ECE 661: Homework 4
Shengtong Zhang
Email: zhan3366@purdue.edu
(Fall 2020)

1 Theory Question

For Otsu Algorithm,

e Advantages: This algorithm is simple for calculation. And when the difference between the
foreground object and the bachground is not too big, this algorithm can effectively segment the
image.

e Disadvantage: Because the algorithm ignores the spatial information of the image, and uses
the grayscale distribution of the image as the basis for segmenting the image which is sensitive to
noise. When the area of the target and the background in the image is very different, it shows that
the histogram does not have obvious double peaks, or the size of the two peaks is very different, the
segmentation effect is not good, or the foreground object and the background cannot be accurately
separated when there is a large overlap in the grayscale of the foreground object and the background.

For Watershed Algorithm,

e Advantages: This algorithm is Intuitive and fast. And it can be computed in parallel. And
the result of this algorithm always producing complete boundaries.

e Disadvantage: Due to interference from noise points or other factors, this algorithm may
get densely small areas, which is over-segmented. This is because there are many local minimal
value points in the image, each point will be a small area of its own.

2 Ostu Algorithm

The Otsu algorithm can be described by the following steps:

1.First calculate the pixel grayscale level histogram. For the range 0 to 255 total 256 gray levels

the probability distribution function is,
1y

N

where n; denotes the number of pixels at i*" grayscale level and N is the total number of pixels in
the image.

pi =

2.Let k denotes the grayscale level that sepatates the foreground object and the background. Then
we denote the pixels with grayscale level less than k as class Cy and the pixels with grayscale
level greater than k as class C1. Then we can get the probability of Cy and C1, wg = Elf p; and

255
w1 = Zk+1 Ds.-

3.Then we can calculate the mean of each class and the between-class variance,

255

k
1) 1 .
MOZ*E 1Pi, m:—§ 1Pi
“o 7 “Yiia

op = wowi (o — p1)?

4. Then we select the optimum threshold £* that maximizes (Tg. And in the next step, we carry out
masking of the image in such a way that the pixel value of the pixels with grayscale level lower
than £* are changed to 0 to mark the background and pixels with grayscale level greater than k*
are changed to 1 to mark the foreground.

5.To improve the segmentation results, repeat the above steps. The number of iterations is a
hyperparameter.
3 Image Segmentation Using RGB Values

The image segmentation can be achieved by applying Otsu algorithm to the three RGB color chan-
nels separately, and then combine the segmentation results to get final segmentation of the image.
The procedure is described as follows:

1.Separate the three RGB color channels and convert them into three grayscale images.
2.For each grayscale images, implement the Otsu algorithm.

3.Combine the results gotten from step 2 by logical operator AND to get a better segmentation
result.

4 Texture-based Segmentation

We can exploit the spatial information of pixels using texture-based feature and represent the
original image in texture space. More specifically, the texture-based feature for a pixel in this
experiment is defined as the variance of the pixels values in a N x N window. We evaluate the
original image with three different window sizes to obtain three channels for the texture space
image representation, similar to the RGB channels in a normal color image.

5 Contour Extraction

After we have the binary image, we can extract the contour of the segmented region. When a pixel
with value 1 has at least one neighbor pixel with value 0 for 8-neighbors, it’s determined to be on
the contour. Otherwise, the pixel is not on the contour.

6 Results

6.1 Cat

For the cat image,

Figure 1: The original cat image

6.1.1 Image Segmentation Using RGB Values

The numbers of iterations for this method are [1,1,1].

Figure 3: The overall foreground mask

Figure 4: The final contour of the image

6.1.2 Texture-based Segmentation

The numbers of iterations for this method are [1,1,1]. The window sizes are chosen as [6x6,7x 7,8 x 8]

Figure 6: The overall foreground mask

Figure 7: The final contour of the image

6.2 Pigeon

For the pigeon image,

Figure 8: The original pigeon image

6.2.1 Image Segmentation Using RGB Values

The numbers of iterations for this method are [2,2,2].

Figure 10: The overall foreground mask

Figure 11: The final contour of the image

6.2.2 Texture-based Segmentation

The numbers of iterations for this method are [6,5,4]. The window sizes are chosen as [2x2,3x 3,4 x4]

Figure 14: The final contour of the image

6.3 Red Fox

For the red fox image,

Figure 15: The original red fox image

6.3.1 Image Segmentation Using RGB Values

The numbers of iterations for this method are [2,2,2].

Figure 16: Masks get from different color channels

Figure 17: The overall foreground mask

Figure 18: The final contour of the image

6.3.2 Texture-based Segmentation

The numbers of iterations for this method are [1,1,1]. The window sizes are chosen as [5x5,6 x6,7x7]

Figure 20: The overall foreground mask

Figure 21: The final contour of the image

10

I

© 00 N O O«

10
11
12

13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28

7 Discussion

e The quality of the segmentation results highly depends on the original images. We should select
an appropriate method for different kinds of images.

e The segmentation method based on the RGB channels seems can produce a more smooth result
than the method based on texture features. But there are also some problems with this method.
For example, for the cat image. This method can’t separate the table with the cat because the cat
is lighter than the wall but darker than the table.

e The method based on texture features seems more sensitive to the noise. There are many small
areas in the results of this method. This is obvious in the result of pigeon. And if we use a larger
window size, there are more pixels we want (which should be considered as foreground) are included
in the final result. However, the segmentation result will also be more coarse meanwhile.

8 Code

import numpy as np
import cv2
from matplotlib import pyplot as plt

def get_texture_ image(bgr, Ns):
gray = cv2.cvtColor (bgr, cv2.COLOR_BGR2GRAY)
texture = np.zeros((bgr.shape[0], bgr.shape[l], len(Ns)))
for i in range(len(Ns)):
w_h = int (Ns[i]/2)
for r in range(w_h, bgr.shape[0]—w_h):
for ¢ in range(w_h, bgr.shape[l]—w_h):
var = np.var(gray[r—w_h:r+w_h+1, c—w_h
cc+w_h+1])
texture[r,c,i] = var
return texture.astype(np.uint8)

def get__contour (mask):
contour = np.zeros (mask.shape).astype(np.uint8)
w h =1
for r in range(w_h, mask.shape[0]—w_h):
for ¢ in range(w_h, mask.shape[l]—w_h):

if mask[r,c] = 0:
continue

if np.min(mask|[r—w_h:r+w_h+1, c—w_h:c+w_h+1])
contour [r,c] = 255

return contour

def Otsu_for_gray_ img(image, num_ iters,reverse_mask):
mask = np.ones(image.shape).astype(np.uint8) = 255

11

29
30

31
32
33
34
35
36
37
38
39
40
41

42
43

44
45
46
47
48
49
50
51
52

59

67
68

69

for i in range(num_ iters):
hist ,_ = np.histogram (image [np.nonzero(mask)], bins=np.
arange (257), density=True)

ith hist = np.multiply (hist, np.arange(256))

mu T = np.sum(ith_hist)

b_vars = np.zeros (256)

for k in range(256):
omega 0 = np.sum(hist [:k])
omega_1 = np.sum(hist [k+1:])
omega_mu_0 = np.sum(ith_hist [:k])
omega_mu_1 = np.sum(ith_hist [k+1:])
if omega mu 0 = 0.0 or omega mu 1 = 0.0:

continue
b_vars[k] = omega_(Oxomega_1x(omega mu_0/omega_0
—omega_mu__1/omega_ 1) *x2
k_star = np.argmax(b_vars)

_,mask = cv2.threshold (image, k_star, 255, cv2.
THRESH_BINARY)
if reverse mask:
mask = cv2.bitwise_not (mask)
return mask

def Otsu_for_rgb_img(image, num_ iterss, reverse_ masks):
BGR channels

channels = cv2.split (image)
masks = []
mask together = np.ones(channels [0].shape).astype(np.uint8) =
255
for i in range(len(channels)):
mask = Otsu_for gray img(channels[i], num iterss[i],
reverse_masks[i])
mask together = cv2.bitwise and(mask_together, mask)

masks . append (mask)
return masks, mask together

def result ():
image__cat = ’inputs/cat.jpg’

num__iterss = [1,1,1]

reverse_masks = [0,0,0]

color = cv2.imread(image_ cat)

image = color

channels = cv2.split (image)

masks, mask_together = Otsu_ for rgb_img(image, num_ iterss,

reverse_masks)

for i in range(len(channels)):

cv2.imwrite ("outputs/cat_mask_ " + str(i) + ’.jpg’,
masks [i])

cv2.imwrite (outputs/cat__finalmask.jpg’, mask_together)

12

70

71
72
73
74
75
76
T
78
79
80
81
82
83
84
85

86
87

88
89

90
91
92
93
94
95
96
97
98
99
100
101

102
103

104
105

106
107
108
109
110

foreground = cv2.bitwise__and(color, cv2.cvtColor(
mask__together, cv2.COLOR_GRAY2BGR))

contour = get__contour(mask_together)

cv2.imwrite (Toutputs/cat__foreground.jpg’, foreground)
cv2.imuwrite (" outputs/cat__contour.jpg’, contour)

image cat = ’inputs/cat.jpg’

num__iterss = [1,1,1]

reverse__masks = [0,0,0]

Ns = [6,7,8]

color = cv2.imread (image_cat)

texture = get_texture_image (color ,Ns)

cv2.imwrite('outputs/cat__texture.jpg’, texture)

image = texture

channels = cv2.split (image)

masks, mask_together = Otsu_for rgb_img(image, num_ iterss,

reverse_masks)
for i in range(len(channels)):

cv2.imwrite ('outputs/cat__texture_mask_ ' + str(i) + ’
jpg’, masks[i])

cv2.imwrite('outputs/cat__texture_finalmask.jpg’, mask_together)

foreground = cv2.bitwise_and (color, cv2.cvtColor(mask_together,
cv2 .COLOR_GRAY2BGR))

contour = get_ contour (mask_together)

cv2.imwrite (outputs/cat__texture_foreground.jpg’, foreground)

cv2.imwrite('outputs/cat__texture_contour.jpg’, contour)

image__pigeon = ’inputs/pigeon.jpeg’

num__iterss = [2,2,2]

reverse_masks = [0,0,0]

color = cv2.imread(image__pigeon)

image = color

channels = cv2.split(image)

masks, mask_together = Otsu_ for_rgb_img(image, num_iterss,
reverse_masks)

for i in range(len(channels)):

cv2.imwrite ("outputs/pigeon_mask_ " + str(i) + ’.jpg’,
masks [i])

cv2.imwrite (" outputs/pigeon_ finalmask.jpg ', mask_together)

foreground = cv2.bitwise_and(color, cv2.cvtColor(
mask__together, cv2.COLOR_GRAY2BGR))

contour = get__contour (mask_together)

cv2.imuwrite (’outputs/pigeon_ foreground.jpg’, foreground)

cv2.imwrite (" outputs/pigeon__contour.jpg’, contour)

13

111
112
113
114
115
116
117
118
119
120

121
122

123

124

125
126

127
128
129
130
131
132
133
134
135

136
137

138

139

140
141
142
143
144
145
146
147
148
149

R N U N S TR i N N SN N N S N T Y N N N S N N N SN

RN

image_pigeon = ’inputs/pigeon.jpeg’
num__iterss = [6,5,4]

reverse__masks = [1,1,1]

Ns = [2,3,4]

color = cv2.imread(image__pigeon)

texture = get_texture_image(color ,Ns)

cv2.imwrite ("outputs/pigeon__texture.jpg’, texture)

image = texture

channels = cv2. split(image)

masks, mask_together = Otsu_for_rgb_img(image, num__iterss,

reverse_masks)

for i in range(len(channels)):

cv2.imwrite ("outputs/pigeon__texture_mask_ " + str(i) +

".jpg ', masks[i])

cv2.imwrite ("outputs/pigeon__texture_finalmask.jpg ’,
mask__together)

foreground = cv2.bitwise_and(color, cv2.cvtColor(
mask_together, cv2.COLOR_GRAY2BGR))

contour = get__contour(mask_together)

cv2.imwrite ("outputs/pigeon__texture__foreground. jpg ’,
foreground)

cv2.imwrite ("outputs/pigeon__texture__contour.jpg’, contour)

image__Red_For = ’inputs/Red—Foz.jpg’
num__iterss = [2,2,2]

reverse_masks = [0,0,0]

color = cv2.imread (image Red Fox)

image = color

channels = cv2. split(image)

masks, mask_together = Otsu__for_rgb_img(image, num__iterss,

reverse_masks)
for i in range(len(channels)):
cv2.imwrite ("outputs /Red Fox_mask_ " + str(i) + ’.jpg’,
masks[1])
cv2.imwrite ("outputs/Red__Fox_ finalmask. jpg ’, mask_together)

foreground = cv2.bitwise_and(color, cv2.cvtColor(
mask_together, cv2.COLOR_GRAY2BGR))

contour = get__contour (mask_together)

cv2.imwrite ("outputs /Red__Fox_foreground.jpg ’, foreground)

cv2.imwrite ("outputs /Red_Fox_contour.jpg’, contour)

image__Red_For = ’inputs/Red—Foz.jpg’
num__iterss = [1,1,1]

reverse__masks = [0,0,0]
Ns = [5,6,7]
color = cv2.imread (image_Red Fox)

14

150
151
152
153
154

155
156

157

158

159
160

161
162
163
164
165
166
167

result ()

7

R NN Y N N R R R

texture = get_texture_image(color ,Ns)

cv2.imwrite ("outputs/Red Fox_ texture.jpg’, texture)

image = texture

channels = cv2. split (image)

masks, mask_together = Otsu__for_rgb_img(image, num__iterss,
reverse_masks)

for i in range(len(channels)):

cv2. imwrite ("outputs /Red__Fox__texture_mask_’ + str (i) +

“.jpg ’, masks[i])

cv2.imwrite ("outputs /Red__Fox_texture_ finalmask. jpg ’,
mask__together)

foreground = cv2. bitwise__and(color, cv2.cvtColor(
mask__together, cv2.COLOR_GRAY2BGR))

contour = get__contour(mask_together)

cv2.imwrite ("outputs/Red__Fox__texture__foreground.jpg ’,
foreground)

cv2.imwrite ("outputs/Red__Fox__texture__contour.jpg’, contour)

print (”finish”)

15

