
ECE 661 Homework 8

Rohan Contractor

October 2020

Name: Rohan Contractor
Email: rcontrac@purdue.edu

1 Introduction

The objective for this homework is to perform Texture characterization using
the Gram matrix technique to represent the textures.

2 Implementation Description:

2.1 Gram Matrix:

For applying the Gram matrix technique of texture characterization, I have first
resized all images to (256,256). After resizing, I have convolved the image with
a (3,3) size kernel. The output of this convolution was then downsampled to
size (128,128). The convolution was repeated for C=5,10,15 different kernels
which were randomly generated. The kernels have float weights and lie in the
interval [-1,1]. This process was done for both the train and the test datasets.
This convolution generated 5,10,15 different channels. Thus for each image C
channels were generated which were each vectorized to a column vector. These
column vectors were then stacked into a matrix to represent one image. This
is the feature map that we use to classify the images. The gram matrix was
obtained by multiplying this stacked matrix with it’s transpose. Since this gram
matrix is symmetric, only the upper triangular part of the matrix was used to
represent an image.

2.2 Support Vector Machine

For classifying the images of the test set with the help of their gram matrix
representations, I used the Scikit-learn SVM model. The gram matrix representation
of the training images was taken and the model was trained after splitting the
data into a 75-25 train and validation sets. The program was iterated over 25
times generating random convolution kernels each time to get the best accuracy.

1

mailto:rcontrac@purdue.edu

The model which had the highest accuracy on the validation set was stored using
pickle and was run on the test set to get the classification of output images. The
parameters that I have set are C = 0.1 and max iter = 10000. The kernel used
was the radial basis function and gamma was set to scale.

3 Observations:

I have run the program for C = 5,10,15 and have run the model 25 times,
picking the iteration with the max value of the accuracy for the validation set.
Since the kernel is always initialised with random weights it is hard to ascertain
a a general trend. I have seen instances where there has been an increase in
accuracy with increase in C, but have also seen a dip in accuracy in one such
run before increasing again. Accuracy is dependant on how the weights of the
kernel are set and how many iterations the program runs for. The more the
number of iterations the program is run for the better the chances of getting a
higher accuracy. Looking at the overall results I would say that with increase
in C the accuracy would increase as more textures would be represented and
there would be finer detail present which would aid classification. The amount
of downsampling also affects the classification. The more the downsampling the
more accuracy decreases. I had obtained worse accuracy when I had downsampled
to (64,64) and hence raised it to (128,128). Radial Basis function kernel was
the quickest and provided best results. I experimented with values of C and
maximum iterations to see what provided a good result. I settled on setting C
= 0.1 and iter = 10000. Validation set accuracy results were fairly good and
often were close to that of the accuracy of the model on the test set.

4 Performance Metrics:

The convolution kernels used for the various channels are shown here. Increasing
the number of channels and the number of iterations leads to a better accuracy,
number of iterations being the more dominant factor. For each channel the
testing and validation accuracy’s are printed along with the convolutional kernels.
In some cases the validation accuracy was better than that of the test accuracy
and the some cases he opposite.The accuracy of the model on the training sets
is also close to that of the test sets. The classes are :-
1 - Cloudy
2 - Rain
3- Shine
4- Sunrise

2

Figure 1: Convolution kernels for C= 5

3

Figure 2: Convolution kernels for C= 10

4

Figure 3: Convolution kernels for C= 15

5

5 Comparison with LBP (Extra Credit):

From the confusion matrix we see that the LBP method performs better. I have
used the KNN method to compare the images according to the LBP texture
representations and have found that for k=5 a maximum accuracy of 70 percent
is achieved. As for the gram matrix method we have a maximum accuracy of 55
percent for C = 5. This is due to the weights used in the gram matrix method
being randomly selected and this would require a large number of iterations to
get a good accuracy. With an increase in C and the number of iterations we
see that the accuracy increases. In the case of the gram matrix method we see
that the cloudy and shine images are getting mis-classified which is causing the
accuracy to reduce. For LBP as well the shine image is getting mis-clasified as
either cloudy or sunshine.

6

6 Sample Input Images:

Figure 4: Cloudy

Figure 5: Rain

7

Figure 6: Shine

Figure 7: Sunrise

8

7 Output:

7.1 Gram Matrix

Figure 8: Confusion matrix for C=5

9

Figure 9: Percentage confusion matrix for C=10

10

Figure 10: Confusion matrix for C=15

11

7.2 Local Binary Pattern

Figure 11: Confusion matrix for K=5

12

8 Source Code:

8.1 Gram Matrix Output:

import numpy as np

import cv2

import os

import pdb

import matplotlib.pyplot as plt

from scipy.signal import convolve2d

import re

from sklearn import svm

from sklearn.metrics import accuracy_score

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix

import seaborn as sns

import pickle

Generating random convolutional operator

def gen_kern(C):

C_list = []

for i in range(C):

a = np.random.randint(1,1000000,(3,3))

b = a/np.sum(a)

b = b-1/9

C_list.append(b)

return C_list

path = os.getcwd()

testing = os.path.join(path + "\\imagesDatabaseHW8\\testing")

training = os.path.join(path + "\\imagesDatabaseHW8\\training")

max_accuracy = 0

Looping to get all images

K = 256 # Resizing to ensure same size for all images

#Resizing the images and creating the train/test images

trainlist = []

train_class_list=[]

for path in os.listdir(training):

a = cv2.imread(os.path.join(training +'\\' + path))

gray = cv2.cvtColor(a,cv2.COLOR_BGR2GRAY)

try:

b = cv2.resize(gray,(K,K), interpolation = cv2.INTER_NEAREST)

except:

print(os.path.join(training +'\\'+ path))

match = re.match(r"([a-z]+)([0-9]+)",path,re.I)

if match:

train_class_list.append(match.groups()[0])

13

trainlist.append(b)

testlist = []

test_class_list=[]

for path in os.listdir(testing):

a = cv2.imread(os.path.join(testing +'\\' + path))

gray = cv2.cvtColor(a,cv2.COLOR_BGR2GRAY)

try:

b = cv2.resize(gray,(K,K), interpolation = cv2.INTER_NEAREST)

except:

print(os.path.join(testing +'\\'+ path))

match = re.match(r"([a-z]+)([0-9]+)",path,re.I)

if match:

test_class_list.append(match.groups()[0])

testlist.append(b)

train_class_list =

np.asarray(train_class_list).reshape(len(train_class_list),1)

test_class_list =

np.asarray(test_class_list).reshape(len(test_class_list),1)

train_class_list[np.where(train_class_list == 'cloudy')] = 1

train_class_list[np.where(train_class_list == 'rain')] = 2

train_class_list[np.where(train_class_list == 'shine')] = 3

train_class_list[np.where(train_class_list == 'sunrise')] = 4

test_class_list[np.where(test_class_list == 'cloudy')] = 1

test_class_list[np.where(test_class_list == 'rain')] = 2

test_class_list[np.where(test_class_list == 'shine')] = 3

test_class_list[np.where(test_class_list == 'sunrise')] = 4

C = 15 #No of channels # Change to 5,10,15,20

K1 = 128 #Resize amount for downsampling

accuracy = 0

for i in range(25):

c_list = gen_kern(C)

seperate_images_train = []

for images in trainlist:

train_conv_out = []

for kernel in c_list:

temp = convolve2d(images,kernel)

downsamp = cv2.resize(temp,(K1,K1),interpolation =

cv2.INTER_NEAREST)

downsamp = downsamp.flatten().reshape(K1**2,1)

train_conv_out.append(downsamp)

seperate_images_train.append(train_conv_out)

gram_train = []

for array in seperate_images_train:

mat = np.asarray(array).reshape(C,K1**2)

14

gram = np.dot(mat,mat.T)

gram = gram[np.triu_indices(C)]

gram_train.append(gram)

#Validation

x_train,x_valid,y_train,y_valid =

train_test_split(gram_train,train_class_list, test_size =

0.25,random_state=42)

clf = svm.SVC(kernel = 'rbf', gamma = 'scale', C = 0.1,max_iter =

10000)

clf.fit(x_train,y_train.ravel())

pred = clf.predict(x_valid)

acc = accuracy_score(pred,y_valid.ravel())

param = np.array((c_list,clf,acc),dtype = object)

if acc > accuracy:

accuracy = acc

test_file_name = 'param.pkl'
with open(test_file_name,'wb') as f:

pickle.dump(param,f)

with open('param.pkl','rb') as f:

param = pickle.load(f)

c_list = param[0]

seperate_images_test = []

for images in testlist:

test_conv_out = []

for kernel in c_list:

temp = convolve2d(images,kernel)

downsamp = cv2.resize(temp,(K1,K1),interpolation =

cv2.INTER_NEAREST)

downsamp = downsamp.flatten().reshape(K1**2,1)

test_conv_out.append(downsamp)

seperate_images_test.append(test_conv_out)

gram_test = []

for array in seperate_images_test:

mat = np.asarray(array).reshape(C,K1**2)

gram = np.dot(mat,mat.T)

gram = gram[np.triu_indices(C)]

gram_test.append(gram)

clf = param[1]

pred = clf.predict(gram_test)

acc = accuracy_score(pred,test_class_list.ravel())

cmat = confusion_matrix(pred,test_class_list)

total_accuracy = np.trace(cmat)/len(test_class_list)

plt.figure(figsize=(5,5));

15

plt.title("Test Confusion Matrix for C = {}. \n Test Accuracy = {},

Validation Accuracy = {:1.4f}".format(C,total_accuracy,param[2]));

sns.heatmap((cmat),annot = True,cmap = "Blues",xticklabels =

list([1,2,3,4]),yticklabels = list([1,2,3,4]),fmt='g');
plt.savefig('Test Confusion Matrix for C = {}'.format(C))

8.2 Extra Credit

import cv2

import numpy as np

import itertools

from BitVector import BitVector

import pdb

import re

import matplotlib.pyplot as plt

import os

import seaborn as sns

import pickle

from scipy import stats

Generating a table for encoding all 256 possible combos

binary = list(map(list,itertools.product([0,1], repeat = 8)))

table = np.zeros((len(binary),1))

for ind,vec in enumerate(binary):

bitvec = BitVector(bitlist = vec)

temp = [int(bitvec << 1) for j in range((len(vec)))]

minbitvec = BitVector(intVal = min(temp), size =len(vec))

multi = minbitvec.runs()

if len(multi)>2:

table[ind] = 9

elif(len(multi) == 1 and multi[0][0] == '1'):
table[ind] = 8

elif(len(multi) == 1 and multi[0][0] == '0'):
table[ind] = 0

else:

table[ind] = len(multi[1])

lookup = np.squeeze(table.astype(int))

def lbp(img):

hist = np.zeros((1,10))

for x in range(1,img.shape[1]-1):

for y in range(1,img.shape[0]-1):

kern = img[y-1:y+2, x-1:x+2]

#Direct Values

p1 = kern[2,1]

p3 = kern[1,2]

p5 = kern[0,1]

p7 = kern[1,0]

16

Bilinear Interpolation

p2 = ((1-0.707)**2)*kern[1,1] + (1-0.707)*0.707*kern[1,2] +

(1-0.707)*0.707*kern[2,1]+kern[2,2]*(0.707)**2

p4 = ((1-0.707)**2)*kern[1,1] + (1-0.707)*0.707*kern[1,2] +

(1-0.707)*0.707*kern[0,1]+kern[0,2]*(0.707)**2

p6 = ((1-0.707)**2)*kern[1,1] + (1-0.707)*0.707*kern[1,0] +

(1-0.707)*0.707*kern[0,1]+kern[0,0]*(0.707)**2

p8 = ((1-0.707)**2)*kern[1,1] + (1-0.707)*0.707*kern[1,0] +

(1-0.707)*0.707*kern[2,1]+kern[2,0]*(0.707)**2

#Generating binary vector

vec = (np.array((p1,p2,p3,p4,p5,p6,p7,p8)) >=

kern[1,1]).astype(int)

ind = vec.dot(2**np.arange(8)[::-1])

hist[0,lookup[ind]] += 1

return hist[0]

def training():

K = 256

path = os.getcwd()

training = os.path.join(path + "\\imagesDatabaseHW8\\training")

trainlist = []

train_class_list = []

for path in os.listdir(training):

a = cv2.imread(os.path.join(training +'\\'+ path))

gray = cv2.cvtColor(a,cv2.COLOR_BGR2GRAY)

gray = cv2.resize(gray,(K,K), interpolation = cv2.INTER_NEAREST)

b = lbp(gray)

match = re.match(r"([a-z]+)([0-9]+)",path,re.I)

if match:

train_class_list.append(match.groups()[0])

trainlist.append(b)

Changing the class types to integers from strings

train_class_list =

np.asarray(train_class_list).reshape(len(train_class_list),1)

index1 = np.where(train_class_list == 'cloudy')
index2 = np.where(train_class_list == 'rain')
index3 = np.where(train_class_list == 'shine')
index4 = np.where(train_class_list == 'sunrise')
train_class_list[index1] = 1

train_class_list[index2] = 2

train_class_list[index3] = 3

train_class_list[index4] = 4

(train_class_list).astype(int)

train = tuple(zip(trainlist,train_class_list))

return train

#for testing

def testing():

K = 256

17

path = os.getcwd()

testing = os.path.join(path + "\\imagesDatabaseHW8\\testing")

testlist = []

test_class_list=[]

for path in os.listdir(testing):

a = cv2.imread(os.path.join(testing +'\\' + path))

gray = cv2.cvtColor(a,cv2.COLOR_BGR2GRAY)

gray = cv2.resize(gray,(K,K), interpolation = cv2.INTER_NEAREST)

b = lbp(gray)

match = re.match(r"([a-z]+)([0-9]+)",path,re.I)

if match:

test_class_list.append(match.groups()[0])

testlist.append(b)

Changing the class types to integers from strings

test_class_list =

np.asarray(test_class_list).reshape(len(test_class_list),1)

index1 = np.where(test_class_list == 'cloudy')
index2 = np.where(test_class_list == 'rain')
index3 = np.where(test_class_list == 'shine')
index4 = np.where(test_class_list == 'sunrise')
test_class_list[index1] = 1

test_class_list[index2] = 2

test_class_list[index3] = 3

test_class_list[index4] = 4

(test_class_list).astype(int)

test = tuple(zip(testlist,test_class_list))

return test

def knn(train,test,k):

#For train unpacking:

hist1 = np.empty((1,10))

classes1 = np.empty((1,1))

for i in train:

hist1 = np.vstack((hist1,i[0]))

classes1 = np.vstack((classes1,int(i[1][0])))

hist1 = hist1[1:]

classes1 = classes1[1:]

#For test unpacking:

hist2 = np.empty((1,10))

classes2 = np.empty((1,1))

for i in test:

hist2 = np.vstack((hist2,i[0]))

classes2 = np.vstack((classes2,int(i[1][0])))

hist2 = hist2[1:]

classes2 = classes2[1:]

Euclidean Distance knn

18

t = np.empty((1,1))

p = np.empty((1,1))

for ind,item in enumerate(hist2):

diff = hist1 - item

dist = np.linalg.norm(diff, axis = 1)

sorted_diff = np.argsort(dist)

nearest = sorted_diff[0:k]

prediction = classes1[nearest]

pred_class = stats.mode(prediction)[0][0]

actual_class = classes2[ind]

t = np.append(t,pred_class)

p = np.append(p,actual_class)

t = t[1:].reshape(len(t[1:]),1)

p = p[1:].reshape(len(p[1:]),1)

final = (t==p).astype(int)

#confusion matrix generation

cmat = np.zeros((4,4))

final = np.hstack((p,t)).astype(int)

for iteration in final:

cmat[iteration[0]-1,iteration[1]-1] += 1

total_accuracy = np.trace(cmat)/40

plt.figure(figsize=(5,5));

plt.title("Confusion Matrix with K = {}. Accuracy =

{}".format(k,total_accuracy));

sns.heatmap((cmat),annot = True,cmap = "Blues",xticklabels =

list([1,2,3,4]),yticklabels = list([1,2,3,4]),fmt='g');
return None

##For training. Have used pickle so have commented

lbp_texture_train = training()

test_file_name = 'trainfile256.pkl'
with open(test_file_name,'wb') as f:

pickle.dump(lbp_texture_train,f)

##For testing. Have used pickle so have commented

lbp_texture_test = testing()

test_file_name = 'testfile256.pkl'
with open(test_file_name,'wb') as f:

pickle.dump(lbp_texture_test,f)

with open('trainfile256.pkl','rb') as f:

x_array = pickle.load(f)

with open('testfile256.pkl','rb') as f:

y_array = pickle.load(f)

for k in range(1,6):

knn(x_array,y_array,k)

19

9 References

1. Avinash Kak, Measuring Texture and Color in Images. Oct 13,2020.

2. Avinash Kak, BitVector, https://engineering.purdue.edu/kak/dist/BitVector-
3.4.9.html

20

	Introduction
	Implementation Description:
	Gram Matrix:
	Support Vector Machine

	Observations:
	Performance Metrics:
	Comparison with LBP (Extra Credit):
	 Sample Input Images:
	Output:
	Gram Matrix
	Local Binary Pattern

	Source Code:
	Gram Matrix Output:
	Extra Credit

	References

