However, when p-value is 0.01, only BugLocator outperforms DLM.
The performance numbers for BugLocator and DLM when all the
projects in Bugzbook (including Java, C/C++, and Python projects)
are considered are comparable.

We note that the simple TFIDF BoW model significantly outper-
forms BLUIR by 4% when examined through our large-scale bug
localization study of Java projects. In a project-by-project compari-
son, BLUIR outperforms TFIDF in just 12 out of the 25 Java-based
projects in Table 4 . Amongst these, the comparative results for
Aspect] and Eclipse are along the same lines as those reported
previously in the original BLUIR paper. However, with regard to
the projects on which BLUIR was not evaluated previously, its per-
formance on several Apache based projects is worse than that of
TFIDF.

On the other hand, the performance numbers for TFIDF and
BugLocator are comparable. The performance of BugLocator is
significantly better than that of BLUIR for the Java only projects.
This contradicts the finding presented in [16] and [30].

The third generation order-only MRF SD and MRF FD models
with average MAP values across all projects of 0.370 and 0.347,
significantly outperform the first generation tool DLM by 12% and
5%, respectively. This confirms the finding in [31]. However, when
compared with TFIDF, while MRF SD significantly outperforms
TFIDF, the performance of MRF FD is similar to that of TFIDF.

We observe that the two order-only MRF SD and MRF FD re-
trieval models perform equivalently when evaluated using statisti-
cal t-testing and considering p-value less than 0.01. This contradicts
the finding in [31] which shows that the performance of MRF SD
and MRF FD are similar in terms retrieval accuracy.

We notice that MRF SD outperforms MRF FD on 19 out of 29
projects. The projects on which MRF FD outperforms MRF SD
are Ambari, Aspect], Eclipse, Hive, JCR, Math, Pig, Tez, Tika, and
Pandas. Most of these projects have large number of bug reports
and contribute in total around 10000 — that is roughly around 50%
— of bug reports to the Bugzbook dataset. Since both MRF SD and

MREF FD outperform each other on roughly equal number of bug
reports, this is a possible reason for their statistically equivalent
performance.

We compare the performance of second generation tools, BugLo-
cator and BLUIR, with the pure-ordering based third generation
tools, MRF SD and MRF FD, and observe that both MRF SD and
MRF FD outperform both BugLocator and BLUIR.

The performance of MRF SD is significantly better than that of
both BugLocator and BLUIR on Java based projects. MRF SD also
significantly outperforms BugLocator by 13% on all the projects in
Bugzbook. The performance of MRF FD is better than that of BLUiR.
The performance of BugLocator is better than that of MRF FD on
Java projects with a p-value of 0.05. However, the performance num-
bers for the two are comparable when p-value of 0.01 is considered.
Their performance is also comparable when all projects in Bugz-
book are considered. This result contradicts the results reported in
[31].

When considering semantics-only based retrieval with the PWSM
model we observe a mean MAP value of 0.350 across all the projects
in the Bugzbook dataset. We notice that whereas PWSM outper-
forms DLM significantly by 6%, it does not do so vis-a-vis TFIDF.
The performance of PWSM is comparable to that of BLUiR when
only the Java projects are considered. Additionally, PWSM does not
significantly outperform BugLocator when all projects in Bugzbook
are considered. The percentage difference between the all-projects
performance numbers for PWSM and BugLocator is around 6%.

The performance of PWSM — which is a pure-semantics based
third generation tool — is comparable to the performance of pure-
ordering based MRF SD model. However, PWSM significantly out-
performs MRF FD model. This comparison is not performed in [1].
The performance of SCOR — which combines MRF based term-
term ordering dependencies with word2vec based semantic word
embeddings, outperforms the first and second generation tools. We
observe that the performance of SCOR is significantly better than
the other seven retrieval algorithms when considering retrieval
accuracies.

RQ2: Does the performance of the retrieval algorithms de-
pend on the programming language used in the software?

In many past studies, only Java based software projects were
used for evaluating the performance of bug localization tools. This
question is important as it helps in determining the performance
of these bug localization tools on non-Java projects. To answer this
question we compare the performance of each retrieval algorithm
on projects written in Java and other programming languages.

The average MAP values for all the eight retrieval algorithms on
projects that only use Java programming language are shown in the
8th row from the bottom in Table 4. The average MAP values for
all retrieval algorithms except BLUIiR on C/C++ and Python based
projects are shown in the 3rd row from the bottom in Table 4.

We notice that the performance of all retrieval algorithms except
for TFIDF and BugLocator on Java-based libraries is similar to what
we get on C/C++ and Python based projects. TFIDF and BugLocator
perform significantly poorly on non-Java projects. We also observe
that the semantics-based retrieval algorithms perform surprisingly
very well on C/C++ and Python projects. What makes the last
observation all the more surprising is that the word2vec algorithm
was trained on only the Java based projects used by SCOR.

MI vs mean MAP across all algorithms for all projects with a regression line

—— RANSAC line
® Outliers
3 ® nliers

-0.2 0.0 0.2 0.4 0.6 0.8
MAP

Figure 3: Scatter plot of average MAP vs MI values. Each data
point in the plot is a tuple (MAP, MI) for a software project.
The MAP value plotted for a software project is the mean of
the 8 MAP values obtained while evaluating the 8 retrieval
algorithms on a specific project. Also shown in the figure is
the RANSAC fitted line along with inlier and outlier points.
A low MI implies a difficult project, which in turn, implies a
low mean MAP value for the retrieval algorithms.

With a minimum MAP value of 0.039 for BugLocator and a
maximum MAP value of 0.137 for SCOR, Chrome is the project on
which the performance of all the retrieval algorithms is the lowest.
The top three algorithms on Chrome are SCOR, PWSM, and MRF
SD with MAP values of only 0.137, 0.122, and 0.119, respectively.

The MAP values for all retrieval algorithms except for TFIDF
and BugLocator on the 8 bug reports of the OpenCV project are
very high. The three bug localization techniques that worked the
best on the OpenCV project are MRF SD, SCOR, and PWSM with
MAP values of 0.845, 0.819, and 0.818, respectively.

As for Pandas — a pure Python project — SCOR, MRF FD, and
PWSM are the three algorithms that perform the best in terms of
retrieval precision with MAP values of 0.435, 0.405, and 0.388.

The MAP values of the retrieval algorithms on Tensorflow are
not very impressive. The lowest performing algorithm, BugLocator,
achieved a MAP value of only 0.111, while the top performing
algorithm, MRF SD, works with a MAP value of only 0.246. The top
three algorithms for this project are MRF SD, TFIDF, and PWSM
with MAP values of 0.246, 0.208, and 0.189.

RQ3: Are the word embeddings provided by SCOR really generic?

In the SCOR paper [1], we claimed that the SCOR word embed-
dings generated by the word2vec algorithm in that paper would
be generic enough so that they could be used for carrying out se-
mantic search in new libraries, that is, the libraries that were not
used for generating the embeddings. However, in [1], this claim
was supported with the results from just one library, Aspect].

Our new results, as reported in this paper, provide further af-
firmation for that claim. The Java-based dataset that was used for
training the word2vec algorithm in [1] did not include the follow-
ing Apache projects in the Bugzbook dataset: Bigtop, OpenNLP,
PDFBox, and Drill. The retrieval results for SCOR on these four
projects as shown in Table 4 speak for themselves.

Further affirmation of our claim is provided by the C/C++ and
Python based projects in Bugzbook. We observe that the perfor-
mance of SCOR on roughly 150 Chrome bug reports and roughly

180 Pandas bug reports is the best among all the retrieval algorithms.
Notice that Chrome is a pure C/C++ based project while Pandas is
a pure Python based project. On the 8 OpenCV bug reports and the
10 Tensorflow bug reports, however, the performance of MRF SD is
better than that of SCOR.

Therefore, in answer to this question, we can say that the word
embeddings generated by the word2vec algorithm in SCOR are
generic enough to be used for carrying out semantic search not
only in Java based projects not seen in SCOR but also in C/C++ and
Python projects.

RQ4: How to best create a composite retrieval performance
metric for large-scale evaluations?

When a bug localization dataset involves multiple projects, it
is unlikely that all the projects would present the same level of
difficulty (LoD) to a retrieval engine. So, ideally, one should weight
the performance numbers for the different projects with some mea-
sure of LoD for the individual projects. We have experimented with
the information-theoretic idea of Mutual Information (MI) for the
source-code library and the bug reports as a measure of retrieval
LoD for the library. We characterize each project by two random
variables X and Y, where X represents the vocabulary in the source
code and Y represents the vocabulary in all the bug reports for
that project. Now we can measure MI for any given project by
MI(X,Y) = HX) + H(YY) — H(X,Y), where H(X) and H(Y) are
the marginal entropies and H(X,Y) the joint entropy. Note that
MI(X,Y) quantifies the amount of information that the two random
variables X and Y share. So the higher the value of MI for a project,
the more the bug reports can tell us about the project vocabulary
and vice versa.

When we plot the MI value for each project against the mean of
the MAP performance numbers obtained with the different retrieval
algorithms for that project, we obtain the scatter plot shown in
Figure 3. We also show in the figure a least-squares line fitted to the
data points using the RANSAC (Random Sample and Consensus)
algorithm along with the inlier and the outlier points. The slope of
this line is 4.085 and the intercept 0.073.

The correlation that is present between MI and MAP implies
that MI captures, albeit approximately, the level of retrieval diffi-
culty for a given software library along with its bug reports. Note
that at any given value of MI, we do not distinguish between the
retrieval algorithms in terms of their performance values. Rather,
we take a mean MAP value across all the algorithms to represent
the performance of all the retrieval algorithms on the project that
corresponds to MI value.

The second column of Table 4 shows the calculated MI values
for the software projects in Bugzbook. Also, the last row of the
table shows the MI-weighted MAP values averaged across all the
projects for each retrieval algorithm. We observe that when the MI
value for a project is high — as for example 1.90 for Camel and 1.99
for Wicket — the MAP values of the retrieval algorithms for that
project are also high. The lowest MAP value observed for Camel
is 0.345 and for Wicket is 0.389. On the other hand, with a low MI
value of 1.57 for Drill project, the highest MAP value in that row is
only 0.240 for SCOR algorithm.

RQ5: Does changing the semantic word embeddings affect
the performance of the semantics-based retrieval algorithms?

Table 5: Shown are the MAP values obtained while chang-
ing the size of the semantic word vectors for the SCOR algo-
rithm, evaluated on the Eclipse software project. Also shown
are the MAP values obtained while replacing word2vec with
other word embedding generators.

SCOR-V500 | SCOR-V1000 | SCOR-V1500
0.3191 0.3204 0.3193
SCORskipgram SCORglove SCOR¢sttext
0.3204 0.3192 0.3182

The word embeddings can be changed either by changing the
sizes of the vector involved, or by using different embeddings alto-
gether.

To address the question related to the sizes of the vectors, we
varied the size of the word2vec representations and generated the
retrieval results for the SCOR retrieval model. The results are pre-
sented in Table 5. We refer to the different versions of SCOR, with
each version using vectors of a specific size, as SCOR-V500, SCOR-
V1000, and SCOR-V1500. In this notation, SCOR-VN uses word
embedding vectors of size N. The first row of Table 5 shows the
retrieval results on the Eclipse dataset that contains 4000 bug re-
ports with the different versions of SCOR. Based on these results,
we conclude that the size used for the word embeddings has no
significant impact on the retrieval performance. We chose Eclipse
for this test as it has already been used in several previous studies
related to bug localization.

We also compare the performance of SCOR when it is used with
different types of word embeddings. In addition to word2vec, there
are now two other well-known word embeddings: GloVe (Global
Vector Representations) [25] and FastText [6]. When we replace the
word2vec Skipgram model with GloVe and FastText in SCOR, the
difference observed in terms of MAP performance on the 4000 bug
reports of Eclipse dataset is negligible as shown in the second row
of Table 5. In that table, SCORgkipgram refers to the original SCOR
algorithm, and SCORgjove and SCORgygyet refer to the versions
of SCOR using GloVe and FastText word embeddings. For all the
three word embedding algorithms we use the same input training
dataset that is available at our SCOR website. For this study, we used
embedding vectors of size 500. We conclude that the retrieval results
with SCOR are not affected by either the choice of the embeddings
used or the sizes of the vectors involved.

RQ6: Does replacing DLM with TFIDF in MRF based retrieval
enhance the performance of bug localization systems?

Since TFIDF performs better than FI in terms of retrieval preci-
sion, and is comparable in performance to the more advanced BowW
tools like BugLocator and BLUIR as we discussed in the answer to
RQ1, we believe tht the question posed above is important. The
comparative results presented in Table 6 say that the answer to
this question is a definite yes. That table shows the performance
of MRF SD and SCOR using TFIDF as the BoW model versus the
results shown previously in Table 4. The notation SD-T and SCOR-
T is for these algorithms when use the TFIDF score for the Bow
contribution when computing the composite relevance score of a
file vis-a-vis a bug report.

Table 6: We compare MAP values of MRF SD with MRF SD-
T, and SCOR with SCOR-T retrieval algorithms evaluated on
Bugzbook dataset. Notice that SD-T and SCOR-T are the ver-
sions of MRF SD and SCOR when using TFIDF scores in com-
puting the composite score for retrieval, respectively.

Project SD | SD-T || SCOR | SCOR-T
Ambari 0.268 | 0.294 0.295 0.298
Aspectj 0.226 | 0.232 0.250 0.235
Bigtop 0.304 | 0.325 0.560 0.572
Camel 0.405 | 0.420 0.407 0.417
Cassandra 0.369 | 0.389 0.411 0.451
CXF 0.348 | 0.358 0.363 0.376
Drill 0.218 | 0.231 0.240 0.245
Eclipse 0.303 | 0.313 0.320 0.323
HBase 0.429 | 0.443 0.453 0.449
Hive 0.335 | 0.370 0.345 0.339
JCR 0.453 | 0.454 0.450 0.465
Karaf 0.374 | 0.393 0.427 0.424
Mahout 0.315 | 0.334 0.338 0.348
Math 0.545 | 0.519 0.512 0.481
Opennlp 0.433 | 0.470 0.498 0.510
PDFBox 0.368 | 0.381 0.380 0.394
PIG 0.295 | 0.353 0.335 0.396
SOLR 0.371 | 0.384 0.394 0.398
Spark 0.377 | 0.437 0.418 0.441
Sqoop 0.367 | 0.384 0.417 0.419
Tez 0.424 | 0.439 0.431 0.468
Tika 0.290 | 0.328 0.326 0.361
Wicket 0.450 | 0.458 0.440 0.440
WWwW 0.414 | 0.426 0.430 0.448
Zookeeper 0.565 | 0.507 0.529 0.524
Chrome 0.119 | 0.125 0.137 0.125
OpenCV 0.845 | 0.699 0.819 0.804
Pandas 0.375 | 0.365 0.435 0.437
Tensorflow || 0.246 | 0.201 0.182 0.186
Average 0.370 | 0.380 0.398 0.409
MI-wtd 0.467 | 0.490 0.500 0.512

6 CONCLUSION

The roughly fifteen-year progression of research in IR-based search
tools for source code libraries consists of three distinct phases: it
started with tools based on the first-order statistical properties of
the source-code files and the queries; then moved into augmenting
the first-order properties with software-centric information derived
from evolution history and structure; and, finally, into exploiting
the proximity, order, as well as contextual semantics provided by the
word2vec neural network. The tools developed along the way were
tested on relatively small evaluation datasets. This paper provides a
large-scale comprehensive evaluation with over 20,000 bug reports
of a set of search tools that represent all the phases of this research.
Our results consist of answers to six research questions that address
the relative importance of the different components of the search
logic. For future we intend to evaluate more retrieval algorithms
from each generation on open-source as well industry projects.

REFERENCES

(1]

[2

(3]

=

[10

(11

[12]

[13]

[14]

[15]

[16

[17

(18]

[19]

[20]

[21]

[22]

[23

S. Akbar and A. Kak. 2019. SCOR: Source Code Retrieval with Semantics and Order.
In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR). 1-12. https://doi.org/10.1109/MSR.2019.00012

Shayan A. Akbar. [n.d.]. SCOR Word Embeddings. Retrieved March 2, 2020 from
https://engineering.purdue.edu/RVL/SCOR_WordEmbeddings

Apache. [n.d.]. Apache Archives. Retrieved March 2, 2020 from https://archive.
apache.org

Atlassian. [n.d.]. Jira Issue Types. Retrieved March 2, 2020 from https://confluence.
atlassian.com/adminjiracloud/issue- types-844500742.html

Atlassian. [n.d.]. fira Platform. Retrieved March 2, 2020 from https://www.
atlassian.com/software/jira

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching Word Vectors with Subword Information. TACL 5 (2017), 135-146.
Matej Cepl. [n.d.]. GitHub Issues Export. Retrieved March 2, 2020 from https:
//github.com/mcepl/github-issues-export

Steven Davies and Marc Roper. 2013. Bug localisation through diverse sources
of information. In 2013 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). IEEE, 126-131.

Steven Davies, Marc Roper, and Murray Wood. 2012. Using bug report simi-
larity to enhance bug localisation. In 2012 19th Working Conference on Reverse
Engineering. IEEE, 125-134.

X. Huo, F. Thung, M. Li, D. Lo, and S. Shi. 2019. Deep Transfer Bug Localization.
IEEE Transactions on Software Engineering (2019), 1-1. https://doi.org/10.1109/
TSE.2019.2920771

Dongsun Kim, Yida Tao, Sunghun Kim, and Andreas Zeller. [n.d.]. BugLocator
Software. Retrieved March 2, 2020 from https://code.google.com/archive/p/
bugcenter/downloads

Dongsun Kim, Yida Tao, Sunghun Kim, and Andreas Zeller. 2013. Where should
we fix this bug? a two-phase recommendation model. IEEE transactions on
software Engineering 39, 11 (2013), 1597-1610.

Adrian Kuhn, StAlphane Ducasse, and Tudor GAérba. 2007. Semantic clustering:
Identifying topics in source code. Information and Software Technology 49, 3
(2007), 230 — 243. https://doi.org/10.1016/j.infsof.2006.10.017 12th Working
Conference on Reverse Engineering.

A.N.Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. 2017. Bug Localization
with Combination of Deep Learning and Information Retrieval. In 2017 [EEE/ACM
25th International Conference on Program Comprehension (ICPC). 218-229. https:
//doi.org/10.1109/ICPC.2017.24

T. B. Le, M. Linares-Vasquez, D. Lo, and D. Poshyvanyk. 2015. RCLinker: Au-
tomated Linking of Issue Reports and Commits Leveraging Rich Contextual
Information. In 2015 IEEE 23rd International Conference on Program Comprehen-
sion. 36-47. https://doi.org/10.1109/ICPC.2015.13

Jaekwon Lee, Dongsun Kim, Tegawendé F. Bissyandé, Woosung Jung, and Yves Le
Traon. 2018. Bench4BL: Reproducibility Study of the Performance of IR-based Bug
Localization. In Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA 2018). 1-12. https://doi.org/10.1145/
3213846.3213856

Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn. 2008. Source Code
Retrieval for Bug Localization Using Latent Dirichlet Allocation. In Proceedings
of the 2008 15th Working Conference on Reverse Engineering (WCRE ’08). IEEE
Computer Society, Washington, DC, USA, 155-164. https://doi.org/10.1109/
WCRE.2008.33

A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. 2004. An information retrieval
approach to concept location in source code. In 11th Working Conference on
Reverse Engineering. 214-223. https://doi.org/10.1109/WCRE.2004.10

Donald Metzler and W Bruce Croft. 2005. A Markov random field model for
term dependencies. In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, 472-479.
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality. In
Advances in Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.). Curran Associates,
Inc., 3111-3119. http://papers.nips.cc/paper/5021-distributed-representations-
of-words-and-phrases-and- their-compositionality.pdf

Laura Moreno, John Joseph Treadway, Andrian Marcus, and Wuwei Shen. 2014.
On the use of stack traces to improve text retrieval-based bug localization. In
Software Maintenance and Evolution (ICSME), 2014 IEEE International Conference
on. IEEE, 151-160.

T. V. Nguyen, A. T. Nguyen, H. D. Phan, T. D. Nguyen, and T. N. Nguyen. 2017.
Combining Word2Vec with Revised Vector Space Model for Better Code Re-
trieval. In 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C). 183-185. https://doi.org/10.1109/ICSE-C.2017.90

Brent D. Nichols. 2010. Augmented Bug Localization Using Past Bug Information.
In Proceedings of the 48th Annual Southeast Regional Conference (ACM SE 6AZ10).
Association for Computing Machinery, New York, NY, USA, Article Article 61,
6 pages. https://doi.org/10.1145/1900008.1900090

[24]
[25]

[26]

[27

™
&,

[29

[30

(31

[32

@
&

[34

[35

[36]

(41

[42

[43]

[45]

[46]

[47]

University of Glasgow. [n.d.]. Terrier Open-source Search Engine Software. Re-
trieved March 2, 2020 from http://terrier.org/

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global vectors for word representation. In In EMNLP.

Mohammad Masudur Rahman and Chanchal K Roy. 2018. Improving ir-based
bug localization with context-aware query reformulation. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 621-632.

Shivani Rao and Avinash Kak. 2011. Retrieval from software libraries for bug
localization: a comparative study of generic and composite text models. In Pro-
ceedings of the 8th Working Conference on Mining Software Repositories. ACM,
43-52.

Stephen E Robertson and Karen Spérck Jones. 1994. Simple, proven approaches to
text retrieval. Technical Report. University of Cambridge, Computer Laboratory.
Ripon K. Saha. [n.d.]. BLUIR Software. Retrieved December 2, 2019 from http:
//riponsaha.com/BLUIR .html

Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013.
Improving bug localization using structured information retrieval. In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on. IEEE,
345-355.

Bunyamin Sisman, Shayan A Akbar, and Avinash C Kak. 2017. Exploiting spatial
code proximity and order for improved source code retrieval for bug localization.
Journal of Software: Evolution and Process 29, 1 (2017).

Bunyamin Sisman and Avinash C. Kak. [n.d.]. BUGLinks Dataset. Retrieved
March 2, 2020 from https://engineering.purdue.edu/RVL/Database/BUGLinks/
Bunyamin Sisman and Avinash C Kak. 2012. Incorporating version histories
in information retrieval based bug localization. In Mining Software Repositories
(MSR), 2012 9th IEEE Working Conference on. IEEE, 50-59.

Bunyamin Sisman and Avinash C Kak. 2013. Assisting code search with automatic
query reformulation for bug localization. In Proceedings of the 10th Working
Conference on Mining Software Repositories. IEEE Press, 309-318.

Stephen W Thomas, Meiyappan Nagappan, Dorothea Blostein, and Ahmed E
Hassan. 2013. The impact of classifier configuration and classifier combination
on bug localization. IEEE Transactions on Software Engineering 39, 10 (2013),
1427-1443.

Y. Uneno, O. Mizuno, and E. Choi. 2016. Using a Distributed Representation of
Words in Localizing Relevant Files for Bug Reports. In 2016 IEEE International
Conference on Software Quality, Reliability and Security (QRS). 183-190. https:
//doi.org/10.1109/QRS.2016.30

Thomas Zimmermann Valentin Dallmeier. [n.d.]. iBUGS Dataset.
March 2, 2020 from https://www.st.cs.uni-saarland.de/ibugs/
Shaowei Wang and David Lo. 2014. Version history, similar report, and structure:
Putting them together for improved bug localization. In Proceedings of the 22nd
International Conference on Program Comprehension. ACM, 53-63.

Ming Wen, Rongxin Wu, and Shing-Chi Cheung. 2016. Locus: Locating bugs from
software changes. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 262-273.

Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong
Mei. 2014. Boosting bug-report-oriented fault localization with segmentation
and stack-trace analysis. In Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on. IEEE, 181-190.

Yan Xiao, Jacky Keung, Kwabena E. Bennin, and Qing Mi. 2019. Improving bug
localization with word embedding and enhanced convolutional neural networks.
Information and Software Technology 105 (2019), 17 - 29. https://doi.org/10.1016/
j.infsof.2018.08.002

Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to Rank Relevant Files for
Bug Reports Using Domain Knowledge. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 689-699. https://doi.org/10.1145/2635868.2635874

Xin Ye, Razvan Bunescu, and Chang Liu. 2016. Mapping Bug Reports to Relevant
Files: A Ranking Model, a Fine-Grained Benchmark, and Feature Evaluation. IEEE
Trans. Softw. Eng. 42, 4 (April 2016), 3794AS$402. https://doi.org/10.1109/TSE.
2015.2479232

X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu. 2016. From Word Embeddings
to Document Similarities for Improved Information Retrieval in Software Engi-
neering. In 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE). 404-415. https://doi.org/10.1145/2884781.2884862

K. C. Youm, J. Ahn, J. Kim, and E. Lee. 2015. Bug Localization Based on Code
Change Histories and Bug Reports. In 2015 Asia-Pacific Software Engineering
Conference (APSEC). 190-197. https://doi.org/10.1109/APSEC.2015.23
Chengxiang Zhai and John Lafferty. 2017. A study of smoothing methods for
language models applied to ad hoc information retrieval. In ACM SIGIR Forum,
Vol. 51. ACM, 268-276.

Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where should the bugs be fixed?-
more accurate information retrieval-based bug localization based on bug reports.
In Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 14-24.

Retrieved

https://doi.org/10.1109/MSR.2019.00012
https://engineering.purdue.edu/RVL/SCOR_WordEmbeddings
https://archive.apache.org
https://archive.apache.org
https://confluence.atlassian.com/adminjiracloud/issue-types-844500742.html
https://confluence.atlassian.com/adminjiracloud/issue-types-844500742.html
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://github.com/mcepl/github-issues-export
https://github.com/mcepl/github-issues-export
https://doi.org/10.1109/TSE.2019.2920771
https://doi.org/10.1109/TSE.2019.2920771
https://code.google.com/archive/p/bugcenter/downloads
https://code.google.com/archive/p/bugcenter/downloads
https://doi.org/10.1016/j.infsof.2006.10.017
https://doi.org/10.1109/ICPC.2017.24
https://doi.org/10.1109/ICPC.2017.24
https://doi.org/10.1109/ICPC.2015.13
https://doi.org/10.1145/3213846.3213856
https://doi.org/10.1145/3213846.3213856
https://doi.org/10.1109/WCRE.2008.33
https://doi.org/10.1109/WCRE.2008.33
https://doi.org/10.1109/WCRE.2004.10
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://doi.org/10.1109/ICSE-C.2017.90
https://doi.org/10.1145/1900008.1900090
http://terrier.org/
http://riponsaha.com/BLUiR.html
http://riponsaha.com/BLUiR.html
https://engineering.purdue.edu/RVL/Database/BUGLinks/
https://doi.org/10.1109/QRS.2016.30
https://doi.org/10.1109/QRS.2016.30
https://www.st.cs.uni-saarland.de/ibugs/
https://doi.org/10.1016/j.infsof.2018.08.002
https://doi.org/10.1016/j.infsof.2018.08.002
https://doi.org/10.1145/2635868.2635874
https://doi.org/10.1109/TSE.2015.2479232
https://doi.org/10.1109/TSE.2015.2479232
https://doi.org/10.1145/2884781.2884862
https://doi.org/10.1109/APSEC.2015.23

	Abstract
	1 Introduction
	2 A Timeline of Past Studies in IR-based Bug Localization
	3 Catalog of the Bug Localization Tools in Our Evaluation
	4 Bugzbook: A Large Dataset for Research in Software Search
	4.1 Features of Bugzbook
	4.2 How the Bugzbook Dataset was Constructed and, More Importantly, Sanitized

	5 Experimental Results
	5.1 Implementation Details
	5.2 Evaluation Metrics
	5.3 Retrieval Experiments

	6 Conclusion
	References

