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Theory Task

1:

Grayscale Co-occurence Matrix(GLCM):

• GLCM method for texture extraction is based on second order statistical
properties. In GLCM method joint probability distribution P (x1, x2) is
estimated where x1 is randomly selected pixel value in image and x2 is is
pixel value at a distance d.

• Texture is characterized by shape of this joint probability distribution.
GLCM is formulated as matrix of order LXL where L is number of levels
in which image intensities have been quantized.

• Whole image is traversed from left to right and top to bottom and grayscale
value is examined at current pixel and pixel at distance d. While scan-
ning if we find same pair of values (x, y) , GLCM matrix at location (x, y)
is incremented. At the end of scan matrix is normalized to represent
probability distribution. Using GLCM matrix various quantities can be
computed such as entropy,energy, contrast and homogeneity, which char-
acterize the texture of image.We can see GLCM is not rotation invariant
because changing rotation P (x1, x2) will change

Local Binary Pattern (LBP):

• LBP is statistical method to find rotation invariant texture characteristics
in image. In LBP method rotation invariant histogram based feature
vectors are generated.

• In LBP method representation is constructed by comparing each pixel
with its surrounding neighborhood of pixels which lie at circle of radius R.
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Neighboring pixel coordinate with respect to center is given by following
formula

(∆u,∆v)p = (R(
cos(2πp)

P
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P
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• Since Image is rectangular in nature to get neighboring pixel value bi-linear
interpolation is used.

• All those neighboring pixels which are less than center are assigned as 0
and rest as 1. To make it rotation invariant this local binary pattern is
rotated until we get minimum decimal value. Then in this rotated local
binary pattern runs of zeros and ones are calculated and encoded into P+2
levels where 1 to P levels are correspond to number of ones in runs of zeros
and ones, 0 level is when only zero runs and if more than two runs found
it’s assigned value is P+1.

Gabor Filter Family:

• Unlike LBP and GLCM , Gabor filter is structural method for extracting
texture. Texture of an image can be characterized by spatial frequency
and directionality by it’s orientation. Gabor filters have this ability of
localizing periodicity, micro patterns and it’s orientation. It’s impulse
response is defined by sinusoidal modulated Gaussian which is given by:
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• In frequency domain it would be convolution of impulse (Fourier transform
of Cosine) with Gaussian function (Since frequency response of Gaussian
is same) which can be visualized as two shifted Gaussian at the location
of Cosine frequency.

• Bank Gabor filters are convolved with image at different orientation (Equa-
tion above just represent 0 degree orientation for different orientation-θ x
will be transformed accordingly) which gives the highest response at edges
at different orientation (As we can see the textures at following elephant
image after applying Gabor filter banks of 16 filters).



2:

a)Wrong.
b)Right.
c)Right.



Programming task

In this homework we need to extract Local Binary pattern based (LBP) feature
vectors for each image and then using KNN classifier we need to classify images
into 5 classes.

Calculating P -neighbors in the image:

In this step each pixel of image is taken and then compared with its surrounding
neighborhood of P pixels which lie at circle of radius R. Neighboring pixel
coordinate with respect to center is given by following formula

(∆u,∆v)p = (R(
cos(2πp)

P
), R(

sin(2πp)

P
)) p = 1, 2, 3 . . . P

Since Image is rectangular in nature to get neighboring pixel value bi-linear
interpolation is used to calculate pixel value which does not on exact pixel
coordinate:

Ip = (1 − ∆u)(1 − ∆v)A+ (∆u)(1 − ∆v)B + (1 − ∆u)(∆v)C + (∆u)(∆v)D

Generating rotation invariant binary pattern:

All those neighboring pixels which are less than center are assigned as 0 and
rest as 1. To make it rotation invariant this local binary pattern is rotated until
we get minimum integer value corresponding to local binary pattern.

Encoding the rotation-invariant binary pattern

In this step rotated local binary pattern runs of zeros and ones are calculated
and encoded into P+2 levels. Where 1 to P levels are correspond to number of
ones in runs of zeros and ones only, 0 level is when only zero runs and if more
than two runs found it’s assigned value is P+1.

Histogram based Feature preparation:

To prepare a feature vector P+2 bins are created and corresponding bins is
incremented while scanning the image. After full scan histogram is normalized
so that it’s independent of image shape.

KNN classifier on Euclidean metric:

Once LBP based histogram feature vectors are extracted for each training and
test images, Euclidean distance is calculated for test vector with all the training
vectors in space and K training vectors are chosen which are at minimum dis-
tance.Final classification of test vector is made by majority of class labels from
K labels.



Comments

1- Overall accuracy is 68% for K =1 .Classwise accuracy for different K values
is mentioned at the end of source code in inline jupyter text
2- We can see LBP histograms based feature are not much different from each
other that’s why getting accuracy more than 70 percent is difficult.
3- Another view to see why accuracy is not very good is , in terms of vector
spaces images are very high dimensional and we have reduced it’s dimension to
just 10 which has cause loss of many feature characteristics.

Note

1- All images(histograms and corresponding images) are included below in Jupyter
Inline plots and Observations are also mentioned.



Source Code, Images and few Observations (HW7)

Importing Libraries
In [71]: from matplotlib import pyplot as plt 

import numpy as np 
import os 
import scipy 
import cv2 
import pdb 
from BitVector import BitVector 
import time 
import pickle 
import scipy.stats 
import seaborn as sn 
import matplotlib.pyplot as plt 
import itertools 

Creating training pair with labels for all training images
In [125]: training_path = "imagesDatabaseHW7/training" 

testing_path = "imagesDatabaseHW7/testing" 
P = 8 
 
training_set = [] 
tranining_colot_set= [] 
class_dict={} 
for label,class_dir in enumerate(os.listdir(training_path)): 
    print("class of Image is {0}: label is {1}".format(class_dir,label)) 
    class_dict.update({class_dir:label})                                               #Building dicti
onary for class labels  
    for image in os.listdir(os.path.join(training_path,class_dir)): 
        img = cv2.imread(os.path.join(training_path,class_dir,image)) 
        gray_image = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
        training_set.append((gray_image,label)) 
        tranining_colot_set.append(img) 

Creating LUT (of LBP encoding) indexed by decimal value of binary
array for all binary permutaions of P bits

In [93]: # Creating all binary pattern from 00000000 to 11111111 
binary_pattern = list(map(list, itertools.product([0, 1], repeat=P))) 
 
#Creating lookup table for Encoding values for all 256 (=2^P) Binary patterns so that don't need to rec
alculate same thing again and again 
#Using bit vector module by Prof Avinash Kak for calculating number of runs and then assigning value fo
r each binary pattern 
 
lut_encode = np.zeros((len(binary_pattern),1)) 
for index,item in enumerate(binary_pattern): 
    bv = BitVector(bitlist = item) 
    min_bit_int = min([int(bv<<1) for _ in range(P)]) 
    min_bit_vec = BitVector(intVal = min_bit_int, size = P) 
    bit_vec_runs = min_bit_vec.runs()     
     
    #Encoding Value 
    if(len(bit_vec_runs)==1): 
        lut_encode[index] = int(bit_vec_runs[0][0])*P 
    elif(len(bit_vec_runs)>2): 
        lut_encode[index] = P+1 
    else: 
        lut_encode[index] = len(bit_vec_runs[1]) 
LUT = np.squeeze(lut_encode).astype(int)       

Function for local binary pattern of image
In [101]: center_weight = (1-0.707)*(1-0.707) 

opposite_weight = 0.707*0.707 
side_weights = (1-0.707)*0.707 
 
def create_lbp_hist(image): 
    start_fun_time = time.time() 
    h,w = image.shape 
    hist = np.zeros((1,P+2)) 
    hist1 = np.zeros((1,P+2)) 
    for x in range(1,w-1): 
        for y in range(1,h-1): 
            frame = image[y-1:y+2,x-1:x+2] 
            #Bilenear Interpolation 
            center_val = center_weight*frame[1,1] 
            p2 = center_val+side_weights*frame[1,2]+side_weights*frame[2,1]+opposite_weight*frame[2,2] 
            p4 = center_val+side_weights*frame[1,2]+side_weights*frame[0,1]+opposite_weight*frame[0,2] 
            p6 = center_val+side_weights*frame[1,0]+side_weights*frame[0,1]+opposite_weight*frame[0,0] 
            p8 = center_val+side_weights*frame[1,0]+side_weights*frame[2,1]+opposite_weight*frame[2,0] 
            lbp = np.array([frame[2,1],p2,frame[1,2],p4,frame[0,1],p6,frame[1,0],p8]) 
             
            #Making those value zero which are less than center value 
            lbp = np.where(lbp>=frame[1,1],1,0) 
            #Creating decimal value from binary pattern 
            lookup_index = lbp.dot(2**np.arange(P)[::-1]) 
            hist[0,LUT[lookup_index]]+=1 
    print("--- each image seconds --- {0} h,w {1},{2}".format((time.time() - start_fun_time),h,w)) 
    return hist 
         
         

Creating histogram for each training image pair
In [ ]: feature_vector_label_list = np.empty((0,2)) 

start_time = time.time() 
for image,label in training_set: 
    feature_vector_label_list = np.append(feature_vector_label_list,np.array([create_lbp_hist(image),la
bel])) 
print("--- %s seconds ---" % (time.time() - start_time)) 

Pickling training feature to save time
In [63]: training_feature_file = "lbp_hist_data.pkl" 

with open(training_feature_file,'wb') as f: 
    pickle.dump(feature_vector_label_list, f) 

Unpickling Training features
In [105]: with open(training_feature_file,'rb') as f: 

    x = pickle.load(f) 
     
train_feature_vect = np.array([np.squeeze(item) for item in x[0::2]]) 
train_feature_vect = train_feature_vect/np.sum(train_feature_vect,axis=1)[:,np.newaxis] 
train_label = np.array([np.squeeze(item) for item in x[1::2]]) 

Plotting Histograms
In [135]: #Randomly plotting 3 set of Histograms 

for i in [2,9,10,11]: 
    fig=plt.figure(figsize=(15,3), dpi= 100, facecolor='w', edgecolor='k') 
     
    plt.subplot(2, 5, 1) 
    plt.bar(range(10),train_feature_vect[i]) 
    plt.title('beach') 
     
    plt.subplot(2, 5, 2) 
    plt.bar(range(10),train_feature_vect[20+i]) 
    plt.title('building') 
     
    plt.subplot(2, 5, 3) 
    plt.bar(range(10),train_feature_vect[40+i]) 
    plt.title('car') 
     
    plt.subplot(2, 5, 4) 
    plt.bar(range(10),train_feature_vect[60+i]) 
    plt.title('Mountain') 
     
    plt.subplot(2, 5, 5) 
    plt.title('Tree') 
    plt.bar(range(10),train_feature_vect[80+i])     
     
     
    img = tranining_colot_set[i] 
    image_name = "image.jpg" 
    cv2.imwrite(image_name,img) 
    plot_image = cv2.imread(os.path.join(image_name)) 
    plot_image = cv2.cvtColor(plot_image,cv2.COLOR_BGR2RGB)  
    plt.subplot(2, 5, 6) 
    plt.imshow(plot_image)     
     
    img = tranining_colot_set[20+i] 
    image_name = "image.jpg" 
    cv2.imwrite(image_name,img) 
    plot_image = cv2.imread(os.path.join(image_name)) 
    plot_image = cv2.cvtColor(plot_image,cv2.COLOR_BGR2RGB)  
    plt.subplot(2, 5, 7) 
    plt.imshow(plot_image)   
     
     
    img = tranining_colot_set[40+i] 
    image_name = "image.jpg" 
    cv2.imwrite(image_name,img) 
    plot_image = cv2.imread(os.path.join(image_name)) 
    plot_image = cv2.cvtColor(plot_image,cv2.COLOR_BGR2RGB)  
    plt.subplot(2, 5, 8) 
    plt.imshow(plot_image)   
     
     
    img = tranining_colot_set[60+i] 
    image_name = "image.jpg" 
    cv2.imwrite(image_name,img) 
    plot_image = cv2.imread(os.path.join(image_name)) 
    plot_image = cv2.cvtColor(plot_image,cv2.COLOR_BGR2RGB)  
    plt.subplot(2, 5, 9) 
    plt.imshow(plot_image)   
     
    img = tranining_colot_set[80+i] 
    image_name = "image.jpg" 
    cv2.imwrite(image_name,img) 
    plot_image = cv2.imread(os.path.join(image_name)) 
    plot_image = cv2.cvtColor(plot_image,cv2.COLOR_BGR2RGB)  
    plt.subplot(2, 5, 10) 
    plt.imshow(plot_image)       

Observation
We can in above hitograms they have some similarity within class
In first row image as we can see building have sky and lot's of beach kind of similarity that's why it's histogram is similar to beach but in
all other three example it is not.

Creating list of test images
In [67]: testing_set = [] 

for image in os.listdir(testing_path): 
        img = cv2.imread(os.path.join(testing_path,image)) 
        gray_image = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
        testing_set.append((gray_image,class_dict[image.split("_")[0]])) 

Creating histogram for each testing image pair
In [ ]: test_feature_vector_label_list = np.empty((0,2)) 

start_time = time.time() 
for image,label in testing_set: 
    test_feature_vector_label_list = np.append(test_feature_vector_label_list,np.array([create_lbp_hist
(image),label])) 

Pickling testing feature to save time
In [69]: testing_feature_file = "lbp_hist_data_test.pkl" 

with open(testing_feature_file,'wb') as f: 
    pickle.dump(test_feature_vector_label_list, f) 
     

Unpickling Testing features
In [ ]: with open(testing_feature_file,'rb') as f: 

    x_test = pickle.load(f) 
     
test_feature_vect = np.array([np.squeeze(item) for item in x_test[0::2]]) 
test_feature_vect = test_feature_vect/np.sum(test_feature_vect,axis=1)[:,np.newaxis] 
test_label = np.array([np.squeeze(item) for item in x_test[1::2]]) 

Running KNN
In [138]: for K in range(1,6): 

    pred_label_true_label_pair = np.empty((0,2)) 
    for test_vector,true_label in  zip(test_feature_vect,test_label): 
        #Calculating Euclidean distance for test vector with each training vector  
        dist= np.linalg.norm(train_feature_vect-test_vector[np.newaxis,:],axis=1) 
        #Choosing K best neighbor 
        k_nearest_index = np.argsort(dist)[:K] 
        k_nearest_label = train_label[k_nearest_index] 
        pred_label_true_label_pair = np.vstack((pred_label_true_label_pair,np.array([scipy.stats.mode(
k_nearest_label)[0][0],true_label]))) 
 
    #Creating confusion matrix 
    confusion_matrix = np.zeros((5,5)) 
    for item in pred_label_true_label_pair.astype(int): 
        confusion_matrix[item[1],item[0]]+=1 
    #Plotting Confusion Matrix  
    plt.figure(figsize = (3,3)) 
    plt.title("K = {0}".format(K)) 
    sn.heatmap(confusion_matrix, annot=True, cmap="Blues",xticklabels=list(class_dict.keys()), ytickla
bels=list(class_dict.keys())) 
 
    total_accuracy = (np.sum(np.diag(confusion_matrix))/25)*100 
    class_wise_accuracy = ((np.diag(confusion_matrix))/5)*100 
 
    print("K = {0}".format(K)) 
    print("total accuracy {0} Percentage".format(total_accuracy)) 
    print("class wise accuracy {0} in percentage".format(class_wise_accuracy)) 
    print("###############################################################") 

Observations
We can see above few observations easily:
Mountains are getting clssified as beaches due to stone and sky kind of objects in both
In many cases buildings are clssified as beaches and mountains which are due to sky kind of charectristics
We can see LBP histograms based feature are not much different from each other that's why getting accuracy more than 70 percent is
difficult.
Another view to see why accuracy is not very good is , in terms of vector spaces images are very high dimensional and we have
reduced it's dimension to just 10 which has cause loss of many feature charectristics.

class of Image is beach: label is 0 
class of Image is building: label is 1 
class of Image is car: label is 2 
class of Image is mountain: label is 3 
class of Image is tree: label is 4 

K = 1 
total accuracy 68.0 Percentage 
class wise accuracy [60. 80. 40. 80. 80.] in percentage 
############################################################### 
K = 2 
total accuracy 56.00000000000001 Percentage 
class wise accuracy [100.  60.  20.  40.  60.] in percentage 
############################################################### 
K = 3 
total accuracy 64.0 Percentage 
class wise accuracy [100.  40.  60.  60.  60.] in percentage 
############################################################### 
K = 4 
total accuracy 56.00000000000001 Percentage 
class wise accuracy [60. 40. 60. 60. 60.] in percentage 
############################################################### 
K = 5 
total accuracy 52.0 Percentage 
class wise accuracy [60. 40. 60. 40. 60.] in percentage 
############################################################### 
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