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1 Theory

Image classification is an important topic in image processing, as one often wants to identify the subject of
an image. It is possible to characterize an image in terms of its features such as texture and color. Then,
that image can be compared to a set of previously characterized images to determine the class to which the
image belongs (i.e. the image subject) with relatively high accuracy.

In this assignment, images were characterized based on their texture. Although image texture can be
computed using Gray Level Co-Occurence Matrices, Gabor filters, or Local Binary Pattern histograms, the
latter of these was selected for implementation and was used to construct feature vectors for 20 training
images in each of 5 image classes. Then, 5 new images from each class were classified also using LBP, and
their class type was predicted using a Nearest-Neighbor classifier. Finally, a confusion matrix was established
to measure the performance of the classifier.

1.1 Local Binary Pattern feature extraction

Local Binary Pattern (LBP) feature extraction measures the texture present in an image using its statistical
properties. As with other characterization measures, its computation must be as invariant to image rotation
and illumination as possible, as these metrics do not change in the real world when the subject is rotated or
the lighting changes.

LBP works by first calculating the grayscale values of a circular neighborhood of points at a given radius
around each pixel in the target image. The radius of the neighborhood R and the number of neighbors P to
consider are used to calculate the x- and y offsets from the target pixel for each neighbor p = 0, 1, 2, ..., P −1.
That is,

(∆x,∆y) = (Rsin(
2πp

P
), Rcos(

2πp

P
)

This equation produces offsets such that the neighbors are arranged with increasing p in a counter-clockwise
fashion, starting with p = 0 directly below the target pixel.

We note that this equation produces a circular neighborhood, which obviously will not align directly with the
square pixel grid in most cases. Therefore, the grayscale value of each radial point in the neighborhood must
be approximated. Several methods exist for doing this, but the selected approach was bilinear interpolation,
which performs a weighted average of the four true (square) pixels in nearest the radial pixel, with each pixel
weight calculated according to its distance from the radial pixel ”center”. In other words, if A, B, C, and D
are the grayscale values of the four nearest ”true” pixels to the point (x+ ∆x, y + ∆y) with x and y being
the center pixel of the neighborhood, then the interpolated grayscale value of the radial point is:

image(x+ ∆x, y + ∆y) = A(1 − ∆y)(1 − ∆x) +B(1 − ∆y)∆x+ C∆y(1 − ∆x) +D∆y∆x

After the grayscale values of all P points in the neighborhood have been estimated, the values are put in
a length-P vector. A threshold is then applied to this vector based on the grayscale value of the original
pixel in the center of the neighborhood, such that all neighborhood points with grayscale values less than
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the center pixel become 0 while those with grayscale values greater than or equal to the center pixel value
become 1. Ultimately this produces a binary vector.

It has been shown that binary vectors consisting of a single run of zeros followed by a single run of ones carry
the maximal amount of information for discriminating several textures in an image. In other words, binary
vectors with the lowest integer value are ideal for representing image textures. Therefore, it is desirable
to shift these vectors such that their integer value is the lowest possible for the given sequence of binary
values. In this process, however, one must be careful to not change the order of bits in the vector; therefore,
a circular shift should be used. In addition to providing maximal texture discrimination, this shifting also
introduces the invariance of LBP to image rotation, as the radial neighborhood pixels are effectively rotated
as the vector is shifted. We will call this shifted vector the minimum binary vector.

Next, we wish to use the minimum binary vectors for each pixel in the image to establish a texture measure
for its pixel. This can be achieved by encoding the vector as an integer based on the pattern of its individual
bits. Before we show the encoding scheme, the term runs must first be defined. A run is a group of
consecutive bits with the same value. For example, the sequence 10000111 has three runs: A run of a single
1, followed by a run of four 0s, followed by a run of three 1s (note that this sequence is not in minimal integer
form for the sake of demonstration). With this in mind, a minimum binary vector V can be encoded as an
integer E(V ) using the following scheme:

E(V ) =


sum(V ) V has exactly two runs

0 V contains only zeros

P V contains only ones

P + 1 V has more than two runs

We see that this encoding scheme allows E to take on P + 2 unique values, 0, 1, 2, ..., P + 1. Note that we
do not encode a vector by its integer value because only vectors with two runs (zeros followed by ones) are
useful for characterizing textures. That is, a vector 00010111 and a vector 00100111, while both in minimum
form, do not contain any distinguishable texture information. Thus, they are encoded by the same value:
E = P + 1 = 9.

Finally, we wish to use the encoded pixel values for each pixel in the image to construct a feature vector that
represents the image’s overall texture measure. This is done by creating a P + 2 bin probabilistic histogram
containing the encoded pixel values, where each bin represents the probability that a pixel in the image has
that encoding. This is the feature vector that can be used as a comparison tool against other images to aid
in image classification.

1.2 Nearest Neighbor classification

Nearest Neighbor (NN) classification employs a simple method to classify images by computing the Euclidean
distance between the feature vector of a ”test” image and the feature vectors of a set of ”training” images
from a data set. The Euclidean distance d between feature vectors ftest and ftrain is calculated as:

d =
√

(ftest − ftrain)2

In this approach, the (known) classes of the k ”nearest neighbors” (training set feature vectors with the
smallest Euclidean distance to the test image feature vector) are used to predict the (unknown) class of the
test image. In other words, the classes of the five nearest neighbors to ftest are recorded, and the class label
that occurs the most often becomes the predicted class for the test image. Ties can be settled with several
methods. See the ”Implementation notes” section for details on how ties were handled.

1.3 Confusion matrices

A confusion matrix is a way of visualizing or describing the performance of a classification algorithm. Each
row in the matrix represents a ground truth class, while each column represents a predicted class. When
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an image is classified, the entry in the row corresponding to its true class and the column corresponding to
its predicted class is incremented. A pure diagonal matrix represents perfect classification with no errors.
However, the more distributed these values are throughout the matrix, the more ”confused” the algorithm is
(its predictions are poor). Lastly, a confusion matrix is useful for identifying the individual classes that are
predicted well, and those that are predicted poorly, which can be an indicator of the algorithm’s strengths
in detecting certain image features.

2 Theory questions

Q: The reading material for Lecture 15 presents three different approaches to characterizing the texture in
an image:

1. Gray Level Co-Occurrence Matrices (GLCM)

2. Local Binary Pattern (LBP) histograms

3. Gabor Filter Families

Explain succinctly the core ideas in each of these three methods for measuring texture in images.

A: The three approaches for characterizing texture in images fall into two categories: statistical and struc-
tural. The GLCM and LBP methods are statistical, which means they use intrinsic or derived image
properties to estimate textures in the image. Gabor filters are structural, as they measure the periodicities
present in an image to determine its textures. All methods are invariant to illumination and rotation. Below
is a discussion of the key ideas of each method:

Gray Level Co-Occurence Matrix (GLCM):
At a high level, GLCM estimates the texture in an image through the shape of a joint probability distri-
bution P (x1, x2) created from the gray levels of pixels in the image. In this distribution function, x1 is the
gray level at some pixel, and x2 is the gray level at another pixel at a distance d away from the first, where
d is a fixed (x, y) pixel offset. The gray levels of these pixels are then used to increment the elements at
positions (i, j) and/or (j, i) in an N ×N matrix, with i given by the gray value of the reference pixel, j by
the gray level of the displaced pixel, and N by the number of gray levels in the image. Whether or not both
elements are incremented depends on whether the order of appearance of the gray level is important. When
the matrix has been fully populated by all image pixels, each element is divided by the sum of all elements
to obtain the 2D probability distribution, from which texture measures such as entropy, energy, contrast,
and homogeneity can be derived.

Local Binary Pattern (LBP) Histograms:
LBP was discussed at length in the Theory section, but the key idea behind it is that texture measures are
assigned based on a neighborhood of pixels. Specifically, a neighborhood of pixels around each pixel in the
image is analyzed to determine the gray levels in the neighborhood (usually through interpolation). These
gray levels are then compared to gray level of the pixel that the neighborhood was formed around to create
a binary vector. This binary vector is then circularly shifted to its minimum integer representation, which
contains the most discriminant texture information for the neighborhood. The minimum binary vector is
then encoded by an integer that describes the texture measure for that pixel. Finally, a histogram of these
texture measures is assembled from all pixels in the image to establish an overall texture measure or distri-
bution of the entire image. The shape of the distribution effectively describes the image’s texture content.

Gabor Filter Families:
Gabor filters are structural filters that associate textures with image periodicities. After all, textures really
are just small patterns that repeat several times. At its core, a Gabor filter family is a set of filters that
seek to extract image periodicities of different frequencies and in different directions. This can effectively be
achieved through a convolution of a particular filter with the image, or more specifically as a local Fourier
transform of each pixel with Gaussian weighting. Several filters at different frequencies and in different di-
rections are applied to the input image, and the complex output values are summed to obtain a single value
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representing the output from a specific filter. These outputs then effectively describe the texture content of
the image.

Q: With regard to representing color in images, answer ”Right” or ”Wrong” for the following statements:

1. RGB and HSI are just linear variants of each other. WRONG

2. The color space L ∗ a ∗ b∗ is a nonlinear model of color perception. RIGHT

3. Measuring the true color of the surface of an object is made difficult by the spectral composition of
the illumination. RIGHT
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3 Implementation notes

• Each topic in the Theory section was implemented for this assignment.

• Values of P = 8 and R = 1 were used to construct the neighborhood for pixel texture characterization.

• A value of k = 5 was selected for nearest neighbor classification.

• NN classification was implemented in the following way (a discussion of tie-breaks is included):

1. Compute the Euclidean distance between the test image’s feature vector and all training image
feature vectors (using vectorized operations).

2. Increment a length C vector at the index corresponding to the class of the nearest neighbor. C is
the number of ground truth classes. This vector represents the number of ”hits” of the test image
on that class.

3. Also record the distance between the test image feature vector and its nearest neighbor vector in
a separate length C vector. This vector is later used to break ties.

4. Once k iterations are performed, calculate the average distance between test and training vectors
for classes with the maximum number of hits.

5. The predicted class for the test image is then the class with the maximum number of hits and
the lowest average Euclidean distance.

• Training and testing were split into two independent operations. Feature vector results from training
are written to a file that represents the training data set. Then, when the time comes to test the
algorithm, the training vectors are read from the file and used.

– This method saves a great deal of time when one wishes to test new images, as the whole training
process does not need to be run again.

– Additionally, it also easily supports adding images to the training set, as new vectors are simply
appended to the end of the file.

• The BitVector module was used to get the number of runs from a minimum binary vector, as described
in https://engineering.purdue.edu/kak/Tutorials/TextureAndColor.pdf.
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4 Results

From my implementation, I have come to the following conclusions:

• The image class identified with greatest accuracy was the buildings class (80% accuracy). The class
identified with the lowest accuracy was the beach class (40%). The other three classes were all predicted
with 60% accuracy.

• The classes that were predicted relatively well (above 50% accuracy) were likely predicted this way due
to the uniform nature of the textures within the images. For example, most building images have two
textured regions: glass and stone/brick, while the tree class has regions corresponding to tree trunks,
leaves, and some sky.

• The errors in class predictions, especially for the beach class, can likely be attributed to the texture
similarities between that class and other classes. For example, one beach image was mistaken for a
building, and two for a mountain. Both the building and mountain images contain similar textures to
the beach images: sky textures can be confused between the mountain and beach images, or mistaken
for glass. The sand and rock textures on the beach can also be mistaken for rocks or brick/stone in the
mountain and building images. Due to the similarities between these images, it is difficult to separate
them with much reliability.

• The tie-breaking measure improved results by approximately 16% in the tests conducted.

• LBP works quite well for characterizing and separating the textures within an image. However, it has
downfalls when it comes to distinguishing between textures in separate images (for example sand may
have a similar texture to brick or stone and glass may have a similar texture to the sky), which could
lead to prediction errors.

• LBP characterizes an image based on only one feature—texture. Undoubtedly, better results could be
obtained if other features, such as color, are also used to classify images.

• Differing image sizes could also have affected results somewhat. Although the feature vectors are
not dependent on image size, the sampling of the real-world textures in low-resolution images will
naturally be worse than in high resolution images. Thus, textures may appear smoother in lower
resolution images, which could have skewed results if training and testing images were of drastically
different resolution (such as the beach training data set, which used quite large images compared to
the rest of the data sets).

– A test was performed in which all images were shrunk to approximately the same size (approx.
150 x 275 pixels) to see what effect this had on image classification. The results showed that
beach classification improved to 80%, but building classification decreased by 10%. Overall, the
classification algorithm’s accuracy improved to 64%.

• From the confusion matrix, we see clearly that buildings must contain the most ”average” or ”om-
nipresent” textures. Every class predicted a building at least once. Similarly, all but the car class
predicted ”mountain” at least once. It is highly possible that these two images were predicted more
often because stone textures have a relatively unique texture and are found almost everywhere. There-
fore, it is difficult to take a picture without some stone, or stone-like texture in it.

• The second set of LBP histograms below shows the mean of all training image histograms from the
image classes. From them, we see that classes 2, 3, and 4 (buildings, cars, and mountains) all have
similar distributions. This also serves as an explanation as to why buildings and mountains were
predicted more often than the other classes.
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4.1 LBP feature vectors

Figure 1: Bar graphs showing LBP histograms for the first training image in each of the 5 image classes
(beach, building, car, mountain, tree).
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Figure 2: Mean LBP histograms for each image class.
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4.2 Confusion matrix

Figure 3: Confusion matrix. Notice the main diagonal is the darkest, indicating more correct predictions
than incorrect predictions.

5 Source Code

## ============= FILE INFORMATION ============= ##
#
# Name : Brian He l f r e ch t
# Email : bhelfre@purdue . edu
# Course : ECE 661
# Assignment : Homework 7 , Task 1
# Due date : October 19 , 2020
#
## ============= PACKAGE/FILE IMPORTS ============= ##
import numpy as np
import cv2 as cv
import BitVector
import math
## ============= FUNCTION DEFINITIONS ============= ##
def c l e a r F i l e ( f i l ename ) :

#Clear the LBP histogram f i l e
with open ( f i lename , ’w’ ) as outF i l e :

ou tF i l e . wr i t e ( ’ ’ )

de f writeHistogram ( f i lename , writeType , group , img , data ) :
#Write a LBP histogram to a f i l e
with open ( f i lename , writeType ) as outF i l e :

ou tF i l e . wr i t e ( ’IMAGE: %d:%d :\n ’ % ( group , img ) )
f o r va l in data :

ou tF i l e . wr i t e ( s t r ( va l ) + ’\ t ’ )
ou tF i l e . wr i t e ( ’\n ’ )

de f readHistogram ( f i l ename ) :
#Read in a s e t o f LBP histograms from a f i l e and c r ea t e a matrix o f
#f ea tu r e vec to r s a s s o c i a t ed with each c l a s s .
f eatureVecs = np . z e ro s ( (5 , 10 , 20))
with open ( f i lename , ’ r ’ ) as i nF i l e :

idx = 0
group = 0
f o r l i n e in i nF i l e . r e ad l i n e s ( ) :

contents = l i n e . s t r i p ( ) . s p l i t ( )
i f ( l en ( contents ) != 10 ) :

cont inue
arr = np . array ( contents )
f eatureVecs [ group , : , idx ] = arr
idx += 1
i f ( idx == 20) :

idx = 0
group += 1

return featureVecs

de f p r ed i c tC la s s ( featureVec , featureMat , numNeighbors ) :
c l a s sH i t s = np . ze ro s ( l en ( featureMat ) , np . uint16 )
classMeans = np . z e ro s ( l en ( featureMat ) ) #Used to s e t t l e t i e s
groupNums = np . arange ( l en ( featureMat ) ) #Needed s i n c e we trim the vec to r s
featureVec = np . reshape ( featureVec , (10 , 1 ) )

#Calcu late the Eucl idean d i s tance between the f e a tu r e vec to r s
sumSqDiff = np . sum(( featureMat − f eatureVec ) ∗∗ 2 , 1)
eu c l i dD i s t = np . sq r t ( sumSqDiff )

#Find the N neare s t neighbors , removing the s e l e c t e d entry each time
f o r i in range ( numNeighbors ) :

[ row , co l ] = np . unrave l index (np . argmin ( eu c l i dD i s t ) , e u c l i dD i s t . shape )
c l a s sH i t s [ row ] += 1 #Update the number o f c l a s s occurences
classMeans [ row ] += euc l i dD i s t [ row , co l ] #Update the t o t a l d i s tance
euc l i dD i s t [ row , co l ] = f l o a t ( ’ in f ’ ) #Prevents re−s e l e c t i o n

#Determine the maximum h i t s ( t h i s could be more than 1 c l a s s ! )
maxHits = np .max( c l a s sH i t s )

#Now, pick the c l a s s with the sma l l e s t average d i s tance vector out o f the
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#c l a s s e s with the maximum h i t s
classMeans = classMeans [ c l a s sH i t s == maxHits ] / maxHits
groupNums = groupNums [ c l a s sH i t s == maxHits ]

#The pred i c t ed c l a s s i s the c l a s s with the most ” h i t s ” and sma l l e s t d i s tance
return groupNums [ np . argmin ( classMeans ) ]

de f encodeBitVector ( bitVector , P ) :
#Determine the LBP encoding f o r a given b i t sequence
runs = bitVector . runs ( )
i f ( l en ( runs ) == 2 ) :

return len ( runs [ 1 ] )
i f ( l en ( runs ) > 2 ) :

return P + 1
i f (sum( bi tVector ) == 0 ) :

return 0
i f (sum( bi tVector ) == P) :

return P
return None

def i n t e r p o l a t e (mat , dx , dy ) :
#Calcu late the b i l i n e a r i n t e r p o l a t i o n f o r a p i x e l nea re s t the reg ion
#bounded by A, B, C, and D, with o f f s e t s dx and dy
dx = abs (dx )
dy = abs (dy )
A = mat [ 0 , 0 ]
B = mat [ 0 , 1 ]
C = mat [ 1 , 0 ]
D = mat [ 1 , 1 ]
re turn ((1 − dy ) ∗ (1 − dx ) ∗ A) + ((1 − dy ) ∗ dx ∗ B) + \

( dy ∗ (1 − dx ) ∗ C) + (dy ∗ dx ∗ D)

def ca l cB inaryCi rc l eVec (window , ne i ghborOf f s e t s ) :
interpVec = np . z e ro s ( l en ( ne i ghborOf f s e t s ) )
thresh = window [1 , 1 ] #Center p i x e l used as thre sho ld

#Compute i n t e rpo l a t ed vector f o r each point in the c i r c l e
r o t I t e r = 0
f o r i in range ( l en ( ne i ghborOf f s e t s ) ) :

xOf f s e t = ne ighborOf f s e t s [ i ] [ 0 ]
yOf f s e t = ne ighborOf f s e t s [ i ] [ 1 ]

#Rotate our ABCD matrix to use the i n t e r p o l a t i o n formula c o r r e c t l y
i f ( i != 0 and i % 2 == 0 ) :

r o t I t e r −= 1

#Compute adjacent p i x e l s f o r the given o f f s e t
A = window [math . f l o o r (1 + yOf f s e t ) , math . f l o o r (1 + xOf f s e t ) ]
B = window [math . f l o o r (1 + yOf f s e t ) , math . c e i l (1 + xOf f se t ) ]
C = window [math . c e i l (1 + yOf f s e t ) , math . f l o o r (1 + xOf f se t ) ]
D = window [math . c e i l (1 + yOf f s e t ) , math . c e i l (1 + xOf f se t ) ]
coef fMat = np . array ( [ [ A, B] , [C, D ] ] )
rotMat = np . rot90 ( coeffMat , r o t I t e r )

#In t e rpo l a t e between each p i x e l and add to vector
interpVec [ i ] = i n t e r p o l a t e ( rotMat , xOffset , yOf f s e t )

#Apply the thre sho ld to c r ea t e a boolean vector
return ( interpVec >= thresh ) . astype ( i n t )

de f f i ndNe ighborOf f s e t s ( radius , numNeighbors ) :
#Calcu late the given (x , y ) coo rd ina t e s f o r a given number o f ne ighbors
#around a cente r p i x e l (0 , 0 ) .
o f f s e tVec = np . ze ro s ( ( numNeighbors , 2 ) )
f o r p in range ( numNeighbors ) :

o f f s e tVec [ p ] [ 0 ] = ( rad ius ∗math . s i n (2 ∗ math . p i ∗ p / numNeighbors ) )
o f f s e tVec [ p ] [ 1 ] = ( rad ius ∗math . cos (2 ∗ math . p i ∗ p / numNeighbors ) )

#Truncate rounding e r r o r s
o f f s e tVec [ abs ( o f f s e tVec ) < 0 .00001 ] = 0
return o f f s e tVec

def ca lcFeatureVec ( img , ne ighborOf f se t s , P ) :
img = cv . cvtColor ( img , cv .COLOR BGR2GRAY) #Convert to g ray s ca l e

b inaryHis t = np . ze ro s (P + 2)
numPixels = 0

f o r x in range (1 , img . shape [ 1 ] − 1 ) : #Loop over x values , i gno r ing borders
f o r y in range (1 , img . shape [ 0 ] − 1 ) : #y−value loop , i gnor ing borders

window = img [ y − 1 : y + 2 , x − 1 : x + 2 ]

#Compute the binary vector r ep r e s en t i ng the neighborhood
interpVec = ca lcBinaryCi rc l eVec (window , ne i ghborOf f s e t s )

#Find the minimum−or i en t ed binary vector and encode i t
b i tVector = BitVector . BitVector ( b i t l i s t = interpVec )
p o s s i b l e I n t s = [ i n t ( b i tVector << 1) f o r in range (P) ]
minVector = BitVector . BitVector ( intVal = min( p o s s i b l e I n t s ) , s i z e = P)
encoding = encodeBitVector (minVector , P) #Encode

#Update the histogram and p i x e l count
b inaryHis t [ encoding ] += 1
numPixels += 1

#Fina l ly , we seek the p r obab i l i t y histogram , so d iv ide by the number o f e n t r i e s
probHist = binaryHist / numPixels
return probHist

## ============= MAIN CODE BEGINS BELOW ============= ##

#Implement LBP
# − cha r a c t e r i z e p i x e l g ray s ca l e v a r i a t i o n s between P neighbors
# − implement b i l i n e a r i n t e r p o l a t i o n
# − thre sho ld the pattern based on the cente r p i x e l ( c ente r element )
# − c i r c u l a r s h i f t the pattern to get the minimum in t e g e r value pattern
# − Encode the minIntVal b i t pattern as an i n t e g e r to r ep r e s en t the cente r p i x e l
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# − Create a histogram of the encoded va lues to r ep r e s en t texture va r i a t i on .
# − The histogram has length P+2, where P i s the number o f ne ighbors cons idered
# − Also , the histogram should be a p r obab i l i t y matrix (y ax i s i s prob , not count )
#
# − Then , do the same proce s s f o r each input image .
# − Compare histogram ( f e a tu r e vec to r s ) between t e s t i n g and t r a i n i n g images .
# − The top 5 images with the lowest d i s tance are noted .
# − The l ab e l that occurs most in that s e t o f 5 i s the p r ed i c t i on .

#Estab l i sh t r a i n i n g s e t parameters
TRAINING IMGS PER GROUP = 20;
TEST IMGS PER GROUP = 5;
GROUPS = ( ’ beach ’ , ’ bu i ld ing ’ , ’ car ’ , ’mountain ’ , ’ t ree ’ )
P = 8 #This i s the neighborhood s i z e
ACTION = ’ tes t ’ #Can be e i t h e r ’ t ra in ’ or ’ t e s t ’

#Get p i x e l o f f s e t s around a c i r c l e
ne i ghborOf f s e t s = f indNe ighborOf f s e t s (1 , P)

i f (ACTION == ’ tra in ’ ) :
#c l e a r F i l e ( ’ outputs / histograms . txt ’ )

#Populate the data s t ru c tu r e with the t r a i n i n g data
f o r i in range ( l en (GROUPS) ) :

f o r j in range (TRAINING IMGS PER GROUP) :

#Read in the image and c a l c u l a t e i t s f e a tu r e vector
p r in t ( ’ Ca l cu la t ing f e a tu r e vector f o r image %d:%d . . . ’ % ( i , j ) )
img = cv . imread ( ’ . / inputs / t r a i n i n g / ’ + GROUPS[ i ] + ( ’/%02d ’ % ( j +1)) + ’ . jpg ’ )
featureVec = calcFeatureVec ( img , ne ighborOf f s e t s , P)

#Write the featureVec to a f i l e to save time l a t e r
writeHistogram ( ’ outputs / histograms . txt ’ , ’ a ’ , i , j , f eatureVec )
p r in t ( ’Wrote histogram %d:%d to the f i l e . ’ % ( i , j ) )

e l i f (ACTION == ’ tes t ’ ) :
#Get the f e a tu r e vec to r s from the t ra ined data s e t
featureMat = readHistogram ( ’ outputs / histograms . txt ’ )
confusionMat = np . z e ro s ( ( l en (GROUPS) , l en (GROUPS) ) , np . uint16 )

f o r i in range ( l en (GROUPS) ) :
f o r j in range (TEST IMGS PER GROUP) :

#Read in the t e s t image and c a l c u l a t e i t s f e a tu r e vector
imgName = ’ . / inputs / t e s t i n g / ’ + GROUPS[ i ] + ( ’ %d ’ % ( j +1)) + ’ . jpg ’
p r in t ( ’ Ca l cu la t ing f e a tu r e vector f o r %s . . . ’ % imgName)
img = cv . imread ( imgName)
featureVec = calcFeatureVec ( img , ne ighborOf f s e t s , P)

#Pred ic t the image c l a s s us ing i t s 5 neare s t ne ighbors
p red i c t edCla s s = pred i c tC la s s ( featureVec , featureMat , 5)
confusionMat [ i , p r ed i c t edCla s s ] += 1
pr in t ( ’ Pred icted c l a s s f o r image %s : %s ’ % \

( imgName , GROUPS[ pred i c t edCla s s ] ) )

p r in t ( confusionMat )
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