
ECE661: Homework 3

Fall 2020
Due Date: Sept 21,2020

Turn in typed solutions via BrightSpace. Additional instructions can be
found at BrightSpace.

1 Introduction

The goal of this homework is to remove projective and affine distortions
in the given images. This is referred as metric rectification in the text [1]
(Second Edition). For your programming tasks, you will implement the
approaches given the textbook for metric rectification. Note that you also
have one new extra credit task for this homework and that would require
additional reading. Make sure to read the description for the given tasks
carefully. This homework is based on the concepts covered in Lectures 4
and 5.

You will show results after the distortions removal on the given input
images as well as using your own images for the following approaches

1. Point-to-point correspondences: This approach is a trivial exten-
sion of what you implemented in your Homework 2. You will use the
given measurements to get points in the original scene as your domain
and the corresponding pixel coordinates in the image as your range
which has projective and affine distortions. The inverse homography
will eliminate these distortions.

2. Two-step method in which you first remove the projective distortion
using the Vanishing Line (VL) method discussed in Lecture 4. Subse-
quently, you remove the affine distortion by using the cos θ expression
with θ equal to 90◦. Note that you must first remove the projective
distortion before you can remove the affine distortion with the cos θ
based method.

3. One-step method removes both the projective and affine distortions
in one step.

For the two-step approach you estimate a VL in the image plane by
picking pixel coordinates of at least two pairs of parallel lines in the original
scene. Taking the cross-product of two such pixels on any line in the image

1



will give you the HC representation of that line. Taking the cross-product
of 3-vectors for two different lines (which are parallel in the original scene)
will give you the HC representation for the Vanishing Point for those two
lines. Then taking the cross-product of two such vanishing points for two
different pairs of parallel lines will give you the VL you need for getting
rid of the projective distortion. For identifying pixel coordinates of parallel
lines, you can use the same set of tools (GIMP, IrfanView, etc) as you used
in Homework 2. As you learned in Lecture 5, you can obtain the expression
for cos θ in the form of Dual Degenerate Conic C∗∞ as follows

cos θ =
lTC∗∞m√

(lTC∗∞l)(mTC∗∞m)
(1)

where C∗∞ =

1 0 0
0 1 0
0 0 0

.

For affine distortion removal, you need to identify orthogonal line pairs,
i.e., angle-to-angle correspondence between orthogonal lines in the original
scenes and in the image planes. Then, estimate the homography matrix
for affine distortion correction as explained in Lecture 5 which essentially is
based on Eqn. 1. Note that in the text, the two-step approach is termed as
stratified.

For the one-step approach, let C∗
′
∞ be a projection of the C∗∞ and it’s

represented as

C∗
′
∞ =

 a b/2 d/2
b/2 c e/2
d/2 e/2 f


Identify lines l′ and m′ in an image such that their corresponding lines

l and m in world coordinates are orthogonal. You need to identify at least
five such pairs. Then you can estimate the unknowns a, b, c, d, and e by
solving

l
′TC∗

′
∞m′ = 0

Note that since you’re working with HC where only ratios matter, you can
fix f = 1.

After estimating C∗
′
∞ , you can estimate the homography that corrects

both projective and affine distortion via SVD of C∗
′
∞. That is,

C∗
′
∞ = U

1 0 0
0 1 0
0 0 0

UT

2



(a) Image 1 (b) Image 2 (c) Image 3

Figure 1: Input images for Task1

where the homography H = U can be used to rectify both projective and
affine distortions in one-step. For further information on the one-step ap-
proach, see pages 42,55, and 56 of the text [1].

2 Programming Tasks

2.1 Task 1

Download the input images, shown in Fig. 1 and their world coordinates
(height and width measurements of some planar object in the scenes), sep-
arately.

1. Show results after distortion corrections using point-to-point cor-
respondences, this is a trivial extension of Homework 2. With the
given height and width, your points in the undistorted image should be
(0,0), (0, width), (height, 0), and (height, width). Their corresponding
points in the distorted input image can be manually measured using a
software such as GIMP. After you have found the correspondences you
simply need to apply the homography to the input image to remove
distortion.

2. Show results after distortion correction using the two-step and one-
step approaches.

3. Outline your observations on the results obtained using the above three
methods.

3



2.2 Task 2

Repeat the steps, outlined in Task 1, on at least two sets of your own
images. Usually, images with repetitive patterns on planar surfaces such
as facades, walls with portraits, etc have many parallel or orthogonal line
features and are easier to work with. Make sure to use images with significant
projective and affine distortions. You can use approximate estimations of
world coordinates, however state your assumptions clearly.

2.3 Notes

• Numpy vectorized operations are usually faster than “for” loop for
numpy arrays. If you want to write an efficient python program, follow
some online tutorials on “Numpy Vectorized Operations” or “pythonic
for loops”.

• You can avoid storing very large images for output using the following
steps. First estimate the xmin, ymin, xmax, and ymax using the homog-
raphy matrix H

1. Compute the aspect ratio from the estimated bounds as wo/ho,
where wo and ho are the estimated output width and height.

2. Fix either width wi or height hi of your input image and estimate
the other using the aspect ratio computed in the previous step.

3. Compute the scale factor as s = ho/hi, assuming we fixed hi in the
previous step. Alternatively, you can choose the s = max(sw, sh),
i.e., maximum possible scaling either along width or height.

4. Now your row iteration should look like the following i = ymin +
i/s, where i ∈ {0, 1, · · · , hi−1}. Apply the same logic for column
iteration during the image warping iterations or vectorized numpy
operations.

In essence, you will be updating image scaling at the time of im-
age warping using the above steps. For programming examples, refer
to HW3 solutions from Fall2016 and HW2 solutions (C/C++) from
Fall2012 and Fall2010 offerings.

3 Extra Credit Task

If you look at the material on pages 54-55 in the textbook, you will find one
more important property of the C∗∞ . That is, you can compute the length
ratios in the original scene using C∗∞.

4



a

bc

(a) Known geometry in World Coordi-
nates

a'

b'c'

l'

n'

m'

(b) The corresponding distorted
view.

Figure 2: A view with known geometry in world coordinates and the corre-
sponding view with distortion.

For example, as shown in Fig. 2, using standard trigonometric sine rule
you can estimate the length ratios in world coordinates as d(b, c) : d(a, c) =
sinα : sinβ. To obtain the same length ratios using the l′, m′, and n′, you
can estimate the angles α and β using the Eqn. 1, and then estimate the
length ratios using the sine rule.

For completing this task, you will identify known α and β from the
given world coordinates. Then estimate the new values using C∗∞ and verify
if they’re equal to the original values in the world coordinates.

The key challenges to complete this task include
1. Determine at what stage of your algorithm you can measure the length

ratios using C∗∞.
2. Show the initial edge length ratios using the provided world coordi-

nates and then using C∗∞. As mentioned in the previous item, you
need to first identify where you can verify this property in your imple-
mentation.

3. Your observations on all the three approaches. If this property cannot
be verified for a specific approach then provide justifications why it
cannot be done.

4. Considering human annotation errors and numerical issues, the errors
within ±5◦ margin are acceptable for the angles α, and β. Since the
length ratios are computed from α and β, it’s redundant to provide
error margins for length ratio estimations.

5



4 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks.

1. Turn in a zipped file, it should include (a) a typed pdf report with
source code files and results, (b) source code files (.py, .cpp,.c), (c)
Separate input and output images are required for this task to see
the effects of scaling technique. If you have followed all the notes
correctly, the zip file should be of reasonable size. Rename your .zip
file as hw3 <First Name><Last Name>.zip and follow the same file
naming convention for your pdf report too.

2. Your pdf must include a description of
• The logic that you used to solve the given tasks.
• The steps that you used for each of the tasks with relevant equa-

tions.
• The input and output images for each task. Clearly show the

plotted parallel / orthogonal lines that you chose in the input
images.
• At least some use vectorized numpy operations, if not fully opti-

mized, is expected in your Python code.
• Your observations on the output quality and performance of each

approach.
• Your source code. Make sure that your source code files are

adequately commented and cleaned up.
3. In order to avoid large file size of your submission, include JPEG

images in your report for showing your results and your input images
for Task2. Additionally, make sure to apply the scaling technique
recommended in Sec 2.3.

4. The sample solutions from previous years are for reference only, it’s
important not to get too biased by those solutions. Your code and
final report must be your own work.

References

[1] Richard Hartley and Andrew Zisserman. Multiple view geometry in com-
puter vision. Cambridge university press, 2003.

6


	Introduction
	Programming Tasks
	Task 1
	Task 2
	Notes

	Extra Credit Task
	Submission Instructions

