
ECE 661: Homework 4
Shengtong Zhang

Email: zhan3366@purdue.edu
(Fall 2020)

1 Theory Question
For Otsu Algorithm,

• Advantages: This algorithm is simple for calculation. And when the difference between the
foreground object and the bachground is not too big, this algorithm can effectively segment the
image.

• Disadvantage: Because the algorithm ignores the spatial information of the image, and uses
the grayscale distribution of the image as the basis for segmenting the image which is sensitive to
noise. When the area of the target and the background in the image is very different, it shows that
the histogram does not have obvious double peaks, or the size of the two peaks is very different, the
segmentation effect is not good, or the foreground object and the background cannot be accurately
separated when there is a large overlap in the grayscale of the foreground object and the background.

For Watershed Algorithm,

• Advantages: This algorithm is Intuitive and fast. And it can be computed in parallel. And
the result of this algorithm always producing complete boundaries.

• Disadvantage: Due to interference from noise points or other factors, this algorithm may
get densely small areas, which is over-segmented. This is because there are many local minimal
value points in the image, each point will be a small area of its own.

2 Ostu Algorithm
The Otsu algorithm can be described by the following steps:

1.First calculate the pixel grayscale level histogram. For the range 0 to 255 total 256 gray levels
the probability distribution function is,

pi =
ni

N

where ni denotes the number of pixels at ith grayscale level and N is the total number of pixels in
the image.

2.Let k denotes the grayscale level that sepatates the foreground object and the background. Then
we denote the pixels with grayscale level less than k as class C0 and the pixels with grayscale
level greater than k as class C1. Then we can get the probability of C0 and C1, ω0 =

∑k
1 pi and

ω1 =
∑255

k+1 pi.

1

3.Then we can calculate the mean of each class and the between-class variance,

µ0 =
1

ω0

k∑
1

ipi, µ1 =
1

ω1

255∑
k+1

ipi

σ2
b = ω0ω1(µ0 − µ1)

2

4.Then we select the optimum threshold k∗ that maximizes σ2
b . And in the next step, we carry out

masking of the image in such a way that the pixel value of the pixels with grayscale level lower
than k∗ are changed to 0 to mark the background and pixels with grayscale level greater than k∗

are changed to 1 to mark the foreground.

5.To improve the segmentation results, repeat the above steps. The number of iterations is a
hyperparameter.

3 Image Segmentation Using RGB Values
The image segmentation can be achieved by applying Otsu algorithm to the three RGB color chan-
nels separately, and then combine the segmentation results to get final segmentation of the image.
The procedure is described as follows:

1.Separate the three RGB color channels and convert them into three grayscale images.

2.For each grayscale images, implement the Otsu algorithm.

3.Combine the results gotten from step 2 by logical operator AND to get a better segmentation
result.

4 Texture-based Segmentation
We can exploit the spatial information of pixels using texture-based feature and represent the
original image in texture space. More specifically, the texture-based feature for a pixel in this
experiment is defined as the variance of the pixels values in a N × N window. We evaluate the
original image with three different window sizes to obtain three channels for the texture space
image representation, similar to the RGB channels in a normal color image.

5 Contour Extraction
After we have the binary image, we can extract the contour of the segmented region. When a pixel
with value 1 has at least one neighbor pixel with value 0 for 8-neighbors, it’s determined to be on
the contour. Otherwise, the pixel is not on the contour.

6 Results
6.1 Cat
For the cat image,

2

Figure 1: The original cat image

6.1.1 Image Segmentation Using RGB Values

The numbers of iterations for this method are [1,1,1].

(a) (b) (c)

Figure 2: Masks get from different color channels

Figure 3: The overall foreground mask

3

Figure 4: The final contour of the image

6.1.2 Texture-based Segmentation

The numbers of iterations for this method are [1,1,1]. The window sizes are chosen as [6×6,7×7,8×8]

(a) (b) (c)

Figure 5: Masks get from different window sizes

Figure 6: The overall foreground mask

4

Figure 7: The final contour of the image

6.2 Pigeon
For the pigeon image,

Figure 8: The original pigeon image

6.2.1 Image Segmentation Using RGB Values

The numbers of iterations for this method are [2,2,2].

5

(a) (b) (c)

Figure 9: Masks get from different color channels

Figure 10: The overall foreground mask

Figure 11: The final contour of the image

6.2.2 Texture-based Segmentation

The numbers of iterations for this method are [6,5,4]. The window sizes are chosen as [2×2,3×3,4×4]

6

(a) (b) (c)

Figure 12: Masks get from different window sizes

Figure 13: The overall foreground mask

Figure 14: The final contour of the image

6.3 Red Fox
For the red fox image,

7

Figure 15: The original red fox image

6.3.1 Image Segmentation Using RGB Values

The numbers of iterations for this method are [2,2,2].

(a) (b) (c)

Figure 16: Masks get from different color channels

8

Figure 17: The overall foreground mask

Figure 18: The final contour of the image

6.3.2 Texture-based Segmentation

The numbers of iterations for this method are [1,1,1]. The window sizes are chosen as [5×5,6×6,7×7]

9

(a) (b) (c)

Figure 19: Masks get from different window sizes

Figure 20: The overall foreground mask

Figure 21: The final contour of the image

10

7 Discussion
• The quality of the segmentation results highly depends on the original images. We should select
an appropriate method for different kinds of images.

• The segmentation method based on the RGB channels seems can produce a more smooth result
than the method based on texture features. But there are also some problems with this method.
For example, for the cat image. This method can’t separate the table with the cat because the cat
is lighter than the wall but darker than the table.

• The method based on texture features seems more sensitive to the noise. There are many small
areas in the results of this method. This is obvious in the result of pigeon. And if we use a larger
window size, there are more pixels we want (which should be considered as foreground) are included
in the final result. However, the segmentation result will also be more coarse meanwhile.

8 Code

1 import numpy as np
2 import cv2
3 from matp lo t l i b import pyplot as p l t
4
5 de f get_texture_image (bgr , Ns) :
6 gray = cv2 . cvtColor (bgr , cv2 .COLOR_BGR2GRAY)
7 t ex ture = np . z e r o s ((bgr . shape [0] , bgr . shape [1] , l en (Ns)))
8 f o r i in range (l en (Ns)) :
9 w_h = i n t (Ns [i] / 2)

10 f o r r in range (w_h, bgr . shape [0]−w_h) :
11 f o r c in range (w_h, bgr . shape [1]−w_h) :
12 var = np . var (gray [r−w_h: r+w_h+1, c−w_h

: c+w_h+1])
13 t ex ture [r , c , i] = var
14 re turn tex ture . astype (np . u int8)
15
16 de f get_contour (mask) :
17 contour = np . z e ro s (mask . shape) . astype (np . u int8)
18 w_h = 1
19 f o r r in range (w_h, mask . shape [0]−w_h) :
20 f o r c in range (w_h, mask . shape [1]−w_h) :
21 i f mask [r , c] == 0 :
22 cont inue
23 i f np . min (mask [r−w_h: r+w_h+1, c−w_h: c+w_h+1])

== 0 :
24 contour [r , c] = 255
25 re turn contour
26
27 de f Otsu_for_gray_img (image , num_iters , reverse_mask) :
28 mask = np . ones (image . shape) . astype (np . u int8) ∗ 255

11

29 f o r i in range (num_iters) :
30 h i s t ,_ = np . histogram (image [np . nonzero (mask)] , b ins=np .

arange (257) , dens i ty=True)
31 i t h_h i s t = np . mult ip ly (h i s t , np . arange (256))
32 mu_T = np . sum(i th_h i s t)
33 b_vars = np . z e r o s (256)
34 f o r k in range (256) :
35 omega_0 = np . sum(h i s t [: k])
36 omega_1 = np . sum(h i s t [k +1 :])
37 omega_mu_0 = np . sum(i th_h i s t [: k])
38 omega_mu_1 = np . sum(i th_h i s t [k +1 :])
39 i f omega_mu_0 == 0.0 or omega_mu_1 == 0 . 0 :
40 cont inue
41 b_vars [k] = omega_0∗omega_1∗(omega_mu_0/omega_0

−omega_mu_1/omega_1) ∗∗2
42 k_star = np . argmax (b_vars)
43 _, mask = cv2 . th r e sho ld (image , k_star , 255 , cv2 .

THRESH_BINARY)
44 i f reverse_mask :
45 mask = cv2 . bitwise_not (mask)
46 re turn mask
47
48 de f Otsu_for_rgb_img (image , num_iterss , reverse_masks) :
49 # BGR channe l s
50 channe l s = cv2 . s p l i t (image)
51 masks = []
52 mask_together = np . ones (channe l s [0] . shape) . astype (np . u int8) ∗

255
53 f o r i in range (l en (channe l s)) :
54 mask = Otsu_for_gray_img (channe l s [i] , num_iterss [i] ,

reverse_masks [i])
55 mask_together = cv2 . bitwise_and (mask_together , mask)
56 masks . append (mask)
57 re turn masks , mask_together
58
59 de f r e s u l t () :
60 # image_cat = ’ inpu t s / ca t . j pg ’
61 # num_iterss = [1 , 1 , 1]
62 # reverse_masks = [0 , 0 , 0]
63 # c o l o r = cv2 . imread (image_cat)
64 # image = co l o r
65 # channe l s = cv2 . s p l i t (image)
66 # masks , mask_together = Otsu_for_rgb_img (image , num_iterss ,

reverse_masks)
67 # f or i in range (l en (channe l s)) :
68 # cv2 . imwrite (’ ou tpu t s /cat_mask_ ’ + s t r (i) + ’ . j pg ’ ,

masks [i])
69 # cv2 . imwrite (’ ou tpu t s / cat_f ina lmask . j pg ’ , mask_together)

12

70 # foreground = cv2 . bi twise_and (co lor , cv2 . cv tCo lor (
mask_together , cv2 .COLOR_GRAY2BGR))

71 # contour = get_contour (mask_together)
72 # cv2 . imwrite (’ ou tpu t s / cat_foreground . jpg ’ , foreground)
73 # cv2 . imwrite (’ ou tpu t s / cat_contour . j pg ’ , contour)
74
75
76 image_cat = ’ inputs / cat . jpg ’
77 num_iterss = [1 , 1 , 1]
78 reverse_masks = [0 , 0 , 0]
79 Ns = [6 , 7 , 8]
80 c o l o r = cv2 . imread (image_cat)
81 t ex ture = get_texture_image (co lo r , Ns)
82 cv2 . imwrite (’ outputs / cat_texture . jpg ’ , t ex tur e)
83 image = texture
84 channe l s = cv2 . s p l i t (image)
85 masks , mask_together = Otsu_for_rgb_img (image , num_iterss ,

reverse_masks)
86 f o r i in range (l en (channe l s)) :
87 cv2 . imwrite (’ outputs /cat_texture_mask_ ’ + s t r (i) + ’ .

jpg ’ , masks [i])
88 cv2 . imwrite (’ outputs / cat_texture_f inalmask . jpg ’ , mask_together)
89 foreground = cv2 . bitwise_and (co lo r , cv2 . cvtColor (mask_together ,

cv2 .COLOR_GRAY2BGR))
90 contour = get_contour (mask_together)
91 cv2 . imwrite (’ outputs / cat_texture_foreground . jpg ’ , foreground)
92 cv2 . imwrite (’ outputs / cat_texture_contour . jpg ’ , contour)
93
94
95 # image_pigeon = ’ inpu t s / pigeon . j peg ’
96 # num_iterss = [2 , 2 , 2]
97 # reverse_masks = [0 , 0 , 0]
98 # c o l o r = cv2 . imread (image_pigeon)
99 # image = co l o r

100 # channe l s = cv2 . s p l i t (image)
101 # masks , mask_together = Otsu_for_rgb_img (image , num_iterss ,

reverse_masks)
102 # f or i in range (l en (channe l s)) :
103 # cv2 . imwrite (’ ou tpu t s /pigeon_mask_ ’ + s t r (i) + ’ . j pg ’ ,

masks [i])
104 # cv2 . imwrite (’ ou tpu t s / pigeon_finalmask . j pg ’ , mask_together)
105 # foreground = cv2 . bi twise_and (co lor , cv2 . cv tCo lor (

mask_together , cv2 .COLOR_GRAY2BGR))
106 # contour = get_contour (mask_together)
107 # cv2 . imwrite (’ ou tpu t s / pigeon_foreground . jpg ’ , foreground)
108 # cv2 . imwrite (’ ou tpu t s / pigeon_contour . j pg ’ , contour)
109
110

13

111 # image_pigeon = ’ inpu t s / pigeon . j peg ’
112 # num_iterss = [6 , 5 , 4]
113 # reverse_masks = [1 , 1 , 1]
114 # Ns = [2 , 3 , 4]
115 # c o l o r = cv2 . imread (image_pigeon)
116 # t e x t u r e = get_texture_image (co lor , Ns)
117 # cv2 . imwrite (’ ou tpu t s / p igeon_tex ture . j pg ’ , t e x t u r e)
118 # image = t e x t u r e
119 # channe l s = cv2 . s p l i t (image)
120 # masks , mask_together = Otsu_for_rgb_img (image , num_iterss ,

reverse_masks)
121 # f or i in range (l en (channe l s)) :
122 # cv2 . imwrite (’ ou tpu t s /pigeon_texture_mask_ ’ + s t r (i) +

’ . j pg ’ , masks [i])
123 # cv2 . imwrite (’ ou tpu t s / pigeon_texture_f ina lmask . j pg ’ ,

mask_together)
124 # foreground = cv2 . bi twise_and (co lor , cv2 . cv tCo lor (

mask_together , cv2 .COLOR_GRAY2BGR))
125 # contour = get_contour (mask_together)
126 # cv2 . imwrite (’ ou tpu t s / pigeon_texture_foreground . jpg ’ ,

foreground)
127 # cv2 . imwrite (’ ou tpu t s / pigeon_texture_contour . j pg ’ , contour)
128
129 # image_Red_Fox = ’ inpu t s /Red−Fox . jpg ’
130 # num_iterss = [2 , 2 , 2]
131 # reverse_masks = [0 , 0 , 0]
132 # c o l o r = cv2 . imread (image_Red_Fox)
133 # image = co l o r
134 # channe l s = cv2 . s p l i t (image)
135 # masks , mask_together = Otsu_for_rgb_img (image , num_iterss ,

reverse_masks)
136 # f or i in range (l en (channe l s)) :
137 # cv2 . imwrite (’ ou tpu t s /Red_Fox_mask_ ’ + s t r (i) + ’ . j pg ’ ,

masks [i])
138 # cv2 . imwrite (’ ou tpu t s /Red_Fox_finalmask . j pg ’ , mask_together)

139 # foreground = cv2 . bi twise_and (co lor , cv2 . cv tCo lor (
mask_together , cv2 .COLOR_GRAY2BGR))

140 # contour = get_contour (mask_together)
141 # cv2 . imwrite (’ ou tpu t s /Red_Fox_foreground . jpg ’ , foreground)
142 # cv2 . imwrite (’ ou tpu t s /Red_Fox_contour . j pg ’ , contour)
143
144
145 # image_Red_Fox = ’ inpu t s /Red−Fox . jpg ’
146 # num_iterss = [1 , 1 , 1]
147 # reverse_masks = [0 , 0 , 0]
148 # Ns = [5 , 6 , 7]
149 # c o l o r = cv2 . imread (image_Red_Fox)

14

150 # t e x t u r e = get_texture_image (co lor , Ns)
151 # cv2 . imwrite (’ ou tpu t s /Red_Fox_texture . j pg ’ , t e x t u r e)
152 # image = t e x t u r e
153 # channe l s = cv2 . s p l i t (image)
154 # masks , mask_together = Otsu_for_rgb_img (image , num_iterss ,

reverse_masks)
155 # f or i in range (l en (channe l s)) :
156 # cv2 . imwrite (’ ou tpu t s /Red_Fox_texture_mask_ ’ + s t r (i) +

’ . j pg ’ , masks [i])
157 # cv2 . imwrite (’ ou tpu t s /Red_Fox_texture_finalmask . j pg ’ ,

mask_together)
158 # foreground = cv2 . bi twise_and (co lor , cv2 . cv tCo lor (

mask_together , cv2 .COLOR_GRAY2BGR))
159 # contour = get_contour (mask_together)
160 # cv2 . imwrite (’ ou tpu t s /Red_Fox_texture_foreground . jpg ’ ,

foreground)
161 # cv2 . imwrite (’ ou tpu t s /Red_Fox_texture_contour . j pg ’ , contour)
162
163
164 pr in t (” f i n i s h ”)
165
166
167 r e s u l t ()

15

