
ECE 661: Homework 6
Mridul Gupta

Email: gupta431@purdue.edu

Theory Question

1. Otsu thresholding works really well for images with bimodal histograms. It is very fast method
because it just finds one threshold for an entire image but that also makes it very noisy. In
iterative Otsu, we will get better result with each iteration only if the foreground image from
previous iteration also has bimodal histogram.

2. This method requires good markers. If the markers are not good, the method doesn’t work
very well. Overall, its a less noisy process than otsu thresholding. Due to oversegmentation,
extracted objects might not be good but variations of the algorithm have been proposed to
reduce oversegmentation.

Section 3

1. Otsu’s Algorithm
It divides the image into 2 classes , foreground and background. w0, w1 are the probabilities
of the two classes. Histogram frequencies are normalized and are represented by pi for gray
value i. µ0 is the mean of class 0 and µ1 is the mean of class 1. Between-class variance is
given by σ2b = w0w1(µ0 − µ1)

2. We have to maximize this between-class variance to get the
threshold value. We consider each gray pixel value i as a threshold, ni represents the number
of pixels with gray value i and N is the total number of pixels.

w0 = Σi−1
k=0pi = Σk=i−1

k=0

ni
N

w1 = 1 − w0

µ0 = Σi−1
k=0

ipi
w0

=
Σi−1
k=0ini

Σi−1
k=0ni

µ1 =
µT − w0µ0

w1

where µT is the mean over the entire image. Over all possible thresholds, we keep track of
the threshold which maximizes the between-class variance.

2. Pixel-value based segmentation
We run Otsu’s method on each channel separately. We have the option to run Otsu’ method
multiple times while keeping track if the foreground class is above or below the computed
threshold.

(a) For cat image, only the Red channel of the image was used for thresholding and the
foreground was the class with higher pixel values and only 1 iteration was run.

(b) For pigeon image, all channels of the image were used for thresholding and the foreground
was the class with higher pixel values and only 1 iteration was run for each channel.

(c) For fox image, only blue channel of the image was used for thresholding and the fore-
ground was the class with higher pixel values and only 2 iterations were run for each
channel.

1



3. Texture-based segmentation
There are multiple was of calculating texture value for a pixel but we use the sliding window
approach. We use three window sizes for each image. For each window size, we calculate the
variance of neighbors of a pixel in that window. We treat the variance values at each pixel
location as a feature value for that pixel and run Otsu thresholding on this new variance
image.

(a) For cat image, only the Red channel of the image was used for thresholding and the
foreground was the class with lower variance values and 6 iterations were run. window
sizes were 3,5 and 7 and the final target mask was inverted.

(b) For pigeon image, all channels (RGB) of the image were used for thresholding and the
foreground was the class with lower variance values and 6, 3 and 3 iterations were run
respectively. window sizes were 7, 9 and 11 and the final target mask was not inverted.

(c) For fox image, all channels (RGB) of the image were used for thresholding and the
foreground was the class with lower variance values and 1, 1 and 3 iterations were run
respectively. window sizes were 3, 5 and 7 and the final target mask was inverted.

4. Contour Extraction
Contours are basically formed by the pixels that form the edges. Dilation and erosion were
performed to connect missing edges and remove small dots from the image respectively. A
pixel forms an edge if out of its 9 neighbors, at least 1 pixel belongs to the background i.e. it
has the value 0.

(a) For RGB segmentation based foreground mask:

i. Cat image - eroded then dilated once with kernel of size 3 × 3.

ii. Pigeon image - eroded then dilated once with kernel of size 3 × 3.

iii. Fox image - dilated then eroded 5 and 6 times respectively with kernel of size 3× 3.

(b) In cat image, foreground mask was eroded - 3 iterations, with kernel size of 3 × 3. It
was then dilated - 6 iterations with the same kernel size.

(c) Other images were neither eroded not dilated.

2



Results

Figure 1: RGB - Cat channel 1 foreground and the final foreground mask

Figure 2: RGB - Cat foreground

3



Figure 3: Texture - Cat foreground mask

Figure 4: Texture - Cat foreground

4



Figure 5: RGB - Pigeon channel 1 foreground mask

Figure 6: RGB - Pigeon channel 2 foreground mask

5



Figure 7: RGB - Pigeon channel 3 foreground mask

Figure 8: RGB - Pigeon final foreground mask

6



Figure 9: RGB - Pigeon final foreground

Figure 10: Texture - Pigeon foreground mask

7



Figure 11: Texture - Pigeon foreground

Figure 12: RGB - Fox channel 3 foreground and the final foreground mask

8



Figure 13: RGB - Fox foreground

Figure 14: Texture - Fox foreground mask

9



Figure 15: Texture - Fox foreground

Figure 16: RGB - Cat Contour

10



Figure 17: Texture - Cat Contour

Figure 18: RGB - Pigeon Contour

11



Figure 19: Texture - Pigeon Contour

Figure 20: RGB - Fox Contour

12



Figure 21: Texture - Fox Contour

Observation

1. For the cat image, table has a color very close to the cat, so RGB-based segmentation does
not work very well and texture based segmentation does really well.

2. For pigeon image, RGB based method is not able to separate pigeon from the boat because
they have the same color but does much better than texture based method. Texture based
method is able to keep pigeon in the foreground but there are quite a lot of false positives
especially the ground tiles which have slightly different color than the pigeon.

3. For fox image, both methods did quite well, but RGB based method missed some portion
of the legs of the fox whereas texture based method did not. With other post-processing
techniques, it might have been possible to make the foreground mask better.

4. I think both the methods perform really well overall but texture based method probably has
an edge over RGB based method since it can deal with similar colors comparitively easily.

1 ### ECE 661 - HW 6

2 ### Otsu thresholding

3
4 import numpy as np

5 import cv2

6 from matplotlib import pyplot as plt

7 import copy

8
9

13



10
11
12 def otsu_threshold(img ,iterations = 1,invert =0):

13 ### img is grayscale image , for RGB , send one channel at at time

14 ### returns mask for the image

15 output_mask = np.ones(img.shape)

16 if(len(img.shape)==3):

17 print("Error - " + str(img.shape [2])+" channel image is the 

input to otsu threshold method")

18 return -1

19
20 for i in range(iterations):

21 cur_for = img[output_mask !=0]

22 hist ,bins = np.histogram(cur_for ,bins= np.unique(cur_for))

23
24 ### normalize histogram

25
26 hist = hist/float(len(cur_for))

27 # print(np.sum(hist))

28 # print(bins)

29
30 ##define variables for calculation of threshold

31 w0 =0

32 mu0= 0

33 total_weighted_avg = np.mean(cur_for)

34 otsu_t=-1

35 max_sigmab2 = 0

36 sum1=0

37
38 # ## sigmaw2 + sigmab2 = constant so we dont need to

calculate sigmaw2

39 count=-1

40 for th in bins [:-2]:

41 count +=1

42 w0+=hist[count]

43 w1 = 1-w0

44 sum1 += th*hist[count]

45 mu0=sum1/w0

46 if w1==0:

47 break

48 mu1 = (total_weighted_avg -sum1)/w1

49 sigmab2 = w0*w1*np.square(mu0 -mu1)

50 if sigmab2 >max_sigmab2:

51 max_sigmab2 = sigmab2

52 otsu_t = th

53
54 print(otsu_t)

55

14



56 if invert ==0:

57 output_mask = img >otsu_t

58 else:

59 output_mask = img <otsu_t

60 return (output_mask !=0)

61
62
63 # In [149]:

64
65
66 def get_variance(img ,k):

67 ##avoids nested loops for variance calculation

68 k = int(k/2)

69 img_new = np.zeros((img.shape [0]+2*k,img.shape [1]+2*k))

70 img_new[k:img.shape [0]+k,k:img.shape [1]+k] = img

71 neighbours = []

72 for i in range(k,img.shape [0]+k):

73 for j in range(k,img.shape [1]+k):

74 neighbours.append(img_new[i-k:i+k+1,j-k:j+k+1].

flatten ())

75 neighbours = np.array(neighbours)

76 print(neighbours.shape)

77 variances = np.int32(np.var(np.array(neighbours ,dtype = np.

float32),axis =1))

78
79 variances = variances.reshape(img.shape [0],img.shape [1])

80
81 print(variances.shape)

82 return variances

83
84
85 # In [128]:

86
87
88 def texture_otsu(img ,N=[3,5,7], iterations =[1,1,1], invert = [0,0,0]):

89 ### function for texture based segemenation

90 gray = cv2.cvtColor(img , cv2.COLOR_RGB2GRAY)

91
92 ### place a window of N*N at each pixel location

93 masks = np.zeros(im.shape)

94 for i in range(len(N)):

95 ##this is the new channel values

96 var = get_variance(gray ,N[i])

97
98 temp = otsu_threshold(var.flatten (),iterations[i], invert[i

])

99 masks[:,:,i] = temp.reshape ((img.shape [0],img.shape [1]))

100 ##product of the three masks

15



101 final_mask = np.multiply(np.multiply(masks [:,:,0],masks [:,:,1]),

masks [:,:,2])

102 final_mask = final_mask !=0

103 return final_mask

104
105
106
107 # In [75]:

108
109
110 def get_contour(mask):

111 ## checks if any neighbour is not a part of the foreground to

compute contours

112 contour = np.zeros(mask.shape)

113 for i in range(1,mask.shape [0]-1):

114 for j in range(1,mask.shape [1]-1):

115 if mask[i][j]==0:

116 continue

117 if np.sum(mask[i-1:i+2,j-1:j+2]) <9:

118 contour[i][j]=1

119 return contour

120
121
122 # In [361]:

123
124 ### Parameters for the three images

125
126 ##cat image

127 # iterations =[1,0,0]

128 # invert = [0,0,0]

129
130 ##pigeon image

131 iterations =[1,1,1]

132 invert = [0,0,0]

133
134 ##fox image

135 # iterations =[0,0,2]

136 # invert = [0,0,0]

137
138 name= ’pigeon ’

139 im = np.uint8(cv2.imread(name+’.jpg’)[... ,:: -1])

140
141 plt.imshow(im)

142 masks = np.zeros(im.shape)

143 for i in range (3):

144
145 im1 = copy.deepcopy(im[:,:,i])

146

16



147 temp = otsu_threshold(im1.flatten (),iterations[i],invert[i])

148 masks[:,:,i] = temp.reshape ((im.shape [0],im.shape [1]))

149
150
151
152
153 # In [362]:

154
155
156 for i in range (1,4):

157 # plt.imshow(masks[:,:,2],cmap=’gray ’)

158 plt.imsave(name+’foreground_mask_channel ’+str(i)+’.jpg’,masks

[:,:,i-1],cmap=’gray’)

159
160
161 foreground = np.multiply(np.multiply(masks [:,:,0],masks [:,:,1]),

masks [:,:,2])

162 plt.imshow(foreground ,cmap=’gray’)

163 plt.imsave(name+’foreground_mask.jpg’,foreground ,cmap=’gray’)

164
165 ##save masked image

166 fore_img = np.zeros(im.shape)

167 for i in range (3):

168 fore_img [:,:,i] = np.multiply(im[:,:,i],foreground)

169 plt.imsave(name+’foreground.jpg’,np.uint8(fore_img))

170
171
172 # In [365]:

173
174
175 ##so we have a foreground mask at this point

176 ## we will erode and dilate the mask to get rid of single pixel

peaks and make image smooth

177
178 ##cat erode - dilate 1

179 ##pigeon erode - dilate 1

180 ## fox dil5 -erode6

181 kernel = np.ones ((3 ,3))

182 ero_fore = cv2.erode(np.float32(foreground),kernel ,iterations =1)

183 dil_fore = cv2.dilate(ero_fore ,kernel ,iterations =1)

184
185 plt.imshow(ero_fore ,cmap=’gray’)

186
187
188 # In [366]:

189
190
191 ##now we will extract the contours

17



192 cnt = get_contour(ero_fore)

193 plt.imshow(cnt ,cmap=’gray’)

194 plt.imsave(name+’contour_RGB.jpg’,cnt ,cmap=’gray’)

195
196
197 # In [367]:

198
199
200 ##now texture based otsu

201
202 ### Parameters for the three images

203
204 ##cat image

205 # iterations =[6,0,0]

206 # invert = [1,1,1]

207 # N=[3,5,7]

208 # invert_mask =1

209
210 ##pigeon image

211 iterations =[6,3,3]

212 invert = [1,1,1]

213 N=[7,9,11]

214 invert_mask =0

215
216 ##fox image

217 # iterations =[1,1,3]

218 # invert = [1,1,1]

219 # N=[3,5,7]

220 # invert_mask =1

221
222 im1 = copy.deepcopy(im)

223
224 temp = texture_otsu(im1 ,N,iterations ,invert)

225 mask = temp.reshape ((im.shape[0],im.shape [1]))

226 if invert_mask ==1:

227 mask=(mask ==0)

228 plt.imshow(mask ,cmap=’gray’)

229
230
231 # In [368]:

232
233
234 plt.imsave(name+’texture_foreground_mask.jpg’,mask ,cmap=’gray’)

235 fore_img = np.zeros(im.shape)

236 for i in range (3):

237 fore_img [:,:,i] = np.multiply(im[:,:,i],mask)

238 plt.imsave(name+’texture_foreground.jpg’,np.uint8(fore_img))

239

18



240
241 # In [369]:

242
243
244 ##so we have a foreground mask at this point

245 ## we will erode and dilate the mask to get rid of single pixel

peaks and make image smooth

246 ##cat dilation = 5, erosion = 1, kernel = 3*3

247 ##pegion nothing

248 ##fox nothing

249
250 kernel1 = np.ones ((5 ,5))

251 kernel2 = np.ones ((3 ,3))

252
253 dil_fore = cv2.dilate(np.float32(mask),kernel2 ,iterations =5)

254 ero_fore = cv2.erode(np.float32(dil_fore),kernel1 ,iterations = 1)

255
256 plt.imshow(dil_fore ,cmap=’gray’)

257
258
259 # In [370]:

260
261
262 ##now we will extract the contours

263 cnt = get_contour(dil_fore)

264 plt.imshow(cnt ,cmap=’gray’)

265 plt.imsave(name+’contour_texture.jpg’,cnt ,cmap=’gray’)

19


