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1 Theory

1.1 Theory Question

LoG and DoG Equivalence

The LoG, or Laplacian of Gaussian operator, takes the form ∇2f̃(x, y) where f̃ is the original image f
convolved with a Gaussian kernel for smoothing and the ∇2 operator represents the sum of the second

partial in the x direction and the second partial in the y direction (in other words, ∂2f̃
∂x2 + ∂2f̃

∂y2 ). Since the
Gaussian smoothing depends on the scale factor σ, we can bind this into the function and write the smoothed
image as:

f̃(x, y) =

∫∫ ∞
−∞

f(x′, y′)gσ(x− x′, y − y′)dx′dy′

Taking the partial derivative with respect to σ, we now see that

∂f̃(x, y, σ)

∂σ
= σ∇2f̃(x, y, σ)

which is exactly the form of the LoG. Thus, we can compute the LoG by numerically estimating this
derivative. Practically speaking, this means smoothing the image at two different scales, σ and σ + δσ, and
finding the difference (i.e. a Difference of Gaussians, or DoG).

Why DoG is more efficient

Using the DoG method to estimate the LoG is often far more efficient than directly computing the LoG,
especially for large values of σ. The reason behind this is that in order to directly compute the LoG, we need
to find the second order partials which is done by convolving the entire image with the second order Sobel
operators. The number of steps required to compute a single pixel in the convolution is proportional to σ2.
However, when using the DoG method, no explicit Sobel operators are required for the convolution. The
Gaussian is separable, which means that computing the 2D convolution of the entire image with a Gaussian
kernel is equivalent to computing two 1D convolutions of the image (rows and then columns) and combining
them. Thus, the number of steps is simply proportional to σ. As the scale factor grows larger, using the
DoG method has better asymptotic complexity. Furthermore, often we can get similar results with a smaller
scale factor when doing DoG as compared to LoG.

1.2 Harris Corner Detection

Algorithm

The Harris Corner Detection algorithm is a primitive algorithm for finding interest points in an image. It
attempts to identify points in an image that contain corners by using the x and y gradients. If a single
one of these gradients is high (or if they are scalar multiples of each other) that suggests the presence of a
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single edge. However, if both gradients are high and independent, this suggests two non-parallel edges in the
neighborhood and makes that pixel a likely candidate for a corner. The implementation of the algorithm is
as follows: First, a scale σ is selected for the image. The scale controls how “closely” the algorithm looks
at features to balance between identifying the true corners and getting spurious hits from noise. Next, the
x-gradient Ix and the y-gradient Iy of the image are computed. This is done by convolving with either the
corresponding Sobel operator or a Haar wavelet generated using the scale. Next, for each pixel, we look at a
5σ × 5σ window around it in both Ix and Iy to find their correlation for that neighborhood. This amounts
to constructing the matrix

M =

[ ∑
w d

2
x

∑
w dxdy∑

w dxdy
∑
w d

2
y

]
If this matrix is singular, that means the window contains at most a single edge. Thus, we find all the points
such that this matrix is nonsingular and tag them as corners.

Implementation Notes

Computing the eigenvalues of a 2× 2 matrix to determine if its nonsingular is an expensive process for each
pixel. Instead, we threshold on the ratio of its determinant and the square of its trace. An image K is
generated that contains the value ∑

d2x
∑
d2y − (

∑
dxdy)2

(
∑
d2x +

∑
d2y)2

at each pixel (where the sums are computed over the windows around the pixel). We then find k to be
a certain of K (empirically chosen as 70, with a higher percentile resulting in fewer corners identified),
construct R = detM − k × Tr(M), and identify the pixels for which this value is strictly positive. Finally,
we do a nonmaximum suppression on the window around each identified pixel to pinpoint the corners.

1.3 Corner Matching with Harris

In order to identify correspondence points between two images, we first use the Harris algorithm to find the
corner points in each one. Then, a neighborhood (empirically chosen to be of size 21× 21) around each pair
corner points is considered and a distance metric is computed between them. Every corner point in the first
image is paired with the corner point in the second image that yields the best (lowest) distance score. The
distance metrics are as follows:

NCC (Normalized Cross-Correlation)

The NCC metric computes the 2D cross-correlation between the neighborhoods of each corner point. if
f [x, y] is the neighborhood around the first, g[x, y] is the neighborhood around the second, and µf and µg
represent the means of each neighborhood, then the NCC metric is computed as follows:

NCC =

∑∑
(f [x, y]− µf )(g[x, y]− µg)√∑∑

(f [x, y]− µf )2
∑∑

(g[x, y]− µg)2

SSD (Squared Sum of Differences)

The SSD metric computes the square of the Euclidean norm of the difference of the two neighborhoods. It
is computed as follows:

SSD =
∑
x

∑
y

(f [x, y]− g[x, y])2
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1.4 The SIFT Algorithm

The DoG Pyramid

The first step of the SIFT algorithm is to construct the DoG pyramid. Convolve the image with a Gaussian
kernel with an initial scale. Then downsample by a factor of two, double the scale (so you can use the same
kernel), and repeat for several iterations. Within each image size, interpolate the scale values and convolve
with the new kernels to produce a stack of images at each resolution, or a pyramid. Finally, within each
resolution stack (octave), take the difference of successive smoothed images and use them to create a new
pyramid of DoG images.

Local Extrema

Find the discrete local extrema in each octave of the DoG pyramid. Each point is compared to its 26
neighbors (8 around it, 9 above, and 9 below) and flagged if it is the maximum or minimum. In order to find
at least two extrema per octave, we need four image stacks, which in turn translates to finding a minimum
of 5 different smoothing scales per octave for the Gaussian pyramid.

Interpolation

An extremum identified in a higher octave has considerably less resolution than one identified in a lower
octave. To make up for this, we construct a second order Taylor expansion around it and attempt to
interpolate the true maximum or minimum in the area. The Taylor expansion is over vectors, so we use the
Jacobian and Hessian matrices to compute the first and second partial derivatives, respectively.

Descriptors

First, the identified extrema are thresholded based on the value of the Taylor expansion at those points.
Typically, extrema where |D(~x)| < 0.03 are excluded. Next, an orientation is determined for each point by
taking the gradient of the Gaussian of the image at the same scale as the extremum. The gradient magnitude
and direction is computed for each pixel in a neighborhood around the point, and the dominant vector in
this neighborhood is computed. (Each angle is weighted by its magnitude, and whichever angle ‘bin’ has
the highest total sum wins). Finally, we compute the descriptor vectors. We take a 16 × 16 neighborhood
around the interest point and divide it into 4× 4 blocks of 4× 4 pixels each. The gradient magnitudes are
weighted by a Gaussian to reduce the importance of pixels far from the extremum. For each cell, an 8-bin
histogram is calculated from the weighted orientation values of the pixels in the cell. These 16 histograms
become the 128-element feature vector for that interest point, which is normalized to make it invariant to
illumination before returning.
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2 Results

2.1 Harris Corners

Figure 1: pair1 corners at σ = 9

Figure 2: pair1 correspondences at σ = 9 using SSD

Figure 3: pair1 correspondences at σ = 9 using NCC
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Figure 4: pair1 corners at σ = 11

Figure 5: pair1 correspondences at σ = 11 using SSD

Figure 6: pair1 correspondences at σ = 11 using NCC
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Figure 7: pair1 corners at σ = 13

Figure 8: pair1 correspondences at σ = 13 using SSD

Figure 9: pair1 correspondences at σ = 13 using NCC
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Figure 10: pair1 corners at σ = 15

Figure 11: pair1 correspondences at σ = 15 using SSD

Figure 12: pair1 correspondences at σ = 15 using NCC
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Figure 13: pair2 corners at σ = 9

Figure 14: pair2 correspondences at σ = 9 using SSD
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Figure 15: pair2 correspondences at σ = 9 using NCC

Figure 16: pair2 corners at σ = 11
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Figure 17: pair2 correspondences at σ = 11 using SSD

Figure 18: pair2 correspondences at σ = 11 using NCC

10



Figure 19: pair2 corners at σ = 13

Figure 20: pair2 correspondences at σ = 13 using SSD
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Figure 21: pair2 correspondences at σ = 13 using NCC

Figure 22: pair2 corners at σ = 15
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Figure 23: pair2 correspondences at σ = 15 using SSD

Figure 24: pair2 correspondences at σ = 15 using NCC
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Figure 25: pair3 corners at σ = 9

Figure 26: pair3 correspondences at σ = 9 using SSD
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Figure 27: pair3 correspondences at σ = 9 using NCC

Figure 28: pair3 corners at σ = 11
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Figure 29: pair3 correspondences at σ = 11 using SSD

Figure 30: pair3 correspondences at σ = 11 using NCC
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Figure 31: pair3 corners at σ = 13

Figure 32: pair3 correspondences at σ = 13 using SSD
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Figure 33: pair3 correspondences at σ = 13 using NCC

Figure 34: pair3 corners at σ = 15
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Figure 35: pair3 correspondences at σ = 15 using SSD

Figure 36: pair3 correspondences at σ = 15 using NCC
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Figure 37: cars corners at σ = 9
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Figure 38: cars correspondences at σ = 9 using SSD
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Figure 39: cars correspondences at σ = 9 using NCC
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Figure 40: cars corners at σ = 11
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Figure 41: cars correspondences at σ = 11 using SSD
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Figure 42: cars correspondences at σ = 11 using NCC
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Figure 43: cars corners at σ = 13
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Figure 44: cars correspondences at σ = 13 using SSD
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Figure 45: cars correspondences at σ = 13 using NCC
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Figure 46: cars corners at σ = 15
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Figure 47: cars correspondences at σ = 15 using SSD
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Figure 48: cars correspondences at σ = 15 using NCC
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Figure 49: building corners at σ = 9
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Figure 50: building correspondences at σ = 9 using SSD
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Figure 51: building correspondences at σ = 9 using NCC

34



Figure 52: building corners at σ = 11
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Figure 53: building correspondences at σ = 11 using SSD
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Figure 54: building correspondences at σ = 11 using NCC
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Figure 55: building corners at σ = 13
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Figure 56: building correspondences at σ = 13 using SSD
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Figure 57: building correspondences at σ = 13 using NCC
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Figure 58: building corners at σ = 15
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Figure 59: building correspondences at σ = 15 using SSD
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Figure 60: building correspondences at σ = 15 using NCC
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2.2 SIFT

Figure 61: SIFT points for pair1

44



Figure 62: SIFT correspondences for pair1
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Figure 63: SIFT points for pair2
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Figure 64: SIFT correspondences for pair2
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Figure 65: SIFT points for pair3

Figure 66: SIFT correspondences for pair3
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Figure 67: SIFT points for cars
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Figure 68: SIFT correspondences for cars
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Figure 69: SIFT points for building
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Figure 70: SIFT correspondences for building

3 Discussion

3.1 Effects of scale

Increasing the scale factor caused the Harris detector to identify fewer points as corners. This was an
improvement, as most of the identified points were spurious or picking up on noise in the image. By
increasing the scale factor, the amount of smoothing that each Haar wavelet does before computing the
gradient is increased, which helps to eliminate some of the noise. Furthermore, a larger scale factor means
the detector looks at a larger window when determining the singularity of the matrix. The larger the window,
the more likely that a pixel identified as a corner is in fact a corner, which also improves the quality of results.

3.2 Effects of distance metrics

Two distance metrics were used here: SSD and NCC. While the results from these two metrics are quite
similar, NCC often seemed to fixate on a single point in the second image, assigning it to several corners
from the first image. This could perhaps be because it is normalized, and so doesn’t distinguish between
two separate correspondences that differ only in magnitude.

3.3 Harris Overall

The correspondence results were pretty good overall, mostly mapping regions of the sky to the sky and
buildings to buildings. However, the corners themselves as identified by Harris were nowhere near as good
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as those detected by SIFT. This is likely because Harris is a much more primitive algorithm that doesn’t use
the sophisticated thresholding and directional analysis built into SIFT.

3.4 SIFT

SIFT, as a much more sophisticated interest point detection algorithm, performed significantly better than
Harris. The key points returned by SIFT contained far fewer spurious corners and matched much better
across the two images.

4 Code

import cv2
import numpy as np
from math import c e i l
from random import cho i c e

def wave le t s ( sigma ) :
s i z e = c e i l ( sigma * 4)
s i z e += s i z e % 2

ke rne l = np . z e r o s ( ( s i z e , s i z e ) )
k e rne l [ s i z e // 2 : , : ] = 1
ke rne l [ : s i z e // 2 , : ] = −1

return kerne l , k e rne l .T

def normal ize ( img ) :
norm = img . astype (np . f l o a t 6 4 )
norm −= norm .min( )
norm /= norm .max( )
return norm

def get windows ( img1 , point1 , img2 , point2 , rad iu s =21):
img1 = normal ize ( cv2 . cvtColor ( img1 , cv2 .COLOR BGR2GRAY) )
img2 = normal ize ( cv2 . cvtColor ( img2 , cv2 .COLOR BGR2GRAY) )

x1 , y1 = point1
x2 , y2 = point2

rad iu s = min(
x1 , img1 . shape [ 1 ] − x1 , y1 , img1 . shape [ 0 ] − y1 ,
x2 , img2 . shape [ 1 ] − x2 , y2 , img2 . shape [ 0 ] − y2 ,
rad iu s )

window1 = img1 [ y1 − rad iu s : y1 + radius , x1 − rad iu s : x1 + rad iu s ]
window2 = img2 [ y2 − rad iu s : y2 + radius , x2 − rad iu s : x2 + rad iu s ]

return window1 , window2

def ssd ( window1 , window2 ) :
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return np .sum( ( window1 − window2 ) ** 2)

def ncc ( window1 , window2 ) :
m1 = window1 . mean ( )
m2 = window2 . mean ( )

co r r = np .sum( ( window1 − m1) * ( window2 − m2) )
norm1 = np .sum( ( window1 − m1) ** 2)
norm2 = np .sum( ( window2 − m2) ** 2)
return co r r / (np . s q r t ( norm1 * norm2 ) + 0 .001 )

def h a r r i s ( img , sigma ) :
img = cv2 . cvtColor ( img , cv2 .COLOR BGR2GRAY)
x d i f f , y d i f f = wave le t s ( sigma )

Ix = normal ize ( cv2 . f i l t e r 2 D ( img , −1, x d i f f ) )
Iy = normal ize ( cv2 . f i l t e r 2 D ( img , −1, y d i f f ) )

s i z e = 2 * int ( (5 * sigma ) // 2) + 1
window sum = np . ones ( ( s i z e , s i z e ) )

dx2 = cv2 . f i l t e r 2 D ( Ix * Ix , −1, window sum )
dy2 = cv2 . f i l t e r 2 D ( Ix * Iy , −1, window sum )
dxy = cv2 . f i l t e r 2 D ( Ix * Iy , −1, window sum )

dets = dx2 * dy2 − dxy * dxy
t r a c e = ( dx2 + dy2 ) ** 2
k v a l s = dets / ( t r a c e ** 2 + 0 .001 )
k thre sh = np . p e r c e n t i l e ( k va l s , 70)

R = dets − k thre sh * t r a c e ** 2
R[R < 0 ] = 0

suppressed = np . z e r o s (R. shape )

height , width = img . shape
rad iu s = s i z e // 2
for y in range ( radius , he ight − rad iu s ) :

for x in range ( radius , width − rad iu s ) :
window = R[ y − rad iu s : y + radius , x − rad iu s : x + rad iu s ]
i f R[ y , x ] == window .max( ) :

suppressed [ y , x ] = R[ y , x ]

ys , xs = np . where ( suppressed > 0)
return xs , ys

def cor re spondences ( img1 , points1 , img2 , points2 , r ad iu s =21, metr ic=ssd ) :
t o t a l = 1
c o r r s = [ ]
for p1 in po int s1 :
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bestPt = None
be s tD i s t = f loat ( ’ i n f ’ )
for p2 in po int s2 :

d i s t = metr ic (* get windows ( img1 , p1 , img2 , p2 , rad iu s ) )
i f d i s t < bes tD i s t :

be s tD i s t = d i s t
bestPt = p2

print ( f ’ Matched { t o t a l } out o f { l en ( po int s1 )} ’ )
t o t a l += 1
c o r r s . append ( ( p1 , bestPt , be s tD i s t ) )

return c o r r s

t i t l e = input ( ’ t i t l e ? ’ )
ext = input ( ’ ext ? ’ )

img1 or ig = cv2 . imread ( f ’ hw4 Task2 Images /{ t i t l e }1 .{ ext } ’ )
img2 or ig = cv2 . imread ( f ’ hw4 Task2 Images /{ t i t l e }2 .{ ext } ’ )
img2 or ig = cv2 . r e s i z e ( img2 or ig , ( img1 or ig . shape [ 1 ] , img1 or ig . shape [ 0 ] ) )

s c a l e s = [ 9 , 11 , 13 , 15 ]

for s c a l e in s c a l e s :
img1 = np . copy ( img1 or ig )
img2 = np . copy ( img2 or ig )

co rne r s1 = l i s t ( zip (* h a r r i s ( img1 , s c a l e ) ) )
co rne r s2 = l i s t ( zip (* h a r r i s ( img2 , s c a l e ) ) )

for x , y in co rne r s1 :
img1 = cv2 . c i r c l e ( img1 , (x , y ) , 3 , (255 , 0 , 0 ) )

for x , y in co rne r s2 :
img2 = cv2 . c i r c l e ( img2 , (x , y ) , 3 , (0 , 255 , 0 ) )

s tacked ncc = np . hstack ( ( img1 , img2 ) )
s t a cked s sd = np . copy ( s tacked ncc )
cv2 . imwrite ( f ’ c o r n e r s { t i t l e } { s c a l e } . jpg ’ , s tacked ncc )

width = img1 . shape [ 1 ]

for co r r in cor re spondences ( img1 , corners1 , img2 , corners2 , 21 , metr ic=ncc ) :
c o l o r = cho i c e ( range ( 2 5 6 ) ) , cho i c e ( range ( 2 5 6 ) ) , cho i c e ( range (256 ) )
cv2 . l i n e ( s tacked ncc , co r r [ 0 ] , ( co r r [ 1 ] [ 0 ] + width , co r r [ 1 ] [ 1 ] ) , co lo r , 1)

cv2 . imwrite ( f ’ co r r e spondence s { t i t l e } { s c a l e } ncc . jpg ’ , s tacked ncc )

for co r r in cor re spondences ( img1 , corners1 , img2 , corners2 , 21 , metr ic=ssd ) :
c o l o r = cho i c e ( range ( 2 5 6 ) ) , cho i c e ( range ( 2 5 6 ) ) , cho i c e ( range (256 ) )
cv2 . l i n e ( s tacked ssd , co r r [ 0 ] , ( c o r r [ 1 ] [ 0 ] + width , co r r [ 1 ] [ 1 ] ) , co lo r , 1)

cv2 . imwrite ( f ’ co r r e spondence s { t i t l e } { s c a l e } s s d . jpg ’ , s t a cked s sd )
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