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1 Theory

One application of interest point detection and matching in computer vision is panorama stitching, in which
a series of images of the same scene are merged into a single image. Correspondences are found between
images with overlapping features using an interest point detection algorithm. The RANSAC algorithm is
then applied to the correspondences to compute the optimal homography for image alignment. If desired, a
nonlinear least squares algorithm such as Levenberg-Marquardt can be applied to refine the homographies.
Finally, the images are stitched together using these homographies.

More detailed information about panorama generation is provided in the subsections below, followed by the
answer to the theory question posed. Implementation notes are given in section 3. Lastly, results of applying
the theory to a set of images, along with a discussion of those results, can be found in section 4.

1.1 Linear least squares for homography estimation

The minimum number of points required to estimate a homography between two images is 4. However,
using only the minimum number of points often yields poor results. To remedy this, a homography can be
estimated using more than four points using linear least-squares minimization. Two methods are available to
do this, with one using homogeneous equations and the other inhomogeneous equations. The latter method
is arguably more straightforward, so it was used for this assignment. Its functionality is described below.

Homography estimation using more than 4 corresponding points is quite similar to that using only four
points when inhomogeneous equations are used. Homography estimation using 4 corresponding points was
discussed at length in homeworks 2 and 3, so some steps will be omitted in this discussion. Recall that for
each pair of corresponding physical points in the domain (x, y) and range (x′, y′), we can write the equations:

x′physical = h11x+ h12y + h13 − h31xx′physical − h32yx′physical

y′physical = h21x+ h22y + h23 − h31xy′physical − h32yy′physical
where hij are the eight unknowns of the homography H to be estimated. The equations can then be written
in matrix form: 

x′1
y′1
x′2
y′2
x′3
y′3
x′4
y′4


=



x1 y1 1 0 0 0 −x1x′1 −y1x′1
0 0 0 x1 y1 1 −x1y′1 −y1y′1
x2 y2 1 0 0 0 −x2x′2 −y2x′2
0 0 0 x2 y2 1 −x2y′2 −y2y′2
x3 y3 1 0 0 0 −x3x′3 −y3x′3
0 0 0 x3 y3 1 −x3y′3 −y3y′3
x4 y4 1 0 0 0 −x4x′4 −y4x′4
0 0 0 x4 y4 1 −x4y′4 −y4y′4





h11
h12
h13
h21
h22
h23
h31
h32


Note that every two rows contain exactly the coefficients in the two equations above. By induction, we can
continue to add rows to these matrices using additional correspondences. However, we saw in the previous
assignments that the elements of h are solved via:

A−1x′ = h
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which requires A to be a square matrix, so its inverse can be calculated. If we have more than 8 equations,
A will not be square. In this case, we can use the pseudo-inverse of A, denoted A+, which will allow us to
minimize the error between x′ and Ah. Geometrically, this minimization is found by projecting x′ onto the
subspace spanned by Ah. That is, the least-squares minimization must satisfy:

(ATA)h = AT b

Solving for h yields:
h = (ATA)−1AT b = A+b

Here we see the mathematical definition of the pseudo-inverse:

A+ = (ATA)−1AT

So, ultimately the matrix equations created with more than four corresponding points can be solved using
linear least-squares minimization with the following formula:

A+x′ = h

All that is left is substituting the solved values of h back into the 3×3 homography matrix H. This will
yield the best estimate of the homography using more than 4 correspondences.

1.2 The RANSAC algorithm

As described in the previous section, robust homography estimation can be achieved using more than 4 pairs
of points. However, manually picking these correspondences becomes increasingly difficult as more are used.
As such, it is desirable to have an automatic method of choosing correspondences. This can be accomplished
using the Random Sampling and Consensus (RANSAC) algorithm, which automatically determines valid
correspondences between interest points in images of the same scene.

Before RANSAC can be employed, interest points in different images of the same scene are needed. These
interest points can be extracted using an interest point extractor, such as a Harris corner detector or the SIFT
or SURF algorithms. Additionally, corresponding interest points between the scene views must be marked
using a method such as the Sum of Squared Differences or Normalized Cross Correlation. Unsurprisingly,
some of the correspondences between interest points are likely to be false, so a method is needed to reject
these false pairings.

Identifying valid and invalid correspondences is the focus of the RANSAC algorithm. Valid correspondences
are called inliers, while invalid correspondences are called outliers. Several parameters are needed to apply
the algorithm:

• σ: The variance parameter of the estimated Gaussian noise factor between interest points in the target
images. Naturally, interest points will not land on exactly the same real-world point in both images,
but may instead be shifted by some amount of noise. Often, σ lies between 0.5 and 2.

• δ: The decision threshold (or radius) around each interest point that constitutes a valid correspondence
(an inlier). Transformed points that fall within this distance of its true corresponding point are
considered inliers, while those that fall outside of the radius are outliers, or invalid correspondences.
Typically, δ = 3σ.

• n: The number of correspondences used for calculating the initial homography, typically between 4
and 10.

• ε: An initial guess as to the percentage of correspondences that are invalid.

• N : The number of trials to conduct. This value should be set such that at least one trial produces a
set that contains no outliers. The value of N is largely based off of p, and is calculated by:

N =
ln(1− p)

ln(1− (1− ε)n)

2



• p: The probability that at least one trial will contain no outliers. We often set p = 0.99.

• M : The minimum size of a valid inlier set, calculated: M = (1− ε)n

With these parameters, The RANSAC algorithm proceeds as follows:

1. Begin with a set of corresponding interest points between two different images of the same scene. This
set is likely to contain both valid and invalid correspondences (inliers and outliers).

2. Randomly select n correspondences from the set without replacement.

3. Calculate an initial homography Hij from image i to image j using the n correspondences.

4. Apply the homography to all interest points in image i to obtain the transformed interest points.

5. Calculate the distance d between each transformed interest point and its true corresponding interest
point, as initially detected by the interest point detector.

6. Add any interest points where d ≤ δ to a set of inliers. Points where d > δ constitute the outlier set.
Keep note of these sets for each trial.

7. Repeat steps 2-6 N times.

8. Recalculate the homography between images i and j using all correspondences in the largest inlier
set. This largest set should have at least M correspondences, and will be the optimal homography
constructed using linear least-squares minimization with more than 4 interest points.

The final homography determined using RANSAC can then be applied to transform each image to the domain
of another image. This is very helpful when aligning several images, as required for panorama stitching.

1.3 Non-linear least squares using the Levenberg-Marquardt method

The goal of any nonlinear least-squares minimization algorithm is to minimize the error present in a cost
function, C(p):

C(p) = ||X − f(p)||2

where X is a vector containing theoretical results and f(p) is a vector containing measured results corre-
sponding with each element in X, computed through a nonlinear function with a dependence on some input
p. The goal is to choose p such that the error C(p) is minimized. In order for the function to work, however,
an initial guess of p must be provided.

In our scenario, p represents the eight unknown coefficients of the homography matrix H. We wish to find
the best coefficients to minimize any errors in the homography calculation. To begin p is initially set using
the homography matrix coefficients output from the RANSAC algorithm. X is a 2N × 1 vector containing
alternating (x′, y′) coordinates in a range image that correspond to (x, y) coordinates in the domain. That
is:

X =



x′1
y′1
x′2
y′2
...
x′N
y′N


These points are output directly from an interest point detection algorithm, and N is the number of interest
points detected. The f(p) term is a 2N × 1 vector of the same form as X, but with each entry being x̃
or ỹ—the resulting coordinates after applying a homography to the domain image (x, y) points. Several
methods can then be used to minimize the error between these terms.
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The LM method is a robust and efficient algorithm for computing nonlinear least-squares minimization. It
combines the numerical stability of the Gradient Descent (GD) method and the computational efficiency of
the Gauss-Newton (GS) method for computing nonlinear least-squares. This method requires some knowl-
edge about GD and GN that are not presented here, but the results are used. It can be shown that the
minimal solution found using the GN method is given by:

δp = (JT
f Jf )−1JT

f ε(p)

which can be re-written as:
(JT

f Jf )δp = JT
f ε(p)

where Jf is the jacobian of the function f with dependence on p. Additionally, if the product JT
f Jf is a

diagonal matrix, then both GD and GN produce the same final solution. We can then modify the GN result
to incorporate a weighting of the GD result:

(JT
f Jf + µI)δp = JT

f ε(p)

The term µ is known as the damping coefficient, and determines which solution (GD or GN) is targeted
most closely at each iteration step. If µ is large, the solution will tend towards that produced by the GD
method. If µ is small, it will tend toward the result produced by GN. Obviously, being able to set µ properly
is critical to the performance of LM.

We also must note that the LM, GD, and GN nonlinear least-squares algorithms are iterative, meaning they
take several steps to reach a solution, optimizing themselves at each step. When using LM, the output δp
at each step k is:

δp = (JT
f Jf + µkI)−1JT

f ε(pk)

The new ”minimized” value of p is then pk+1 = pk + δp. This value is ”tested” by inputting it to the cost
function and comparing it with the previous value of that function, i.e. C(p) − C(pk+1). This result is
important: it characterizes how ”good” the step was (i.e. if the step moved closer to a minimal solution
without missing it). More specifically, the cost function difference is used to compute a ratio that defines
the next value of µ:

ρk+1 =
C(p)− C(pk+1)

δTp J
T
f ε(pk) + δTµkIδp

The value of µ for the next iteration is then:

µk+1 = µk ·max{
1

3
, 1− (2ρk+1 − 1)3}

This value then drives the minimization formula closer to the GD or GN solution. Finally, the initial value
of µ needs to be calculated. We do this by setting:

µ0 = τ ·max{diag(JT
f Jf )}

for some 0 < τ ≤ 1. The process described above is repeated until the LM algorithm produces an error that
is sufficiently small. The resulting p is the nonlinear least-squares solution.
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2 Theory questions

Q: Conceptually speaking, how do we differentiate between the inliers and the outliers when using RANSAC
for solving the homography estimation problem using the interest points extracted from two different photos
of the same scene?

A: RANSAC differentiates inliers and outliers in the following way: First, the homography between a pair
of images (we will call them images 1 and 2) is estimated using a few selected corresponding interest points
in each image, say p1 in image 1 and p2 in image 2. This homography is then applied to each interest
point in image 1, to get a point pt in the reference frame of image 2. The distance d between pt and p2 is
then calculated (this can be done because pt and p2 are in the same reference frame). If d ≤ δ (with δ set
beforehand with some knowledge of the data), we say that p1 and p2 constitute a valid correspondence, or
an inlier. If d > δ, p1 and p2 constitute an outlier correspondence, or an invalid one.

Q: As you will see in lecture 12, Gradient-Descent (GD) is a reliable method for minimizing a cost function,
but it can be excruciatingly slow. At the other extreme, we have the much faster Gauss-Newton (GN)
method which can be numerically unstable. Explain in your own words how the Levenberg-Marquardt (LM)
algorithm combines the best of GD and GN to give us a method that is reasonably fast and numerically
stable at the same time.

A: When it comes to nonlinear least-squares minimization, the Gradient Descent (GD) and Gauss-Newton
(GN) methods are both good options. However, they each have a downfall: GD can perform extremely
slowly because the step size as it approaches the solution becomes smaller and smaller (requiring more and
more computations). GN, on the other hand, is efficient, but can fail if the Jacobian of the transformed
points is not full rank. Additionally, the initial guess must be somewhat close to the true minimum solution
for GN to work. Fortunately, the Levenberg-Marquardt (LM) algorithm combines the best of GD and GN
to attempt to overcome these issues.

At a high level, LM behaves like GD if/when the initial/current guess is far from the true minimum, but
switches to behave like GN when the guess becomes sufficiently close to that minimum. This is possible
because when the product of the jacobian matrix of the transformed points and its transpose are a diagonal
matrix, the GD and GN solutions are the same. This gives us an outlet to combine the two, which is
accomplished by adding a damping factor to the jacobian product that effectively governs how strong of an
influence GD plays in the final solution. When the damping factor is large, the solution is heavily influenced
by GD. When the damping factor is small (or 0), the solution is heavily influenced (or totally determined)
by GN. This allows the true solution to be obtained with stability and speed.

Several factors determine the value of the damping factor, but the main idea is that the damping factor has
an inverse relationship with the distance the current solution point is from the true solution point. That is,
the nearer the solution point is to the true solution, the smaller the damping factor will be, and therefore
the more heavily GN will weigh on the calculation (this gives the algorithm its convergence speed). The cost
function is also used to determine whether a step towards the solution is ideal or not. If the step is not ideal
(i.e. it may have jumped ”too far” towards the predicted solution), GD will weigh more heavily than GN to
prevent any numerical instability. Overall, the LM method is both stable and computationally efficient.
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3 Implementation notes

• Optimal parameters for RANSAC were found to be: σ = 2, δ = 3σ = 6, p = 0.99, ε = 0.25, n = 6.

• The SIFT algorithm for finding correspondences between images was used for interest point detec-
tion. This method was used over the Harris corner detector developed in homework 4 and the SURF
algorithm for its increased robustness and accuracy.

• Correspondences were made from the strongest 250 SIFT interest points in each image pair by mini-
mizing the SSD between descriptors of all possible pairs of interest points. In order for a match to be
valid, the two points must correspond with each other; that is, the points must be each other’s best
match from the set of all interest points in each image. This ensures a 1:1 correspondence between all
interest points.

• The scipy.optimize.least squares() function was used to implement the non-linear least squares LM
method. No custom implementation was created for this assignment.

• The middle image was used as the anchor image for panorama stitching. All homographies were
calculated with respect to this image. That is, the homography Hk applied to image k = 1, 2, 3, 4, 5
was:

H1 = H13 = H23 ×H12

H2 = H23

H3 = I3

H4 = H−134

H5 = H53 = H−134 ×H
−1
45

Where I3 is the 3×3 identity matrix. This was done to minimize distortion that results from the
combination of several homographies, as the small errors in each become amplified.

• A custom algorithm was used for image stitching for efficiency. This method automatically computes
the panorama size as images are added and ensures a tight fit (i.e. no entire row/column of the final
panorama will be entirely empty). It also avoids the need to compute translation components in some
of the homographies. The algorithm works as follows:

1. Use the anchor image as the initial panorama. The height of the anchor image constrains the
height of the panorama.

2. Begin appending images to the right of the anchor image. For each image i, calculate the new
vertex locations by applying the homography Hi. Use the intersection of the line defined by the
two right-most transformed vertices and the top and bottom of the panorama to determine how
many empty pixels to add to the panorama. Also note the minimum x-coordinate of the left-most
vertices to define a region to update with pixels from the image to append.

3. Apply the homography Hi to the pixels in the region to update as determined above. Note that
each pixel to be updated has to be shifted by the minimum x-coordinate vertex to correctly apply
the homography.

4. Append images to the left of the anchor image using the same process as above, but expanding
the canvas using the minimum x-coordinate vertices, rather than the maximum. Additionally, we
must add back the magnitude of the minimum x-coordinate vertex value (which will be negative)
to each point to be updated in the final panorama to ensure pixels are updated properly.

• Two approaches were tested to update pixels within the region to update. One method was to simply
update all pixels in the region with pixels from the new image. This was the selected method. The
other method was to update only black pixels (i.e. pixels that had not already been taken from one of
the input images). The latter method was not used because it caused some minor duplication of small
pixel regions near stitch lines.
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4 Results

After completing the tasks, I have drawn the following conclusions:

• The resulting panorama looks quite good. To someone unfamiliar with each individual image, it may
be difficult to see any errors. However, some errors are present in the output image, and stem from
several causes:

– Errors in homography calculations (not having a minimal correspondence set, rounding errors).

– Movement in the scene such as the clouds and water that were not stationary between images.

– Differing image characteristics such as lighting or white balance between images. This especially
causes very visible stitch lines.

• Almost all of the correspondences between images detected with SIFT and my matching algorithm
seem perfect to the human eye. However, several of these became outliers in some of the images likely
due to slight movements of the camera between shots. Each image was taken with a Nikon D850 DSLR
camera at 1/30 sec, f/11, ISO 64 with a 24mm focal length mounted on a tripod. Due to the nature
of the scene and the physical length of the lens, some parallax effects were introduced in the images as
the camera was rotated, which likely resulted in several correspondences being marked as outliers. To
minimize this, I set σ to 2, which is the highest value in its typical range. It is possible that pushing
σ even higher to include even more ”very close” correspondences would produce even better results.

• Image pars 1-2, 2-3, and 4-5 had 246, 250, and 208 correspondences, respectively. However, image pair
3-4 had only 189–just one higher than the required 188 for satisfactory homography estimation. It is
likely that parallax effects from the large foreground element played a major role in this lower value.

• The LM non-linear least squares method does seem to improve each homography slightly. However,
the difference these make in the final panorama are hardly noticeable. Likely, the LM algorithm would
work much better in images with fewer inliers.

Images depicting interest points and correspondences, inliers and outliers, and the final stitched panorama
can be found on the following pages. In images showing inliers and outliers, inliers are marked in green, and
outliers in red.
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4.1 Input images

Figure 1: Input image 1.
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Figure 2: Input image 2.
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Figure 3: Input image 3.
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Figure 4: Input image 4.
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Figure 5: Input image 5.
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4.2 Image correspondences

Figure 6: SIFT correspondences between images 1 and 2 (no lines for clarity).

Figure 7: SIFT correspondences between images 1 and 2 (with lines).
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Figure 8: Inliers and outliers between images 1 and 2.

Figure 9: SIFT correspondences between images 2 and 3 (no lines for clarity).
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Figure 10: SIFT correspondences between images 2 and 3 (with lines).

Figure 11: Inliers and outliers between images 2 and 3.
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Figure 12: SIFT correspondences between images 3 and 4 (no lines for clarity).

Figure 13: SIFT correspondences between images 3 and 4 (with lines).
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Figure 14: Inliers and outliers between images 3 and 4.

Figure 15: SIFT correspondences between images 4 and 5 (no lines for clarity).
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Figure 16: SIFT correspondences between images 4 and 5 (with lines).

Figure 17: Inliers and outliers between images 4 and 5.
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4.3 Final panoramas

Figure 18: Final panorama without LM refinement.

Figure 19: Final panorama with LM refinement.
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5 Source Code

## ============= FILE INFORMATION ============= ##
#
# Name : Brian He l f r e ch t
# Email : bhelfre@purdue . edu
# Course : ECE 661
# Assignment : Homework 5 , Task 1
# Due date : October 5 , 2020
#
## ============= PACKAGE/FILE IMPORTS ============= ##
import numpy as np
import matp lo t l ib
import cv2 as cv
import sc ipy
from sc ipy import opt imize
import math
import time
import random
## ============= FUNCTION DEFINITIONS ============= ##
def c a l c I n t e r s e c t i o n ( ln1 , ln2 ) :

#Calcu late a HC point given 2 l i n e s
i n t e r s e c t = np . c r o s s ( ln1 , ln2 )
return i n t e r s e c t / i n t e r s e c t [ 2 ]

de f ca l cL ine ( pt1 , pt2 ) :
#Calcu late a HC l i n e given two po int s
i f l en ( pt1 ) < 3 :

pt1 . append ( 1 . 0 )
i f l en ( pt2 ) < 3 :

pt2 . append ( 1 . 0 )
l i n e = np . c r o s s ( pt1 , pt2 )
return l i n e / l i n e [ 2 ]

de f f indSIFTCorrespondences ( pts1 , img1Des , pts2 , img2Des , maxMatches ) :
#Find correspondences us ing SSD between
#the d e s c r i p t o r s o f image 1 and image 2 .

img12Corr = np . ze ro s ( l en ( img1Des ) , np . uint16 ) ∗ −1
img21Corr = np . ze ro s ( l en ( img2Des ) , np . uint16 ) ∗ −1
img12Vals = np . ze ro s ( l en ( img1Des ) , np . uint16 ) ∗ −1
img21Vals = np . ze ro s ( l en ( img2Des ) , np . uint16 ) ∗ −1

#Simi l a r to the proce s s f o r the other algor ithms , compare each de s c r i p t o r
#in image 1 to each in image 2 , and c a l c u l a t e the SSD .
f o r i in range ( l en ( img1Des ) ) :

des = img1Des [ i ]
s qD i f f s = ( des − img2Des ) ∗∗ 2
sumSqDiffs = np . sum( sqDi f f s , 1)
img12Corr [ i ] = np . argmin ( sumSqDiffs )
img12Vals [ i ] = np . min ( sumSqDiffs )

f o r i in range ( l en ( img2Des ) ) :
des = img2Des [ i ]
s qD i f f s = ( des − img1Des ) ∗∗ 2
sumSqDiffs = np . sum( sqDi f f s , 1)
img21Corr [ i ] = np . argmin ( sumSqDiffs )
img21Vals [ i ] = np . min ( sumSqDiffs )

#Extract the correspondences o f only the po int s that exac t ly correspond
#to each other
correspondences = [ ]
va l s = [ ]
f o r i in range ( l en ( img12Corr ) ) :

i f ( img21Corr [ img12Corr [ i ] ] == i ) :
pts1Idx = i
pts2Idx = img12Corr [ i ]
correspondences . append (np . around ( [ pts1 [ pts1Idx ] . pt , pts2 [ pts2Idx ] . pt ] ) . astype ( i n t ) )
va l s . append ( img12Vals [ pts1Idx ] + img21Vals [ pts2Idx ] )

#Sort the correspondences based on the sma l l e s t SSD values
sortedCorr = [ pt f o r , pt in sor ted ( z ip ( vals , correspondences ) , key=lambda pa i r : pa i r [ 0 ] ) ]
correspondences = sortedCorr [ 0 : maxMatches ] #Take the maxMatches most matches
return correspondences

de f showCorrespondences ( img1 , img2 , correspondences ) :
#Find the image with the sho r t e s t he ight
img1Height = img1 . shape [ 0 ]
img2Height = img2 . shape [ 0 ]
i f ( img1Height < img2Height ) : #Image 1 sho r t e r

img1 = np . concatenate ( ( img1 , np . z e ro s ( ( img2Height−img1Height , img1 . shape [ 1 ] , 3 ) ) ) , 0)
e l i f ( img2Height < img1Height ) : #Image 2 sho r t e r

img2 = np . concatenate ( ( img2 , np . z e ro s ( ( img1Height−img2Height , img2 . shape [ 1 ] , 3 ) ) ) , 0)

noLines = np . concatenate ( ( img1 , img2 ) , 1) #Stack images ho r i z on t a l l y
l i n e s = noLines . copy ( ) #Stack images ho r i z on t a l l y
img2OffsetX = img1 . shape [ 1 ]

#Estab l i sh po s s i b l e l i n e c o l o r s
# RBGCMY ( randomly ass igned to d i f f e r e n t i a t e )
c o l o r s = ((255 , 0 , 0) , #R

( 0 , 255 , 0) , #G
( 0 , 0 , 255) , #B
( 0 , 255 , 255) , #C
(255 , 0 , 255) , #M
(255 , 255 , 0) ) #Y

#Draw correspondence po int s and l i n e s between them
fo r i in range ( l en ( correspondences ) ) :

ptSet = correspondences [ i ] #Form : ( ( x1 , y1 ) , ( x2 , y2 ) )
co l o r Idx = i % len ( c o l o r s )
pt1 = tup le ( ptSet [ 0 ] )
pt2 = tup le (np . array ( ptSet [ 1 ] ) + [ img2OffsetX , 0 ] )

#Draw l i n e s f i r s t to ensure po int s are v i s i b l e on top
cv . l i n e ( l i n e s , pt1 , pt2 , c o l o r s [ c o l o r Idx ] , 1)
cv . c i r c l e ( l i n e s , pt1 , 3 , c o l o r s [ c o l o r Idx ] , −1)
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cv . c i r c l e ( l i n e s , pt2 , 3 , c o l o r s [ c o l o r Idx ] , −1)
cv . c i r c l e ( noLines , pt1 , 3 , c o l o r s [ c o l o r Idx ] , −1)
cv . c i r c l e ( noLines , pt2 , 3 , c o l o r s [ c o l o r Idx ] , −1)

return [ noLines , l i n e s ]

de f s h ow In l i e r sOu t l i e r s ( img1 , img2 , i n l i e r s , o u t l i e r s ) :
#Find the image with the sho r t e s t he ight
img1Height = img1 . shape [ 0 ]
img2Height = img2 . shape [ 0 ]
i f ( img1Height < img2Height ) : #Image 1 sho r t e r

img1 = np . concatenate ( ( img1 , np . z e ro s ( ( img2Height−img1Height , img1 . shape [ 1 ] , 3 ) ) ) , 0)
e l i f ( img2Height < img1Height ) : #Image 2 sho r t e r

img2 = np . concatenate ( ( img2 , np . z e ro s ( ( img1Height−img2Height , img2 . shape [ 1 ] , 3 ) ) ) , 0)

l i n e s = np . concatenate ( ( img1 , img2 ) , 1) #Stack images ho r i z on t a l l y
img2OffsetX = img1 . shape [ 1 ]

#Draw i n l i e r s
f o r i in range ( l en ( i n l i e r s ) ) :

ptSet = i n l i e r s [ i ] #Form : ( ( x1 , y1 ) , ( x2 , y2 ) )
pt1 = tup le ( ptSet [ 0 ] )
pt2 = tup le (np . array ( ptSet [ 1 ] ) + [ img2OffsetX , 0 ] )

#Draw l i n e s f i r s t to ensure po int s are v i s i b l e on top
cv . l i n e ( l i n e s , pt1 , pt2 , (0 , 255 , 0) , 1)
cv . c i r c l e ( l i n e s , pt1 , 3 , (0 , 255 , 0) , −1)
cv . c i r c l e ( l i n e s , pt2 , 3 , (0 , 255 , 0) , −1)

#Draw o u t l i e r s
f o r i in range ( l en ( o u t l i e r s ) ) :

ptSet = o u t l i e r s [ i ] #Form : ( ( x1 , y1 ) , ( x2 , y2 ) )
pt1 = tup le ( ptSet [ 0 ] )
pt2 = tup le (np . array ( ptSet [ 1 ] ) + [ img2OffsetX , 0 ] )

#Draw l i n e s f i r s t to ensure po int s are v i s i b l e on top
cv . l i n e ( l i n e s , pt1 , pt2 , (0 , 0 , 255) , 1)
cv . c i r c l e ( l i n e s , pt1 , 3 , (0 , 0 , 255) , −1)
cv . c i r c l e ( l i n e s , pt2 , 3 , (0 , 0 , 255) , −1)

return l i n e s

de f calcHomography ( co r r s ) :
#Ca lcu la t e s the 3x3 homography matrix given corresponding domain and range po int s

#Make sure at l e a s t 4 po int s are s p e c i f i e d .
numCorrs = len ( co r r s )
i f ( numCorrs < 4 ) :

p r in t ( ’WARNING! At l e a s t 4 po int s are needed to c a l c u l a t e a homography ! ’ )
return

A = np . ze ro s ( (2 ∗ numCorrs , 8 ) )
b = np . ze ro s ( (2 ∗ numCorrs , 1 ) )

#Populate the A matrix and x vector us ing the correspondences
f o r i in range ( numCorrs ) :

co r r = co r r s [ i ]
domPt = cor r [ 0 ]
rngPt = cor r [ 1 ]

#Append x and y range image coo rd ina te s
b [2∗ i ] = rngPt [ 0 ]
b [2∗ i +1] = rngPt [ 1 ]

#Append to A matrix to populate with equat ions
A[2∗ i ] = np . array ( [ domPt [ 0 ] , domPt [ 1 ] , 1 , 0 , 0 , 0 , \

−domPt [ 0 ]∗ rngPt [ 0 ] , −domPt [ 1 ]∗ rngPt [ 0 ] ] )
A[2∗ i +1] = np . array ( [ 0 , 0 , 0 , domPt [ 0 ] , domPt [ 1 ] , 1 , \

−domPt [ 0 ]∗ rngPt [ 1 ] , −domPt [ 1 ]∗ rngPt [ 1 ] ] )

pinvA = np . l i n a l g . pinv (A) #Compute pseudo−i nv e r s e
hVec = np . dot ( pinvA , b) #Compute h
hMat = np . reshape (np . append (hVec , 1) , (3 , 3 ) ) #Reshape
return hMat

def g e t I n l i e r s (H, corrs , de l t a ) :
#F i r s t c r ea t e an Nx3 matrix o f domain po int s
#We have to do t h i s a b i t s lowly due to the way the correspondences are returned
#in sor ted form .
img1Pts = np . z e ro s ( ( l en ( c o r r s ) , 3) , np . uint16 )
img2Pts = np . z e ro s ( ( l en ( c o r r s ) , 3) , np . uint16 )

#Create HC vec to r s f o r the correspondences in images 1 and 2
f o r i in range ( l en ( c o r r s ) ) :

img1Pts [ i ] = [∗ co r r s [ i ] [ 0 ] , 1 ]
img2Pts [ i ] = [∗ co r r s [ i ] [ 1 ] , 1 ]

#Calcu late tranformed coord ina te s
rngPts = np . t ranspose (np . dot (H, np . t ranspose ( img1Pts ) ) )
rngPts [ : , 0 ] = rngPts [ : , 0 ] / rngPts [ : , 2 ]
rngPts [ : , 1 ] = rngPts [ : , 1 ] / rngPts [ : , 2 ]
#rngPts = np . ndarray . astype (np . round ( rngPts ) , i n t )

#Get phys i ca l coo rd ina t e s ( remove ’ z ’ element )
img2Pts = img2Pts [ : , 0 : 2 ]
rngPts = rngPts [ : , 0 : 2 ]

#Compute the d i s tance between the transformed and i n i t a l range po int s
d i f f s = ( img2Pts − rngPts ) ∗∗ 2
d i s t s = np . sq r t (np . sum( d i f f s , 1 ) )

#Get i n l i e r s and o u t l i e r s
i n l i e r s = np . array ( co r r s ) [ d i s t s <= de l ta ]
o u t l i e r s = np . array ( c o r r s ) [ d i s t s > de l ta ]

#Return the correspondences within the requ i r ed d i s tance
return [ i n l i e r s , o u t l i e r s , np .mean( d i s t s ) ]
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def ransac ( sigma , p , ep s i l , n , c o r r s ) :
de l t a = 3 ∗ sigma #Typical
nTot = len ( c o r r s ) #Total number o f correspondences ava i l a b l e
N = math . c e i l (math . log (1 − p) / math . log (1 − ( (1 − e p s i l ) ∗∗ n ) ) ) #Tr i a l s to conduct
M = math . c e i l ( (1 − e p s i l ) ∗ nTot ) #Minimum s i z e o f acceptab le i n l i e r s e t
p r in t ( ’ nTot : ’ , nTot )
p r in t ( ’N: ’ , N)
pr in t ( ’M: ’ , M)

out l i e rMat = [ ]
i n l i e rMat = [ ]
i n l i e rL en = [ ]

f o r i in range (N) : #Perform N t r i a l s
s e lCor r = random . sample ( corrs , n) #Randomly s e l e c t n correspondences w/o replacement
H = calcHomography ( se lCor r )
[ i n l i e r s , o u t l i e r s , mean ] = g e t I n l i e r s (H, corrs , de l t a )
i n l i e rL en . append ( l en ( i n l i e r s ) )
in l i e rMat . append ( i n l i e r s )
out l i e rMat . append ( o u t l i e r s )
p r in t ( ’ I n l i e r s e t %2d : Length = %d ’ % ( i , l en ( i n l i e r s ) ) )

b e s t I n l i e r I d x = np . argmax ( i n l i e rL en ) #Most matches
b e s t I n l i e rL en = in l i e rL en [ b e s t I n l i e r I d x ]
p r in t ( ’ Best i n l i e r l ength : ’ , b e s t I n l i e rL en )
i f ( b e s t I n l i e rL en < M) :

pr in t ( ’WARNING! Best i n l i e r s e t o f l ength %d i s l e s s than M! ’ % ( be s t I n l i e rL en ) )
b e s t I n l i e r S e t = in l i e rMat [ b e s t I n l i e r I d x ]
be s tOut l i e rSe t = out l i e rMat [ b e s t I n l i e r I d x ]
return [ b e s t I n l i e r S e t , b e s tOut l i e rSe t ]

de f addFrame (pano , frame , H, appendRight , prevMinX = 0 ) :
#Calcu late the transformed vertex po s i t i o n s o f the new frame to determine how
#to expand the panorama .
[ width , he ight ] = [ frame . shape [ 1 ] , frame . shape [ 0 ] ]
v e r t i c e s = ( (0 , 0) , (0 , height −1) , ( width−1, height −1) , ( width−1, 0) )
xVerts = [ ]
yVerts = [ ]

#Calcu late transformed vertex coo rd ina te s
f o r i in range ( 4 ) :

x = v e r t i c e s [ i ] [ 0 ]
y = v e r t i c e s [ i ] [ 1 ]
[ newX , newY , newZ ] = np . dot (H, [ x , y , 1 . 0 ] ) #World to Image
xVerts . append ( round (newX / newZ ))
yVerts . append ( round (newY / newZ ))

#Determine the minimum coord ina te s to expand the frame
frameTop = ca l cL ine ( [ 0 , 1 ] , [ 10 , 1 ] )
frameBot = ca l cL ine ( [ 0 , pano . shape [ 0 ] ] , [ 10 , pano . shape [ 0 ] ] )

#Expand the panorama
i f ( appendRight ) :

panoEdge = ca l cL ine ( [ xVerts [ 2 ] , yVerts [ 2 ] ] , [ xVerts [ 3 ] , yVerts [ 3 ] ] )
t op In t e r s e c t = c a l c I n t e r s e c t i o n ( frameTop , panoEdge )
bo t I n t e r s e c t = c a l c I n t e r s e c t i o n ( frameBot , panoEdge )
maxX = round (max( t op In t e r s e c t [ 0 ] , b o t I n t e r s e c t [ 0 ] ) )
minX = min( xVerts )
panoExpansion = np . z e ro s ( ( pano . shape [ 0 ] , maxX − pano . shape [ 1 ] , 3) , np . u int8 )
newFrameRegion = np . z e ro s ( ( pano . shape [ 0 ] , maxX − minX , 3) , np . u int8 )
pano = np . concatenate ( ( pano , panoExpansion ) , 1) #Add the blank reg ion

#Now, update the added p i x e l s with p i x e l s in the frame
newFrRegW = newFrameRegion . shape [ 1 ]
newFrRegH = newFrameRegion . shape [ 0 ]
xyIdxs = np . i n d i c e s ( (newFrRegW , newFrRegH ))
xIdxs = xyIdxs [ 0 ] . reshape (newFrRegW∗newFrRegH , 1) + minX

e l s e :
panoEdge = ca l cL ine ( [ xVerts [ 0 ] , yVerts [ 0 ] ] , [ xVerts [ 1 ] , yVerts [ 1 ] ] )
t op In t e r s e c t = c a l c I n t e r s e c t i o n ( frameTop , panoEdge )
bo t I n t e r s e c t = c a l c I n t e r s e c t i o n ( frameBot , panoEdge )
minX = round (min ( t op In t e r s e c t [ 0 ] , b o t I n t e r s e c t [ 0 ] ) )
maxX = max( xVerts )
panoExpansion = np . z e ro s ( ( pano . shape [ 0 ] , abs (minX − prevMinX ) , 3) , np . int16 )
newFrameRegion = np . z e ro s ( ( pano . shape [ 0 ] , abs (minX) + maxX, 3) , np . int16 )
pano = np . concatenate ( ( panoExpansion , pano ) , 1)

#Now, update the added p i x e l s with p i x e l s in the frame
newFrRegW = newFrameRegion . shape [ 1 ]
newFrRegH = newFrameRegion . shape [ 0 ]
xyIdxs = np . i n d i c e s ( (newFrRegW , newFrRegH ))
xIdxs = xyIdxs [ 0 ] . reshape (newFrRegW∗newFrRegH , 1) + minX

yIdxs = xyIdxs [ 1 ] . reshape (newFrRegW∗newFrRegH , 1)
zIdxs = np . ones ( (newFrRegW∗newFrRegH , 1) , np . u int8 )
f i n a l I d x s = np . ndarray . astype (np . concatenate ( ( xIdxs , yIdxs , z Idxs ) , 1) , np . int16 )
invH = np . ndarray . astype (np . l i n a l g . pinv (H) , np . f l o a t 3 2 )
newIdxs = np . t ranspose (np . dot ( invH , np . t ranspose ( f i n a l I d x s ) ) )
newIdxs [ : , 0 ] = newIdxs [ : , 0 ] / newIdxs [ : , 2 ]
newIdxs [ : , 1 ] = newIdxs [ : , 1 ] / newIdxs [ : , 2 ]
newIdxs = np . ndarray . astype (np . round ( newIdxs ) , i n t )

#Trim rows that correspond to po int s out s ide the domain image
f i n a l I d x s = f i n a l I d x s [ newIdxs [ : , 0 ] >= 0] #Trim any x < 0
newIdxs = newIdxs [ newIdxs [ : , 0 ] >= 0] #Trim any x < 0
f i n a l I d x s = f i n a l I d x s [ newIdxs [ : , 1 ] >= 0] #Trim any y < 0
newIdxs = newIdxs [ newIdxs [ : , 1 ] >= 0] #Trim any y < 0
f i n a l I d x s = f i n a l I d x s [ newIdxs [ : , 0 ] < width ] #Trim any x > width
newIdxs = newIdxs [ newIdxs [ : , 0 ] < width ] #Trim any x > width
f i n a l I d x s = f i n a l I d x s [ newIdxs [ : , 1 ] < he ight ] #Trim any y > he ight
newIdxs = newIdxs [ newIdxs [ : , 1 ] < he ight ] #Trim any y > he ight

i f ( not appendRight ) :
f i n a l I d x s [ : , 0 ] = f i n a l I d x s [ : , 0 ] − minX
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#I t e r a t e over the remaining p i x e l s . I could not f i nd a be t t e r method f o r t h i s ( yet )
f o r row in range (np . s i z e ( newIdxs , 0 ) ) :

pano [ f i n a l I d x s [ row , 1 ] ] [ f i n a l I d x s [ row , 0 ] ] = frame [ newIdxs [ row , 1 ] ] [ newIdxs [ row , 0 ] ]

re turn [ pano , minX ]

de f costFunc (h , i n l i e r s ) :
#Minimize E = |X − F|ˆ2
X = [ ]
F = [ ]

#Create HC vec to r s f o r the correspondences in images 1 and 2
f o r i in range ( l en ( i n l i e r s ) ) :

xd = i n l i e r s [ i ] [ 0 ] [ 0 ] #x po int s
yd = i n l i e r s [ i ] [ 0 ] [ 1 ]
xr = i n l i e r s [ i ] [ 1 ] [ 0 ] #x ’ po int s
yr = i n l i e r s [ i ] [ 1 ] [ 1 ]

#Append range po int s
X. append ( xr )
X. append ( yr )

#Append mappings ( po int s transformed through the homography ) to F
F . append ( ( h [ 0 ]∗ xd + h [ 1 ]∗ yd + h [ 2 ] ) / (h [ 6 ]∗ xd + h [ 7 ]∗ yd + h [ 8 ] ) )
F . append ( ( h [ 3 ]∗ xd + h [ 4 ]∗ yd + h [ 5 ] ) / (h [ 6 ]∗ xd + h [ 7 ]∗ yd + h [ 8 ] ) )

#We only need to return the r e s i du a l vector , not i t s norm
return np . array (X) − np . array (F)

## ============= MAIN CODE BEGINS BELOW ============= ##
#Print ve r s i on in format ion to v e r i f y l i b r a r y loads
pr in t ( ’OpenCV Version : ’ , cv . v e r s i o n )

’ ’ ’ ============= TASK 1.1 ============= ’ ’ ’

hMats = np . ze ro s ( (5 , 3 , 3 ) )
useLM = True

f o r imgNum in range (1 , 6 ) : #1−6
pr in t(’======================================’)
pr in t ( ’ Image pa i r %d−%d : ’ % (imgNum, imgNum+1))
#Read in the input images f o r the image pa i r
img1 = cv . imread ( ’ inputs/%d . jpg ’ % (imgNum))
img2 = cv . imread ( ’ inputs/%d . jpg ’ % (imgNum+1))

#Use g ray s ca l e images as inputs to SIFT
gray1 = cv . cvtColor ( img1 , cv .COLOR BGR2GRAY)
gray2 = cv . cvtColor ( img2 , cv .COLOR BGR2GRAY)

#Calcu late i n t e r e s t po int s and d e s c r i p t o r s us ing SIFT
cvS i f t = cv . SIFT . c r ea t e ( )
p r in t ( ’\ tFinding SIFT po int s in image 1 . . . ’ )
[ pts1 , des1 ] = cvS i f t . detectAndCompute ( gray1 , None )
pr in t ( ’\ tFinding SIFT po int s in image 2 . . . ’ )
[ pts2 , des2 ] = cvS i f t . detectAndCompute ( gray2 , None )

#Find correspondences in SIFT using SSD
pr in t ( ’\ tFinding correspondences . . . ’ )
s i f tCo r r = findSIFTCorrespondences ( pts1 , des1 , pts2 , des2 , 250)
#[noLines , l i n e s ] = showCorrespondences ( img1 , img2 , s i f tCo r r )
#cv . imwrite ( ’ outputs/%d−%d s i f t n o l i n e s . jpg ’ % (imgNum, imgNum+1) , noLines )
#cv . imwrite ( ’ outputs/%d−%d s i f t l i n e s . jpg ’ % (imgNum, imgNum+1) , l i n e s )

#Apply RANSAC
pr in t ( ’ Applying RANSAC. . . ’ )
[ i n l i e r s , o u t l i e r s ] = ransac (2 , 0 .99 , 0 .25 , 6 , s i f tCo r r )
inOutImg = show In l i e r sOu t l i e r s ( img1 , img2 , i n l i e r s , o u t l i e r s ) #Show the i n l i e r s / o u t l i e r s
cv . imwrite ( ’ outputs/%d−%d inout . jpg ’ % (imgNum, imgNum+1) , inOutImg )

#Calcu late the optimal homography between the image pa i r
optH = calcHomography ( i n l i e r s )

i f (useLM ) :
optH = optH . reshape ( (1 , 9 ) ) [ 0 ]
optH = opt imize . l e a s t s q u a r e s ( costFunc , optH , args = [ i n l i e r s ] , method = ’ lm ’ ) . x
optH = optH . reshape (3 , 3)

hMats [ imgNum−1] = optH

#Now we need to c r ea t e the f i n a l panorama using the homographies
#Using the cente r image as the anchor he lps to e l im ina t e very d i s t o r t ed images
p r in t ( hMats )

#Read in the f r e s h images and s t o r e in a l i s t
images = [ ]
f o r i in range (1 , 7 ) :

img = cv . imread ( ’ inputs/%d . jpg ’ % ( i ) )
images . append ( img )

anchorImg = round ( l en ( images ) / 2 . 0 ) #Determine the anchor image
pr in t ( ’ Anchor image : %d ’ % anchorImg )

#Transform each pa i rw i s e homography to put a l l images in the frame of the anchor
#Our homographies were const ructed from img1 −> img2 , so use the i nve r s e to go backward
f o r i in range ( anchorImg − 2 , −1, −1): #Images up to anchor

hMats [ i −1] = np . dot ( hMats [ i ] , hMats [ i −1])
hMats = np . i n s e r t (hMats , anchorImg−1, np . array ( [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ] ) , 0)
f o r i in range ( anchorImg , l en ( images ) ) : #Images a f t e r anchor

hMats [ i ] = np . dot ( hMats [ i −1] , np . l i n a l g . pinv (hMats [ i ] ) )

p r in t ( hMats )
#Now our hMats w i l l transform each image to the domain o f the anchor

i f (useLM ) :
outFilename = ’ outputs /LM pano ’

e l s e :
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outFilename = ’ outputs /pano ’

#Now, us ing the l e f t−most image as the anchor , s t i t c h the panorama
pano = images [ anchorImg−1]
f o r i in range ( anchorImg , 5 ) : #1−6

currFrame = images [ i ]
[ pano , ] = addFrame (pano , currFrame , hMats [ i ] , True )
p r in t ( ’ Writing pano pa i r %d . . . ’% ( i ) )
cv . imwrite ( outFilename + ’%d . jpg ’ % ( i ) , pano )

prevMinX = 0
f o r i in range ( anchorImg−2, −1, −1): #1−6

currFrame = images [ i ]
[ pano , prevMinX ] = addFrame (pano , currFrame , hMats [ i ] , False , prevMinX)
pr in t ( ’ Writing pano pa i r %d . . . ’% ( i ) )
cv . imwrite ( outFilename + ’%d . jpg ’ % ( i ) , pano )
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