
ECE 661 Homework #4

Name: Haoyu Chen
Email: chen1562@purdue.edu
ID Number: 00271-72202 26 Sept 2020

1 Logic and Computations

1.1 Theory Question

Q: What is the theoretical reason for why the LoG of an image can be computed as a DoG. Also
explain in your own words why computing the LoG of an image as a DoG is computationally much
more efficient for the same value of σ.

A: By the fundamental theorem of scale space, we have ∂
∂σff (x, y, σ) = σ∇2ff (x, y, σ) =

σLoG(ff (x, y, σ)). We also know that ∂
∂x f (x) can be estimated by 1

∆x(f (x+ ∆x)− f (x)).

Hence, at a certain scale σ, we can estimate the ∂
∂σff (x, y, σ) by

σ∇2ff (x, y, σ) =
∂

∂σ
ff (x, y, σ) ≈ 1

∆σ
(ff (x, y, σ + ∆σ)− ff (x, y, σ))

By setting ∆σ = kσ − σ, we now have

(k − 1)σ2∇2ff (x, y, σ) ≈ ff (x, y, σ + ∆σ)− ff (x, y, σ)

Since (k−1) is a constant that does not affect the location of extrema, we can estimate the scale-
normalized Laplacian of Gaussian LOGnormalized = σ2LoG(ff (x, y, σ)) = σ2∇2ff (x, y, σ) by
difference of Gaussian ff (x, y, σ + ∆σ)− ff (x, y, σ).

When viewing both LoG and DoG as discrete convolutions, DoG requires a smaller kernel
and therefore cost less computation power. For example, using a common choice σ =

√
2, LoG

convolution requires a 13× 13 kernel, while DoG only needs a 9× 9 kernel.

In addition, DoG operation can be computed along x and y directions respectively, while LoG
operator is inseparable and can only be carried out as 2D convolution.

1.2 Harris Corner Detector

The fundamental component in Harris Corner detector is the image intensity’s gradient along x
and y direction, denoted dx and dy. In this homework, dx and dy were computed using Haar filter
(same as SURF) oriented on x and y directions respectively. For a given σ, the Haar filter is of size

N × N , where N is the smallest even integer larger than 4σ; it consists of

[
1
−1

]
structure along

y-direction and
[
−1 1

]
structure along x-direction. For example, for σ = 1.2, the kernel used to

compute dx is

hx =

−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

1

and the kernel used to compute dy is

hy =

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1

For each pixel, a matrix C is computed based on its 5σ × 5σ neighbourhood:

C =

[∑
d2
x

∑
dxdy∑

dxdy
∑
d2
y

]
Then, the Harris Response R is used to determine whether there is a corner on that pixel:

R = det(C)− k(Tr(C))2

where the ratio k = det(C)
(Tr(C))2

. Larger R indicates higher likelihood of existence of a corner.

During implementation, the threshold was set to preserve the largest 500 computed Rs. Then,
since multiple pixels could be detected for the same corner, non-maximum suppression scheme was
used to eliminate excessive points.

1.3 Matching Point Pairs Using SSD or NCC

For interest points detected by Harris, there are no feature vectors to describe them; hence, the
gray-scale version of the 21×21 region-of-interest around that pixel is used as the feature descriptor.
Then, a distance metric is computed between two interest points. In this homework, I choose to
assume that smallest distance indicates closest match. The distance is computed by either SSD or
NCC.

For SSD (Sum of Squared Differences):

SSD =
∑
i

∑
j

(f1(i, j)− f2(i, j))2

which is directly used as a distance metric. Also, an empirical threshold of 25 is set in this
homework, which is to say, when the distance between two points is larger than 25, the match is
no longer considered valid.

For NCC (Normalized Correlation Coefficient):

NCC =

∑
i

∑
j(f1(i, j)− µ1)(f2(i, j)− µ2)√

(
∑

i

∑
j(f1(i, j)− µ1)2)(

∑
i

∑
j(f2(i, j)− µ2)2)

where µ1, µ2 are means of the region-of-interest for the interest points in image 1 and image 2,
respectively. Note that the direct output of NCC does not follow the assumption for a distance
metric, since NCC=1 indicates the closest match. Hence, for NCC, I use d = 1 − NCC as the
distance metric so that the same scheme assuming that smaller distance equals closer match still
stands,

1.4 SIFT Overview

In this homework, off-the-shelf SIFT algorithm was also used for interest point matching. SIFT
(Scale-invariant feature transform) consists of following essential steps.

2

1. Constructing DoG (difference of Gaussian) pyramid; for a specific scale σ, the DoG values at

(x, y) is denoted D(x, y, σ) or sometimes D(x), where x =

xy
σ

.

2. For finding locate extrema, each pixel is compared to (1) 8 surrounding pixels in it’s 3 × 3
neighbourhood, (2) 9 pixels in it’s 3 × 3 neighbourhood at next level in scale space, and (3)
9 pixels in it’s 3× 3 neighbourhood at previous level in scale space.

3. However, as σ increases, the extrema detected might be not as accurate as the image becomes
more “coarse”. Hence, we want to locate the extreme with better accuracy, and this can be

done by estimating second-order derivatives. For a detected point x0 =

x0

y0

σ0

, the true

extremum in its vicinity x can be estimated by x = −H−1(x0)J(x0), where H(x0) and
J(x0) are Hessian and gradient estimated at x0, respectively.

4. Then we apply threshold to reject weak extrema. A typical threshold is 0.03, i.e., if |D(x)| <
0.03, x is no longer considered an interest point.

5. At last, a dominant orientation and a 128-dimension feature descriptor is assigned to each
extremum—which was considered as a candidate for interest point. This feature descriptor
can be used directly for matching point pairs. In this homework, OpenCV’s off-the-shelf
brute force matcher was used to find point pairs by computing Euclidean distance between
feature descriptors.

2 Task 1: Images and Results

2.1 Pair 1

Figure 1: Input image 1 and 2 for pair 1

3

2.1.1 Harris Corner Detector, σ = 0.8

Figure 2: Output image 1 and 2 with detected corners

Figure 3: Harris output correspondences using SSD, σ = 0.8

Figure 4: Harris output correspondences using NCC, σ = 0.8

4

2.1.2 Harris Corner Detector, σ = 1.2

Figure 5: Output image 1 and 2 with detected corners

Figure 6: Harris output correspondences using SSD, σ = 1.2

Figure 7: Harris output correspondences using NCC, σ = 1.2

At this point, we can already observe that as σ increases, the images’ feature became more “coarse”,
and the number of interest points detected decreases. Hence, for following outputs, only point
correspondences will be shown, and individual detected corners will not be shown.

5

2.1.3 Harris Corner Detector, σ = 1.6

Figure 8: Harris output correspondences using SSD, σ = 1.6

Figure 9: Harris output correspondences using NCC, σ = 1.6

2.1.4 Harris Corner Detector, σ = 2.0

Figure 10: Harris output correspondences using SSD, σ = 2.0

Figure 11: Harris output correspondences using NCC, σ = 2.0

6

2.1.5 SIFT

Since off-the-shelf SIFT algorithm can create a larger amount of feature points and correspondences,
the first 100 SIFT correspondences are displayed in the second figure in the SIFT second for each
pair, in order to present a more intuitive and less “messy” demonstration.

Figure 12: SIFT output correspondences

Figure 13: SIFT output correspondences (first 100 pairs)

2.2 Pair 2

Figure 14: Input image 1 and 2 for pair 2

7

2.2.1 Harris Corner Detector, σ = 0.8

Figure 15: Harris output correspondences using SSD, σ = 0.8

Figure 16: Harris output correspondences using NCC, σ = 0.8

2.2.2 Harris Corner Detector, σ = 1.2

Figure 17: Harris output correspondences using SSD, σ = 1.2

8

Figure 18: Harris output correspondences using NCC, σ = 1.2

2.2.3 Harris Corner Detector, σ = 1.6

Figure 19: Harris output correspondences using SSD, σ = 1.6

Figure 20: Harris output correspondences using NCC, σ = 1.6

9

2.2.4 Harris Corner Detector, σ = 2.0

Figure 21: Harris output correspondences using SSD, σ = 2.0

Figure 22: Harris output correspondences using NCC, σ = 2.0

2.2.5 SIFT

Figure 23: SIFT output correspondences

10

Figure 24: SIFT output correspondences (first 100 pairs)

2.3 Pair 3

Figure 25: Input image 1 and 2 for pair 3

2.3.1 Harris Corner Detector, σ = 0.8

Figure 26: Harris output correspondences using SSD, σ = 0.8

11

Figure 27: Harris output correspondences using NCC, σ = 0.8

2.3.2 Harris Corner Detector, σ = 1.2

Figure 28: Harris output correspondences using SSD, σ = 1.2

Figure 29: Harris output correspondences using NCC, σ = 1.2

12

2.3.3 Harris Corner Detector, σ = 1.6

Figure 30: Harris output correspondences using SSD, σ = 1.6

Figure 31: Harris output correspondences using NCC, σ = 1.6

2.3.4 Harris Corner Detector, σ = 2.0

Figure 32: Harris output correspondences using SSD, σ = 2.0

13

Figure 33: Harris output correspondences using NCC, σ = 2.0

2.3.5 SIFT

Figure 34: SIFT output correspondences

Figure 35: SIFT output correspondences (first 100 pairs)

2.4 Remarks

First, Harris corner detector seems to do a decent job at finding interest points (corners with strong
transition) in all three cases. As mentioned before, as σ increases, the images’ feature became more
“coarse”, and the number of interest points detected decreases.

14

As for matching schemes, both NCC and SSD are able to generate quite a lot correct or close
matches, especially when the corners are more distinctive from one another (as in pair 1 and 3)
However, for pair 2, where many corners are not as distinctive from each other, both matching
schemes’ performance are not as good.

In addition, as a more intuitive perception, I feel that SSD provides much larger gaps between
correct and incorrect matches, and allows more effective thresholding.

At last, SIFT, as a patented off-the-shelf algorithm, demonstrated much better matching results.

3 Task 2: Custom Images and Results

3.1 Pair 4

Figure 36: Input image 1 and 2 for pair 4

3.1.1 Harris Corner Detector, σ = 0.8

Figure 37: Harris output correspondences using SSD, σ = 0.8

15

Figure 38: Harris output correspondences using NCC, σ = 0.8

3.1.2 Harris Corner Detector, σ = 1.2

Figure 39: Harris output correspondences using SSD, σ = 1.2

Figure 40: Harris output correspondences using NCC, σ = 1.2

16

3.1.3 Harris Corner Detector, σ = 1.6

Figure 41: Harris output correspondences using SSD, σ = 1.6

Figure 42: Harris output correspondences using NCC, σ = 1.6

3.1.4 Harris Corner Detector, σ = 2.0

Figure 43: Harris output correspondences using SSD, σ = 2.0

17

Figure 44: Harris output correspondences using NCC, σ = 2.0

3.1.5 SIFT

Figure 45: SIFT output correspondences

Figure 46: SIFT output correspondences (first 100 pairs)

18

3.2 Pair 5

Figure 47: Input image 1 and 2 for pair 4

3.2.1 Harris Corner Detector, σ = 0.8

Figure 48: Harris output correspondences using SSD, σ = 0.8

Figure 49: Harris output correspondences using NCC, σ = 0.8

19

3.2.2 Harris Corner Detector, σ = 1.2

Figure 50: Harris output correspondences using SSD, σ = 1.2

Figure 51: Harris output correspondences using NCC, σ = 1.2

3.2.3 Harris Corner Detector, σ = 1.6

Figure 52: Harris output correspondences using SSD, σ = 1.6

20

Figure 53: Harris output correspondences using NCC, σ = 1.6

3.2.4 Harris Corner Detector, σ = 2.0

Figure 54: Harris output correspondences using SSD, σ = 2.0

Figure 55: Harris output correspondences using NCC, σ = 2.0

21

3.2.5 SIFT

Figure 56: SIFT output correspondences

Figure 57: SIFT output correspondences (first 100 pairs)

3.3 Remarks

Adding the observation from two custom image pairs, one intuitive observation is that source image
also has huge impact on the matching result. For example, pair 1 and 5 (custom pair 2) observed
great performance across all scales for Harris corner detector, while the same scheme applied to
pair 2 and 4 (custom pair 1) struggles to obtain accurate results.

Also, since the structure in pair 5 (Philadelphia Museum of Art) has rather clear corners as well
as a clean background, we can also clearly see the effect of scale; with increasing σ, less points were
detected, but key points on the building are still constantly detected across scales while obtaining
decent matching results.

4 Source Codes

1

2 import cv2
3 import numpy as np
4 import math
5 import pdb
6

7 # ece 661 hw4
8 # haoyu chen
9 # chen1562@purdue . edu

10

11 de f haa r ke rne l (sigma) :

22

12 N = in t (math . c e i l (4∗ sigma))
13 i f N%2 == 1 :
14 N = N+1
15 hx = np . ones ((N,N))
16 hy = np . ones ((N,N))
17

18 hx [: , : i n t (N//2)] = −1
19 hy [i n t (N//2) : , :] = −1
20 re turn hx , hy
21

22 de f h a r r i s (img raw , sigma , save = None) :
23 i f l en (img raw . shape) == 3 :
24 img = cv2 . cvtColor (img raw , cv2 .COLORBGR2GRAY)
25 e l s e :
26 img = img raw
27 img = img / 255
28 # normal ize image
29

30 hx , hy = haar ke rne l (sigma)
31 # haar wavelet f i l t e r
32 # pdb . s e t t r a c e ()
33 dx = cv2 . f i l t e r 2D (img , −1, k e rne l=hx)
34 dy = cv2 . f i l t e r 2D (img , −1, k e rne l=hy)
35

36 dx sq = dx ∗ dx
37 dy sq = dy ∗ dy
38 dxdy = dx ∗ dy
39

40 N = in t (math . c e i l (5∗ sigma))
41 i f N%2 == 1 :
42 N = N+1
43 kernel sum = np . ones ((N,N))
44

45 sum dx sq = cv2 . f i l t e r 2D (dx sq , −1, k e rne l=kernel sum)
46 sum dy sq = cv2 . f i l t e r 2D (dy sq , −1, k e rne l=kernel sum)
47 sum dxdy = cv2 . f i l t e r 2D (dxdy , −1, k e rne l=kernel sum)
48 # sum with in a window
49

50 t r a c e = sum dx sq + sum dy sq
51 det = (sum dx sq ∗ sum dy sq) − (sum dxdy ∗ sum dxdy)
52 # trac e and determinant o f C f o r each p i x e l
53

54 # k = 0.04
55 k tmp = det / (t r a c e ∗∗2 + 0.000001)
56 k = np . sum(k tmp) / (img . shape [0] ∗ img . shape [1])
57 pr in t (k)
58 # adapt ive k value
59

60

61 R = det − k ∗ t r a c e ∗∗ 2
62 R thresh = np . s o r t (R. f l a t t e n ()) [−500]
63 # Harr i s re sponse
64 # s e l e c t top−500 po in t s as th r e sho ld
65

66 # pdb . s e t t r a c e ()
67 R threshed = []
68 co rne r coo rd = []
69 # Non−maximum suppre s s i on + thre sho ld
70 f o r x in range (10 , img . shape [1]−10 , 1) :
71 f o r y in range (10 , img . shape [0]−10 , 1) :
72 R region = R[y−10:y+11, x−10:x+11]
73 R max = np . amax(R reg ion)
74 i f R[y , x] == R max and R max >= R thresh :
75 R threshed . append (R max)

23

76 co rne r coo rd . append ([x , y])
77 cv2 . c i r c l e (img raw , (x , y) , 3 , (10 ,240 ,10) , 2)
78

79

80

81 i f save != None :
82 cv2 . imwrite (save + ’ h a r r i s ’+s t r (sigma)+’ . jpg ’ , img raw)
83 pr in t (’ number o f i n t e r e s t po in t s : ’ , l en (co rne r coo rd))
84

85 re turn co rne r coo rd
86

87 de f compute distance (img1 , img2 , idx1 , idx2 , mode = ’SSD ’ , M=21) :
88 # by de fau l t , I assume the input images are a l r eady padded
89 patch1 = img1 [idx1 [1] : idx1 [1]+M, idx1 [0] : idx1 [0]+M] . f l a t t e n ()
90 # p i x e l i n t e n s i t i e s in a MxM patch from image 1
91 patch2 = img2 [idx2 [1] : idx2 [1]+M, idx2 [0] : idx2 [0]+M] . f l a t t e n ()
92 i f mode == ’SSD ’ :
93 d i f f = patch1 − patch2
94 d i s t ance = np . sum(d i f f ∗∗ 2)
95 e l i f mode == ’NCC’ :
96 mu1 = np .mean(patch1)
97 mu2 = np .mean(patch2)
98 num = np . sum((patch1−mu1) ∗(patch2−mu2))
99 denom = np . sq r t (np . sum((patch1−mu1) ∗∗2) ∗ np . sum((patch2−mu2) ∗∗2))

100 d i s t ance = 1 − (num / denom)
101 # NCC’ s range i s [−1 ,1] , with 1 being the c l o s e s t match
102 # in order to apply the same ” sma l l e r d i s t ance = c l o s e r match” l o g i c
103 # I use d = 1−NCC, hence sma l l e r = be t t e r
104 re turn d i s t ance
105

106

107 de f har r i s match ing (img1 raw , img2 raw , idx1 , idx2 , mode = ’SSD ’ , N=10, save name =
None) :

108

109 i f l en (img1 raw . shape) == 3 :
110 img1 = cv2 . cvtColor (img1 raw , cv2 .COLORBGR2GRAY)
111 e l s e :
112 img1 = img1 raw
113 i f l en (img2 raw . shape) == 3 :
114 img2 = cv2 . cvtColor (img2 raw , cv2 .COLORBGR2GRAY)
115 e l s e :
116 img2 = img2 raw
117

118 img1 = img1 / 255
119 img2 = img2 / 255
120

121

122 white = (1 , 1 , 1)
123 img1= cv2 . copyMakeBorder (img1 ,N,N,N,N, cv2 .BORDERCONSTANT, value=white)
124 img2= cv2 . copyMakeBorder (img2 ,N,N,N,N, cv2 .BORDERCONSTANT, value=white)
125 # padding the borders
126

127

128 i f l en (idx1) <= len (idx2) :
129 w = img1 raw . shape [1]
130 comb = np . concatenate ((img1 raw , img2 raw) , ax i s=1)
131 f o r coord1 in idx1 :
132 d tmp = []
133 f o r coord2 in idx2 :
134 d i s t ance = compute distance (img1 , img2 , coord1 , coord2 , mode=mode , M=in t (N

∗2+1))
135 d tmp . append (d i s t ance)
136 # pdb . s e t t r a c e ()
137 best match = idx2 [np . a r g s o r t (d tmp) [0]]

24

138 # pr in t (np . min (d tmp))
139

140 # v i s u a l i z e i f the d i s t ance i s with in rea sonab l e range
141 i f np . min (d tmp) < 25 :
142 pt1 = tup l e (coord1)
143 pt2 = (best match [0]+w, best match [1])
144

145 cv2 . c i r c l e (comb , pt1 , 3 , (10 ,240 ,10) , 1)
146 cv2 . c i r c l e (comb , pt2 , 3 , (10 ,10 ,240) , 1)
147 cv2 . l i n e (comb , pt1 , pt2 , (10 ,240 ,240) , 1)
148 e l s e :
149 w = img2 raw . shape [1]
150 comb = np . concatenate ((img1 raw , img2 raw) , ax i s=1)
151 f o r coord2 in idx2 :
152 d tmp = []
153 f o r coord1 in idx1 :
154 d i s t ance = compute distance (img1 , img2 , coord1 , coord2 , mode=mode , M=in t (N

∗2+1))
155 d tmp . append (d i s t ance)
156 best match = idx1 [np . a r g s o r t (d tmp) [0]]
157 # pr in t (np . min (d tmp))
158

159 # v i s u a l i z e i f the d i s t ance i s with in rea sonab l e range
160 i f np . min (d tmp) < 25 :
161 pt1 = (best match [0] , best match [1])
162 pt2 = (coord2 [0]+w, coord2 [1])
163

164 cv2 . c i r c l e (comb , pt1 , 3 , (10 ,240 ,10) , 1)
165 cv2 . c i r c l e (comb , pt2 , 3 , (10 ,10 ,240) , 1)
166 cv2 . l i n e (comb , pt1 , pt2 , (10 ,240 ,240) , 1)
167

168

169 cv2 . imwrite (save name+’ . jpg ’ , comb)
170

171 de f s i f t p a i r (img1 raw , img2 raw , name) :
172 # need to use o ld e r v e r s i on to bypass patent i s s u e s
173 # opencv−contr ib−python == 3 . 4 . 2 . 1 6
174 i f l en (img1 raw . shape) == 3 :
175 img1 = cv2 . cvtColor (img1 raw , cv2 .COLORBGR2GRAY)
176 e l s e :
177 img1 = img1 raw
178 i f l en (img2 raw . shape) == 3 :
179 img2 = cv2 . cvtColor (img2 raw , cv2 .COLORBGR2GRAY)
180 e l s e :
181 img2 = img2 raw
182

183 s i f t = cv2 . x f ea tu r e s2d . SIFT create ()
184 kp1 , des1 = s i f t . detectAndCompute (img1 , None)
185 kp2 , des2 = s i f t . detectAndCompute (img2 , None)
186 bf = cv2 . BFMatcher ()
187 matches = bf . knnMatch (des1 , des2 , k=2)
188 good = []
189 f o r m, n in matches :
190 i f m. d i s t ance < 0 .75∗n . d i s t ance :
191 good . append ([m])
192 comb = np . concatenate ((img1 raw , img2 raw) , ax i s=1)
193 cv2 . drawMatchesKnn (img1 raw , kp1 , img2 raw , kp2 , good [0 : 1 0 0] , comb , f l a g s =2)
194 cv2 . imwrite (name+’ . jpg ’ , comb)
195

196

197

198

199 i f name == ’ ma in ’ :
200 pair number = ’ 1 ’

25

201 sigma = 0 .8
202 # sigma cho i c e s :
203 path1 = ’ pa i r ’+pair number+’ /1 ’
204 path2 = ’ pa i r ’+pair number+’ /2 ’
205 img1 = cv2 . imread (path1+ ’ .JPG ’)
206 img2 = cv2 . imread (path2+ ’ .JPG ’)
207 h1 ,w1 , = img1 . shape
208 h2 ,w2 , = img2 . shape
209 i f h1 > h2 :
210 img1 = cv2 . r e s i z e (img1 , (w2 , h2) , cv2 . INTER AREA)
211 e l i f h1 < h2 :
212 img2 = cv2 . r e s i z e (img2 , (w1 , h1) , cv2 . INTER AREA)
213

214 img1 cp = img1 . copy ()
215 img2 cp = img2 . copy ()
216 # idx1 = ha r r i s (img1 cp , sigma = sigma , save = path1)
217 # idx2 = ha r r i s (img2 cp , sigma = sigma , save = path2)
218

219 # Part 1 . Har r i s
220

221 # idx1 = ha r r i s (img1 cp , sigma = sigma)
222 # idx2 = ha r r i s (img2 cp , sigma = sigma)
223 # save name = ’ pa i r ’+pair number+’/combined SSD ’+ s t r (sigma)
224 # # save name = ’ pa i r ’+pair number+’/combined NCC ’+ s t r (sigma)
225

226 # harr i s match ing (img1 , img2 , idx1 , idx2 , mode = ’NCC ’ , N=10, save name=save name)
227

228

229 # Part 2 . SIFT
230 save name = ’ pa i r ’+pair number+’ / s i f t 1 0 0 ’
231

232 s i f t p a i r (img1 , img2 , save name)

26

	Logic and Computations
	Theory Question
	Harris Corner Detector
	Matching Point Pairs Using SSD or NCC
	SIFT Overview

	Task 1: Images and Results
	Pair 1
	Harris Corner Detector, =0.8
	Harris Corner Detector, =1.2
	Harris Corner Detector, =1.6
	Harris Corner Detector, =2.0
	SIFT

	Pair 2
	Harris Corner Detector, =0.8
	Harris Corner Detector, =1.2
	Harris Corner Detector, =1.6
	Harris Corner Detector, =2.0
	SIFT

	Pair 3
	Harris Corner Detector, =0.8
	Harris Corner Detector, =1.2
	Harris Corner Detector, =1.6
	Harris Corner Detector, =2.0
	SIFT

	Remarks

	Task 2: Custom Images and Results
	Pair 4
	Harris Corner Detector, =0.8
	Harris Corner Detector, =1.2
	Harris Corner Detector, =1.6
	Harris Corner Detector, =2.0
	SIFT

	Pair 5
	Harris Corner Detector, =0.8
	Harris Corner Detector, =1.2
	Harris Corner Detector, =1.6
	Harris Corner Detector, =2.0
	SIFT

	Remarks

	Source Codes

