
Arjun Kramadhati Gopi Purdue University

Purdue University

ECE 661 Computer Vision

Homework 3

Submission: Arjun Kramadhati Gopi

Email: akramadh@purdue.edu

Arjun Kramadhati Gopi Purdue University

Task 1.1 : Point-to-Point Correspondence Method

The task for the first part of the question is to remove distortion using a Point-to-Point
Correspondence approach. For this we use the approach we adopted in the solution for
homework 2 of this course.

Solution

From the program’s perspective, we can split the task into these separate tasks:

1. Write code to easily pick the four coordinates which collectively form the region of
interest (ROI) in the image.

2. Form ROI using the given world plane measurements.

3. Calculate point-to-point homography using the two corresponding ROIs

4. Use the newly found mapping to determine new pixel value for the resulting image.

Once we know the broad tasks at hand, we can work on the logic for each part.The first
task, then, would be to calculate the homography. Let the point A on the worl plane
PQRS be denoted by the HC representation (x,y,1). That is to say that the point A
has the coordinates (x,y) in the physical plane PQRS. Let the corresponding point B
on the image plane ABCD be denoted by the HC representation (x’,y’,1). That is to
say that the point B has the coordinates (x’,y’) in the physical image plane ABCD. We
can say that for a particular homography H there exists the relation AH=B. Let us
consider the general homography matrix representation:a11 a12 a13

a21 a22 a23
a31 a32 a33 = 1

The last element is 1 because the homography matrix is homogeneous and non singular.
By taking it as 1, we make sure the last row does not become (0,0,0) and also the ratio
is maintained. So by taking it as 1 we preserve the information. From the equation
AH=B we get: a11 a12 a13

a21 a22 a23
a31 a32 1

 xy
1

 =

x′y′
1

Solving the above equation we get the following three equations:

a11x+ a12y + a13 = x′

a21x+ a22y + a23 = y′

a31x+ a32y + 1 = 1

Dividing the first equation by 1 on both sides we get:

a11x+ a12y + a13
1

=
x′

1

This can be written as:
a11x+ a12y + a13
a31x+ a32y + 1

=
x′

1

Arjun Kramadhati Gopi Purdue University

Because
a31x+ a32y + a33 = 1

Similarly for the second equation we get:

a21x+ a22y + a23
a31x+ a32y + 1

=
y′

1

After simplification we get the following two equations to solve:

a11x+ a12y + a13 = a31xx
′ + a32yx

′ + x′

a21x+ a22y + a23 = a31xy
′ + a32yy

′ + y′

These can be written in the form:

x′ = a11x+ a12y + a13 − a31xx′ − a32yx′

y′ = a21x+ a22y + a23 − a31xy′ − a32yy′

A system with 8 unknowns needs at least 8 equations to solve. Let us take three
more pairs of equations which describe the correspondence between the pair of points
(x1, y1)and(x′1, y′1), (x2, y2)and(x′2, y′2), (x3, y3)and(x′3, y′3).

Thus, we now have a total of 8 equations representing the correspondence between the
points (x,y) and (x’,y’), (x1, y1)and(x′1, y′1), (x2, y2)and(x′2, y′2), (x3, y3)and(x′3, y′3)Writingthe8equationsinmatrixformweget :

x y 1 0 0 0 −xx′ yx′

0 0 0 x y 1 −xy′ yy′

x1 y1 1 0 0 0 −x1x′1 y1x
′
1

0 0 0 x1 y1 1 −x1y′1 y1y
′
1

x2 y2 1 0 0 0 −x2x′2 y2x
′
2

0 0 0 x2 y2 1 −x2y′2 y2y
′
2

x3 y3 1 0 0 0 −x3x′3 y3x
′
3

0 0 0 x3 y3 1 −x3y′3 y3y
′
3

a11
a12
a13
a21
a22
a23
a31
a32

=

x′

y′

x′1
y′1
x′2
y′2
x′3
y′3

By solving the above equation for the values of the H matrix we can then rearrange

the terms to arrive at the final 3X3 H matrix:a11 a12 a13
a21 a22 a23
a31 a32 1

Once we have a way to map the pixels, all that is left is to find the actual pixel value

for each newly mapped pixel. We know that each pixel has to be located at a specific
integer coordinate value. For any point A located at (x,y) in the physical plane, we know
that:

x, y ∈ Integers
For any point A (x,y) on the physical world planePQRS we can find the corresponding

coordinate on the image plane ABCD : B (x’,y’) using the relation:

AH = B

Unlike the previous solution (in homework 2), we use the inverse homography because
we are mapping points from the image plane to the world plane. Therefore the final
relation we are looking at is:

A = H−1B

Arjun Kramadhati Gopi Purdue University

Note that we form the ROIs for the world image plane using the given measurements.
The given measurements are in centimeters. For the purpose of this solution we assume
that each pixel measures one centimeter in both height width. Therefore the ROI of the
world image is formed in the following way:

• Point one = (0,0)

• Point two = (width,0)

• Point three = (0,height)

• Point four = (width,height)

Weighted Pixel Values

This was presented in the solution for homework 2. I am writing it here again because it
is relevant for our solution for homework 3.
Once we find the mapping between the world image plane and the source image plane, we
get the coordinates of the pixels whose pixel values we need to form the newly transformed
image. It is highly likely that the resulting (x’,y’) value will be float values and not Integer
values. But we cannot use the float value coordinates because such a location does not
exist on the image plane ABCD. Consequently we cannot get the pixel value of such a
point. A workaround for this is to find the weighted pixel value of the point using the
pixel values of the surrounding pixels as reference values.

Consider four pixels
p1, p2, p3, p4

. The pixel values are
pv1, pv2, pv3, pv4

The pixels are such that they form a square around the point (x’,y’). That is to say
that these four pixels are four of the closest pixels around point B (x’,y’) that form a
square. Therefore, the coordinates of the pixels would be:

p1 : (floor(x
′), f loor(y′))

p2 : (floor(x
′), ceil(y′))

p3 : (ceil(x
′), ceil(y′))

p4 : (ceil(x
′), f loor(y′))

Where floor() function floors the value of x’ or y’ to the highest Integer value less than
x’ or y’. Ceil function ceils the value of x’ or y’ to the lowest Integer value higher than x’
or y’. Next, let us take

dist1, dist2, dist3, dist4

as the distance between the pixels

p1, p2, p3, p4

from the point B at (x’,y’). Then the weighted pixel value of the coordinate (x’,y’) is
given by the equation:

pv(x′,y′) =
dist1(pv1) + dist2(pv2) + dist3(pv3) + dist4(pv4)

dist1 + dist2 + dist3 + dist4

Arjun Kramadhati Gopi Purdue University

Now, we can say that for every point A at (x,y) on the plane PQRS we have corre-
sponding point B on the plane ABCD whose pixel value is

pv(x′,y′)

.
We then construct the new image pixel by pixel. If, the calculated (x’,y’) lies outside

the plane ABCD then we assign a RGB value of [0,0,0] to that pixel (black). Else we
calculate the weighted pixel value at (x’,y’) and use that value for the new pixel in the
result image.

Task 1.2 - Two-Step Method

The two step approach we need to take involves the following tasks:

• Task a : Remove projective distortion using the vanishing line method. By remov-
ing projective distortion, we mean that we eliminate all the converging lines in the
image which are supposed to be parallel in the world plane. We do this by mapping
the vanishing line back to the line at infinity.

lvl → l∞

• Task b : Remove affine distortion using the cosine theta method. By removing the
affine distortion we mean that we eliminate the angles between the parallel lines
and make them orthogonal - just like how they are in the world image (reality). We
use the known relation:

cos(θ) =
LTC∗∞M√

(LTC∗∞L)(M
TC∗∞M)

Task 1.2.a - Removing projective distortion

To map the vanishing line back to the line at infinity, we first need to figure out a
method to represent the vanishing line in equation. For this, we will need a total of two
unique pairs of lines which strictly form two unique pairs of parallel lines in the real world.
Because of projective distortion, we know that the original parallel lines in the real world
will appear to be converging at a point (known as the vanishing point). Therefore, two
such pairs will converge at two unique vanishing points. By knowing the two vanishing
points, we have essentially found the vanishing line as all vanishing points have to lie on
the vanishing line.
Let us consider two points p1 and p2 which lie on a line l1 in the image. We get the
equation of the line l1 using the relation:

l1 = p1Xp2

Similarly for two such points p3 and p4 on a ’seemingly’ parallel line l2 we get the line
using the relation:

l2 = p3Xp4

The lines l1 and l2 converge at a point known as the vanishing point vp1 then we have:

vp1 = l1Xl2

Arjun Kramadhati Gopi Purdue University

The same can be applied to a set of four more points which lie on a pair (two each) of
parallel lines (unique pair) l3 and l4 to get the second vanishing point vp2. Where we have
the relation:

vp2 = l3Xl4

Therefore, we can finally get the vanishing line representation using the relation:

lvl = vp1Xvp2

If vl1, vl2 and vl3 are the parameters that represent the vanishing line lvl then we have
the homography matrix H which maps the vanishing line back to the line at infinity given
by:

H =

 1 0 0
0 1 0
vl1 vl2 vl3

Where we have lvl = [vl1 vl2 vl3]T
By obtaining the H matrix as shown above, we create an image with no projective

distortion. Of course, we will need to use the inverse H matrix H−1 because we are
mapping from the image plane to the world plane.

Task 1.2.b - Removing affine distortion

Once we remove the projective distortion from the image, we know that we have
restored parallelism in the image. That is to say that we have effectively mapped the
vanishing line back to the line at infinity. Now, we are left with parallel lines but their
angles are distorted. This means that there is affine distortion in the image. Orthogonal
expansion leads to affine distortion. Our task, by removing affine distortion, is to restore
the orthogonality of the scene in the image. We do this by using the cosine theta method.
By using the earlier mentioned relation:

cos(θ) =
LTC∗∞M√

(LTC∗∞L)(M
TC∗∞M)

We, in essence, trace our steps back to find the homography by setting the θ value = 90
degrees. Therefore, we have cos(90) = 0 and hence the equation becomes:

LTC∗∞M√
(LTC∗∞L)(M

TC∗∞M)
= 0

We know that for an affine homography H, the conic transforms in the following way:

C∗
′

∞ = HC∗∞H
T

It is reasonable to say that in the cos equation, the numerator is equal to 0 since cos(θ)
= 0. Therefore, we have:

LT ′
C∗

′

∞M
′
= 0

Using the transform relation for the conic, we get:

LT ′
HC∗∞H

TM
′
= 0

Using the following relations:

C∗∞ =

1 0 0
0 1 0
0 0 0

Arjun Kramadhati Gopi Purdue University

and

H =

[
A 0
0 1

]
Also let us take the parameters of the line L as [a b c] and the parameters of the line

M as [d e f]. Using the above relations, we simplify the equations to get:

HC∗∞H
T =

[
AAT 0
0 0

]
The complete equation becomes:

[
a b c

] [AAT 0
0 0

]de
f

 = 0

We will need to denote AAT as matrix S which is

S =

[
sa sb
sb sc = 1

]

Note that sc is 1 because the information is in the ratios. Division by 1 preserves the
information as it preserves the ratio. Using that, we simplify the equation to get the
following equation to solve:

saad+ sb(ae+ bd) + be = 0

The above equation has two variables: sa and sb. Therefore, we will need two equa-
tions,at least,to solve them. Hence, we will need to select two unique pairs of orthogonal
lines. Using the two equations, we can calculate the matrix S. We know that S = AAT .
Since A is non-singular and positive definite, we can recover A by a SVD operation (sin-
gular value decomposition) where A = V DV T From the lecture notes, we will be able to
justify that:

S = V

[
λ21 0
0 λ22

]
V T

Using this, we compute for A to finally form the matrix H which is:

H =

[
A 0
0 1

]
We transform the image using this homography multiplied with the projective homog-

raphy. The coordinates used to calculate the orthogonal lines for this are first calculated
based on how they were transformed when we applied projective homography to transform
the image.

Task 1.3 One Step Approach

The one step approach makes use of the fact that the dual degenerate conic is repre-
sented in the form:

C∗
′

∞ =

 a b/2 d/2
b/2 c e/2
d/2 e/2 f=1

Arjun Kramadhati Gopi Purdue University

Note that we have chosen to set the value of f as 1 because the information is in the
ratios and by setting it to one, we preserve the ratio and hence the information. We now
have the following variables to solve for: a, b, c, d, e. A total of 5 variables. Therefore,
we will need to identify five orthogonal line pairs to solve for these 5 variables using the
equation:

LT ′
C∗

′

∞M
′
= 0

Further, we find the combined homography by a similar SVD operation of C∗′∞ where the
homography matrix H is given by:

H =

[
A 0
vT 1

]
The method is the same as mentioned in the two step method. Here:

S = AAT

further,

S =

[
a b/2

b/2 c

]
Once we estimate the homography matrix H, we transform the image to get rid of

both the projective and affine distortion in one go.

Results

The input images have been annotated with the points I used as inputs for the code.
The yellow lines represent the points I used for the two step method and the one step
method. The red lines represent the points I used for the Point-to-Point Correspondence
method. We assume that one pixel is 1 cm for all purposes of this code. The
measurements of the world plane are as follows:

• Input 1: Width 75cm,Height 85cm

• Input 2: Width 84cm, Height 74cm

• Input 3: Width 55cm, Height 36cm; I took only one of the three given
measurements

• Input 4: Width 3.6cm, Height 3.6cm; For the purpose of scaling, I scaled it by a
factor of 10

• Input 5: Width 40cm, Height 30cm;

REGARDING VECTORIZATION: In my source code I have clearly pointed out TWO
instances where I have trid to implement some sort of vectorization to avoid the nested
for loops. Both the attempts worked well. But the second instance consumed a lot of
RAM. In the end I was forced to use the nested for loops to get the best results. But my
code still has the functions where the vectorization attemtps were made.

Arjun Kramadhati Gopi Purdue University

Figure 1: Input Image

Figure 2: Point to Point Correspondence Method

Arjun Kramadhati Gopi Purdue University

Figure 3: Two Step Method - Removing Projective Distortion Alone

Figure 4: Two Step Method - Removing both Projective and Affine Distortion

Arjun Kramadhati Gopi Purdue University

Figure 5: One Step Method - Removing both Projective and Affine Distortion

Figure 6: Input Image

Arjun Kramadhati Gopi Purdue University

Figure 7: Point to Point Correspondence Method

Figure 8: Two Step Method - Removing Projective Distortion Alone

Arjun Kramadhati Gopi Purdue University

Figure 9: Two Step Method - Removing both Projective and Affine Distortion

Figure 10: One Step Method - Removing both Projective and Affine Distortion

Arjun Kramadhati Gopi Purdue University

Figure 11: Input Image

Figure 12: Point to Point Correspondence Method

Arjun Kramadhati Gopi Purdue University

Figure 13: Two Step Method - Removing Projective Distortion Alone

Figure 14: Two Step Method - Removing both Projective and Affine Distortion

Arjun Kramadhati Gopi Purdue University

Figure 15: One Step Method - Removing both Projective and Affine Distortion

Figure 16: Input Image

Arjun Kramadhati Gopi Purdue University

Figure 17: Point to Point Correspondence Method

Figure 18: Two Step Method - Removing Projective Distortion Alone

Arjun Kramadhati Gopi Purdue University

Figure 19: Two Step Method - Removing both Projective and Affine Distortion

Figure 20: One Step Method - Removing both Projective and Affine Distortion

Arjun Kramadhati Gopi Purdue University

Figure 21: Input Image

Figure 22: Point to Point Correspondence Method

Arjun Kramadhati Gopi Purdue University

Figure 23: Two Step Method - Removing Projective Distortion Alone

Figure 24: Two Step Method - Removing both Projective and Affine Distortion

Arjun Kramadhati Gopi Purdue University

Figure 25: One Step Method - Removing both Projective and Affine Distortion

Source Code

1
1 """
2 Computer Vision - Purdue University - Homework 3
3
4 Author : Arjun Kramadhati Gopi , MS-Computer & Information

Technology , Purdue University.
5 Date: September 21, 2020
6
7
8 [TO RUN CODE]: python3 removeDistortion.py
9 The code displays the pictures. The user will have to select the

ROI points manually in the PQRS fashion.
10 P ------- Q
11 | |
12 | |
13 | |
14 R ------- S
15
16 Output:
17 [jpg]: [Transformed images]
18 """
19
20 import cv2 as cv
21 import math
22 import numpy as np
23 import time
24

Arjun Kramadhati Gopi Purdue University

25
26 class removeDistortion:
27
28 def __init__(self ,image_addresses):
29
30
31 self.image_addresses=image_addresses
32 self.image_one = cv.imread(image_addresses [0])
33 self.image_one = cv.resize(self.image_one ,(int(self.

image_one.shape [1]*0.5) ,int(self.image_one.shape
[0]*0.5)))

34 self.image_two = cv.imread(image_addresses [1])
35 # self.image_two = cv.resize(self.image_two ,(int(self.

image_two.shape [1]*0.3) ,int(self.image_two.shape
[0]*0.3)))

36 self.image_three = cv.imread(image_addresses [2])
37 self.image_three = cv.resize(self.image_three ,(int(self.

image_three.shape [1]*0.2) ,int(self.image_three.shape
[0]*0.2)))

38 self.images = [self.image_one ,self.image_two ,self.
image_three]

39 self.image_sizes = [(self.image_one.shape[0],self.
image_one.shape [1]), (self.image_two.shape[0],self.
image_two.shape [1]) ,(self.image_three.shape[0],self.
image_three.shape [1])]

40 self.image_sizes_corner_points_HC= []
41 self.roiRealWorld = [[(0.0 ,0.0 ,1.0) ,(75.0 ,0.0 ,1.0)

,(0.0 ,85.0 ,1.0) ,(75.0 ,85.0 ,1.0)] ,[(0.0 ,0.0 ,1.0)
,(84.0 ,0.0 ,1.0) ,(0.0 ,74.0 ,1.0) ,(84.0 ,74.0 ,1.0)
] ,[(0.0 ,0.0 ,1.0) ,(55.0 ,0.0 ,1.0) ,(0.0 ,36.0 ,1.0)
,(55.0 ,36.0 ,1.0)] ,[(0.0 ,0.0 ,1.0) ,(69.0 ,0.0 ,1.0)
,(0.0 ,31.0 ,1.0) ,(69.0 ,31.0 ,1.0)]]

42 self.roiCoordinates = []
43 self.roiList = []
44 self.homographies =[]
45 self.resultImg = []
46 self.xmin = 0
47 self.ymin =0
48 self.createImageCornerPointRepresentations ()
49
50
51 def createImageCornerPointRepresentations(self):
52 """
53 [summary] This function creates HC representations of the

corner points of the given original input images.
54 """
55 templist = []
56 for size in self.image_sizes:
57 templist.append(np.asarray ([0.0 ,0.0 ,1.0]))
58 templist.append(np.asarray ([float(size [1])

-1.0 ,0.0 ,1.0]))
59 templist.append(np.asarray ([0.0, float(size [0])

-1.0 ,1.0]))

Arjun Kramadhati Gopi Purdue University

60 templist.append(np.asarray ([float(size [1]) -1.0,float(
size [0]) -1.0 ,1.0]))

61 self.image_sizes_corner_points_HC.append(templist)
62 templist = []
63
64
65 def append_points(self ,event ,x,y,flags ,param):
66 """
67 [This function is called every time the mouse left button

is clicked - It records the (x,y) coordinates of the
click location]

68
69 """
70 if event == cv.EVENT_LBUTTONDOWN:
71 self.roiCoordinates.append ((float(x),float(y) ,1.0))
72
73
74
75 def getROIFromUser(self):
76 """
77 [This function is responsible for taking the regions of

interests from the user for all the 4 pictures in
order]

78
79 """
80 self.roiList =[]
81 cv.namedWindow(’Select ROI ’)
82
83 cv.setMouseCallback(’Select ROI ’,self.append_points)
84 for i in range (3):
85 while(True):
86 cv.imshow(’Select ROI ’,self.images[i])
87 k = cv.waitKey (1) & 0xFF
88 if cv.waitKey (1) & 0xFF == ord(’q’):
89 break
90
91 self.roiList.append(self.roiCoordinates)
92
93 self.roiCoordinates = []
94
95
96 def weightedPixelValue(self ,rangecoordinates ,objectQueue):
97 """
98 [This function calculates the weighted pixel value at the

given coordinate in the target image]
99

100 Args:
101 rangecoordinates ([list]): [This is the coordinate of

the pixel in the target image]
102 objectQueue ([int]): [This is the index number of the

list which has the coordinates of the roI for the
Object picture]

103

Arjun Kramadhati Gopi Purdue University

104 Returns:
105 [list]: [Weighted pixel value - RGB value]
106 """
107
108 pointOne = (int(np.floor(rangecoordinates [1])),int(np.

floor(rangecoordinates [0])))
109 pointTwo = (int(np.floor(rangecoordinates [1])),int(np.

ceil(rangecoordinates [0])))
110 pointThree = (int(np.ceil(rangecoordinates [1])),int(np.

ceil(rangecoordinates [0])))
111 pointFour = (int(np.ceil(rangecoordinates [1])),int(np.

floor(rangecoordinates [0])))
112
113 pixelValueAtOne = self.images[objectQueue][pointOne [0]][

pointOne [1]]
114 pixelValueAtTwo = self.images[objectQueue][pointTwo [0]][

pointTwo [1]]
115 pixelValueAtThree = self.images[objectQueue][pointThree

[0]][pointThree [1]]
116 pixelValueAtFour = self.images[objectQueue][pointFour

[0]][pointFour [1]]
117
118 weightAtOne = 1/np.linalg.norm(pixelValueAtOne -

rangecoordinates)
119 weightAtTwo = 1/np.linalg.norm(pixelValueAtTwo -

rangecoordinates)
120 weightAtThree = 1/np.linalg.norm(pixelValueAtThree -

rangecoordinates)
121 weightAtFour = 1/np.linalg.norm(pixelValueAtFour -

rangecoordinates)
122
123 return ((weightAtOne*pixelValueAtOne) + (weightAtTwo*

pixelValueAtTwo) + (weightAtThree*pixelValueAtThree) +
(weightAtFour*pixelValueAtFour))/(weightAtFour+

weightAtThree+weightAtTwo+weightAtOne)
124
125
126 def createBlankImageArray(self ,queueHomography ,queueImage):
127 """[summary]
128 This function is called to create the blank image. The

blank image is formed of an array - np.zeros. The size
of the blank image is calculated

129 based on the homography matrix which is being used. The
original corner points are used to calculate the new
corner points in the new image.

130
131 Args:
132 queueHomography ([int]): [Index of the homography

matrix being used to calculate the new image size]
133 queueImage ([int]): [Index of the image in the list

being used]
134
135 Returns:

Arjun Kramadhati Gopi Purdue University

136 [numpy array]: [np.zeros of the size equal to the new
image size]

137 [int]: [Returns the xmin value of the new image - The
least x value amongst the four transformed corner
points]

138 [int]: [Returns the ymin value of the new image - The
least y value amongst the four transformed corner
points]

139 """
140
141 templist = []
142 templistX =[]
143 templistY =[]
144 #print(self.image_sizes_corner_points_HC[queueImage])
145 #print(self.homographies[queueHomography][0])
146 for i in range (4):
147 templist.append(np.dot(self.homographies[

queueHomography],self.image_sizes_corner_points_HC
[queueImage][i]))

148 #print(templist)
149
150 for i,element in enumerate(templist):
151 templist[i] = element/element [2]
152 for element in templist:
153 templistX.append(element [0])
154 templistY.append(element [1])
155
156 breadth = int(math.ceil(max(templistX))) - int(math.floor

(min(templistX)))
157 height = int(math.ceil(max(templistY))) - int(math.floor(

min(templistY)))
158
159 return np.zeros((height ,breadth ,3)),int(math.floor(min(

templistX))),int(math.floor(min(templistY)))
160
161
162
163 def createImage(self ,queueHomography ,queueImage):
164 """[summary]
165 This function is the function which creates the final

result image. This function has the traditional but
slow nested for loop approach to build the image.

166 It begins by first getting the blank image of the size of
the new image from the createBlankImageArray function
above.

167
168 Args:
169 queueHomography ([int]): [Index of the homography

matrix being used to calculate the new image size]
170 queueImage ([int]): [Index of the image in the list

being used]
171
172 Returns:

Arjun Kramadhati Gopi Purdue University

173 [numpy ndarray]: [Returns the final resultant image
in numpy.ndarray form.]

174 """
175 print(" Processing ...")
176 resultImg ,xmin ,ymin = self.createBlankImageArray(

queueHomography ,queueImage)
177
178 for column in range(0,resultImg.shape [0]):
179 for row in range(0,resultImg.shape [1]):
180 print(" processing" + str(column) + " out of "+

str(resultImg.shape [0]))
181 rangecoordinates = np.dot(self.homographies[

queueHomography +1],(float(row+xmin),float(
column+ymin) ,1.0))

182 rangecoordinates = rangecoordinates/
rangecoordinates [2]

183
184 if ((rangecoordinates [0]>0) and (rangecoordinates

[0]<self.image_sizes[queueImage][1] -1)) and ((
rangecoordinates [1]>0) and (rangecoordinates
[1]<self.image_sizes[queueImage][0] -1)):

185 resultImg[column][row] = self.
weightedPixelValue(rangecoordinates ,
queueImage)

186 else:
187 resultImg[column][row] = [0,0,0]
188
189 return resultImg
190
191 def createImageVectorised(self ,queueHomography ,queueImage):
192 """[summary]
193 ----------- Attempt #1 ---------------
194
195 Vectorised numpy operation
196
197 --------------------------------------
198
199 This function is the function which creates the final

result image. This was the first attempt towards
writing a fully vectorised numpy pythonic operation.

200 Here , I first arrange the coordinates of each pixel in a
vertical stack (Line 205 - 207). Then I add xmin and y
min vallues to each of the X values and Y values.

201 Then I add a third row of just ones to make them into
individual 3X1 vectors. Using these stacked vectors of
individual pixel coordinates , I perform a vector

202 multiplication with the homograhy matrix H. I do this
using the ’@’ operator. The resulting matrix has the
corresponding pixel coordinates of the source image.

203 I extract the pixel values of each of these coordinates
using a nested for loop. Basically , I was able to
avoid the matrix multiplication being written inside
the

Arjun Kramadhati Gopi Purdue University

204 nexted for loop. I was able to get stable outputs much
quicker - 40% faster.

205
206 Args:
207 queueHomography ([int]): [Index of the homography

matrix being used to calculate the new image size]
208 queueImage ([int]): [Index of the image in the list

being used]
209
210 Returns:
211 [numpy ndarray]: [Returns the final resultant image

in numpy.ndarray form.]
212 """
213
214 print(" processing ...")
215 resultImg ,xmin ,ymin = self.createBlankImageArray(

queueHomography ,queueImage)
216 column ,row = np.mgrid [0: resultImg.shape [0],0: resultImg.

shape [1]]
217 vector = np.vstack ((column.ravel(),row.ravel()))
218 row = vector [1] + xmin
219 column = vector [0] +ymin
220 ones = np.ones(len(row))
221 vector = np.array([column ,row ,ones])
222 s=time.time()
223 resultvector = self.homographies[queueHomography +1]

@vector
224 e=time.time()
225 print(" timetake",e-s)
226 resultvector = resultvector/resultvector [2]
227 # resultvector = resultvector [:2,:]
228 for column in range(0,resultImg.shape [0]):
229 for row in range(0,resultImg.shape [1]):
230 print(" processing" + str(column) + " out of "+

str(resultImg.shape [0]))
231
232 rangecoordinates=np.array([resultvector [1][(

column*resultImg.shape [1])+row],resultvector
[0][(column*resultImg.shape [1])+row],
resultvector [2][(column*resultImg.shape [1])+
row]])

233
234 if ((rangecoordinates [0]>0) and (rangecoordinates

[0]<self.image_sizes[queueImage][1] -1)) and ((
rangecoordinates [1]>0) and (rangecoordinates
[1]<self.image_sizes[queueImage][0] -1)):

235 resultImg[column][row] = self.
weightedPixelValue(rangecoordinates ,
queueImage)

236 else:
237 resultImg[column][row] = [255.0 ,255.0 ,255.0]
238
239 return resultImg

Arjun Kramadhati Gopi Purdue University

240
241
242
243
244 def buildImage(self ,queueHomography ,queueImage ,row ,column):
245 """[summary]
246 ----------- Attempt #2 ---------------
247
248 Vectorised numpy operation
249
250 --------------------------------------
251
252 This function is the function which creates the final

result image. This was the second attempt towards
writing a fully vectorised numpy pythonic operation.

253 This function is pretty much the same as the createImage
function. The ket difference here is that this
function does not have the nester for loop.

254 Instead , I vectorise this entire function using the numpy
vectorise operation. Using this entire function as a

vector , I was able to successfully vectorise the
255 whole image building process.
256
257 Args:
258 queueHomography ([int]): [Index of the homography

matrix being used to calculate the new image size]
259 queueImage ([int]): [Index of the image in the list

being used]
260 row ([int]) : [Row value of the pixel being

considered]
261 column ([int]) : [Column value of the pixel being

considered]
262
263 Returns:
264 Does not return any value. It just updates the global

image variable (self.resultImg).
265 """
266
267
268 rangecoordinates = np.matmul(self.homographies[

queueHomography +1],(float(row+self.xmin),float(column+
self.ymin) ,1.0))

269 rangecoordinates = rangecoordinates/rangecoordinates /[2]
270 if ((rangecoordinates [0]>0) and (rangecoordinates [0]<self

.image_sizes[queueImage][1] -1)) and ((rangecoordinates
[1]>0) and (rangecoordinates [1]<self.image_sizes[
queueImage][0] -1)):

271 pointOne = (int(np.floor(rangecoordinates [1])),int(np
.floor(rangecoordinates [0])))

272 pointTwo = (int(np.floor(rangecoordinates [1])),int(np
.ceil(rangecoordinates [0])))

273 pointThree = (int(np.ceil(rangecoordinates [1])),int(
np.ceil(rangecoordinates [0])))

Arjun Kramadhati Gopi Purdue University

274 pointFour = (int(np.ceil(rangecoordinates [1])),int(np
.floor(rangecoordinates [0])))

275
276 pixelValueAtOne = self.images[queueImage][pointOne

[0]][pointOne [1]]
277 pixelValueAtTwo = self.images[queueImage][pointTwo

[0]][pointTwo [1]]
278 pixelValueAtThree = self.images[queueImage][

pointThree [0]][pointThree [1]]
279 pixelValueAtFour = self.images[queueImage][pointFour

[0]][pointFour [1]]
280
281 weightAtOne = 1/np.linalg.norm(pixelValueAtOne -

rangecoordinates)
282 weightAtTwo = 1/np.linalg.norm(pixelValueAtTwo -

rangecoordinates)
283 weightAtThree = 1/np.linalg.norm(pixelValueAtThree -

rangecoordinates)
284 weightAtFour = 1/np.linalg.norm(pixelValueAtFour -

rangecoordinates)
285
286 self.resultImg[column][row] = ((weightAtOne*

pixelValueAtOne) + (weightAtTwo*pixelValueAtTwo) +
(weightAtThree*pixelValueAtThree) + (weightAtFour

*pixelValueAtFour))/(weightAtFour+weightAtThree+
weightAtTwo+weightAtOne)

287 else:
288
289 self.resultImg[column][row] = [255.0 ,255.0 ,255.0]
290
291 def vectoriseOperations(self ,queueHomography ,queueImage):
292 """[summary]
293 ----------- Attempt #2 Continued ---------------
294
295 Vectorised numpy operation
296
297 --------------------------------------
298
299 This function is the extension of the above function -

buildImage. This is the function which vectorises the
entire buildImage function.

300 In this function , I stack a list which contains all the
pixel coordinates in the blank image. I feed this
entire list to the vectorised function.

301 This was a successful vectorisation operation however the
RAM utilization peaked to a hundred percent. The

laptop froze and I could not run this further.
302
303 Args:
304 queueHomography ([int]): [Index of the homography

matrix being used to calculate the new image size]
305 queueImage ([int]): [Index of the image in the list

being used]

Arjun Kramadhati Gopi Purdue University

306
307 Returns:
308 [numpy ndarray]: [Returns the final resultant image

in numpy.ndarray form.]
309 """
310 self.resultImg ,self.xmin ,self.ymin = self.

createBlankImageArray(queueHomography ,queueImage)
311 length = self.resultImg.shape [0]* self.resultImg.shape [1]
312 queueHomography = [queueHomography]* length
313 queueImage = [queueImage]* length
314 vectoriseOperation = np.vectorize(self.buildImage)
315 row ,column = np.mgrid [0: self.resultImg.shape [1],0: self.

resultImg.shape [0]]
316 point = np.vstack ((row.ravel(),column.ravel()))
317 row = point [0]
318 column = point [1]
319 #print(point)
320 print(" processing ...")
321 vectoriseOperation(queueHomography ,queueImage ,row ,column)
322 return self.resultImg
323
324
325
326
327
328
329 def objectMatrixFunction(self ,queue):
330 """
331 [We construct the B Matrix with dimension 8X1]
332
333 Args:
334 queue ([int]): [This is the index number of the list

which has the coordinates of the roI for the
object picture]

335 """
336 self.objectMatrix = np.zeros ((8,1))
337
338 for i in range(len(self.roiRealWorld[queue])):
339 self.objectMatrix [(2*i)][0] = self.roiRealWorld[queue

][i][0]
340 self.objectMatrix [(2*i)+1][0] = self.roiRealWorld[

queue][i][1]
341
342 def parameterMatrixFunction(self ,queue ,objectQueue):
343 """
344 [We construct the A Matrix with dimension 8X8 and then we

calculate the inverse of A matrix needed for the
homography calculation]

345
346 Args:
347 queue ([int]): [This is the index number of the list

which has the coordinates of the roI for the
destination picture]

Arjun Kramadhati Gopi Purdue University

348 objectQueue ([int]): [This is the index number of the
list which has the coordinates of the roI for the
Object picture]

349 """
350 self.parameterMatrix=np.zeros ((8,8))
351
352 for i in range (4):
353 self.parameterMatrix [2*i][0] = self.roiList[queue][i

][0]
354 self.parameterMatrix [2*i][1] = self.roiList[queue][i

][1]
355 self.parameterMatrix [2*i][2] = 1.0
356 self.parameterMatrix [2*i][3] = 0.0
357 self.parameterMatrix [2*i][4] = 0.0
358 self.parameterMatrix [2*i][5] = 0.0
359 self.parameterMatrix [2*i][6] = (-1)*(self.roiList[

queue][i][0])*(self.roiRealWorld[objectQueue][i
][0])

360 self.parameterMatrix [2*i][7] = (-1)*(self.roiList[
queue][i][1])*(self.roiRealWorld[objectQueue][i
][0])

361 self.parameterMatrix [(2*i) + 1][0] = 0.0
362 self.parameterMatrix [(2*i) + 1][1] = 0.0
363 self.parameterMatrix [(2*i) + 1][2] = 0.0
364 self.parameterMatrix [(2*i) + 1][3] = self.roiList[

queue][i][0]
365 self.parameterMatrix [(2*i) + 1][4] = self.roiList[

queue][i][1]
366 self.parameterMatrix [(2*i) + 1][5] = 1.0
367 self.parameterMatrix [(2*i) + 1][6] = (-1)*(self.

roiList[queue][i][0])*(self.roiRealWorld[
objectQueue][i][1])

368 self.parameterMatrix [(2*i) + 1][7] = (-1)*(self.
roiList[queue][i][1])*(self.roiRealWorld[
objectQueue][i][1])

369
370 self.parameterMatrixI = np.linalg.pinv(self.

parameterMatrix)
371
372 def calculateHomography(self):
373 """
374 [We calculate the homography matrix here. Once we have

the values of the matrix , we rearrange them into a 3X3
matrix .]

375
376 """
377 homographyI = np.matmul(self.parameterMatrixI ,self.

objectMatrix)
378 homography = np.zeros ((3,3))
379
380 homography [0][0]= homographyI [0]
381 homography [0][1]= homographyI [1]
382 homography [0][2]= homographyI [2]

Arjun Kramadhati Gopi Purdue University

383 homography [1][0]= homographyI [3]
384 homography [1][1]= homographyI [4]
385 homography [1][2]= homographyI [5]
386 homography [2][0]= homographyI [6]
387 homography [2][1]= homographyI [7]
388 homography [2][2]= 1.0
389 self.homographies.append(homography)
390 homography = np.linalg.pinv(homography)
391 homography = homography/homography [2][2]
392 self.homographies.append(homography)
393
394
395
396 def projectiveDistortionHomography(self ,queueImage):
397 """[summary]
398 Calculate the homography matrix to eliminate projective

distortion
399
400 Args:
401 queueImage ([int]): [Index of the image in the list

being used]
402
403 Calculates the Homography matrix and appends it to the

global homography list.
404 """
405
406 vanishingPointOne = np.cross(np.cross(self.roiList[

queueImage][0], self.roiList[queueImage][1]),np.cross(
self.roiList[queueImage][2], self.roiList[queueImage
][3]))

407 vanishingPointTwo = np.cross(np.cross(self.roiList[
queueImage][0], self.roiList[queueImage][2]),np.cross(
self.roiList[queueImage][1], self.roiList[queueImage
][3]))

408
409 vanishingLine = np.cross((vanishingPointOne/

vanishingPointOne [2]) ,(vanishingPointTwo/
vanishingPointTwo [2]))

410
411 projectiveDHomography = np.zeros ((3,3))
412 projectiveDHomography [2] = vanishingLine/vanishingLine [2]
413 projectiveDHomography [0][0] = 1
414 projectiveDHomography [1][1] = 1
415 self.homographies.append(projectiveDHomography)
416 inverseH = np.linalg.pinv(projectiveDHomography)
417 self.homographies.append(inverseH/inverseH [2][2])
418
419
420
421 def affineDistortionHomography(self ,queueImage):
422 """[summary]
423 Calculate the homography matrix to eliminate affine

distortion

Arjun Kramadhati Gopi Purdue University

424
425 Args:
426 queueImage ([int]): [Index of the image in the list

being used]
427
428 Calculates the Homography matrix and appends it to the

global homography list.
429 """
430 templist = []
431 temppoints = []
432
433 for i in range (4):
434 tempvalue = np.dot(self.homographies [0],self.roiList[

queueImage][i])
435 tempvalue = tempvalue/tempvalue [2]
436 temppoints.append(tempvalue)
437
438 print(temppoints)
439 ortholinePairOne = np.cross(temppoints [0], temppoints [1])
440 ortholinePairTwo = np.cross(temppoints [0], temppoints [2])
441 ortholinePairThree = np.cross(temppoints [0], temppoints

[3])
442 ortholinePairFour = np.cross(temppoints [1], temppoints [2])
443 templist.append(ortholinePairOne)
444 templist.append(ortholinePairTwo)
445 templist.append(ortholinePairThree)
446 templist.append(ortholinePairFour)
447
448 for i,element in enumerate(templist):
449 #print(element)
450 #print(element [2])
451 templist[i] = element/element [2]
452
453 matrixAT = []
454 matrixAT.append ([templist [0][0]* templist [1][0] , templist

[0][0]* templist [1][1]+ templist [0][1]* templist [1][0]])
455 matrixAT.append ([templist [2][0]* templist [3][0] , templist

[2][0]* templist [3][1]+ templist [2][1]* templist [3][0]])
456 matrixAT = np.asarray(matrixAT)
457 matrixAT = np.linalg.pinv(matrixAT)
458 matrixA = []
459 matrixA.append([-templist [0][1]* templist [1][1]])
460 matrixA.append([-templist [2][1]* templist [3][1]])
461 matrixA = np.asarray(matrixA)
462
463 matrixS = np.dot(matrixAT ,matrixA)
464 matrixSRearranged = np.zeros ((2,2))
465
466 matrixSRearranged [0][0] = matrixS [0]
467 matrixSRearranged [0][1] = matrixS [1]
468 matrixSRearranged [1][0] = matrixS [1]
469 matrixSRearranged [1][1] = 1
470

Arjun Kramadhati Gopi Purdue University

471 v,lambdamatrix ,q = np.linalg.svd(matrixSRearranged)
472
473 lambdavalue = np.sqrt(np.diag(lambdamatrix))
474 Hmatrix = np.dot(np.dot(v,lambdavalue),v.transpose ())
475
476 affineHomography=np.zeros ((3,3))
477 affineHomography [0][0] = Hmatrix [0][0]
478 affineHomography [0][1] = Hmatrix [0][1]
479 affineHomography [1][0] = Hmatrix [1][0]
480 affineHomography [1][1] = Hmatrix [1][1]
481 affineHomography [2][2] = 1
482
483
484 inverseH = np.linalg.pinv(affineHomography)
485 inverseH = np.dot(inverseH ,self.homographies [0])
486 self.homographies.append(inverseH)
487 inverseH = np.linalg.pinv(inverseH)
488 self.homographies.append(inverseH/inverseH [2][2])
489
490 def oneStepDistortionHomography(self ,queueImage):
491 """[summary]
492 Calculate the homography matrix to eliminate both

projective and affine distortion
493
494 Args:
495 queueImage ([int]): [Index of the image in the list

being used]
496
497 Calculates the Homography matrix and appends it to the

global homography list.
498 """
499 matrixA =[]
500 matrixAT = []
501 templist =[]
502 templist.append(np.cross(self.roiList[queueImage][0], self

.roiList[queueImage][1]))
503 templist.append(np.cross(self.roiList[queueImage][1], self

.roiList[queueImage][3]))
504 templist.append(np.cross(self.roiList[queueImage][1], self

.roiList[queueImage][3]))
505 templist.append(np.cross(self.roiList[queueImage][3], self

.roiList[queueImage][2]))
506 templist.append(np.cross(self.roiList[queueImage][3], self

.roiList[queueImage][2]))
507 templist.append(np.cross(self.roiList[queueImage][2], self

.roiList[queueImage][0]))
508 templist.append(np.cross(self.roiList[queueImage][2], self

.roiList[queueImage][0]))
509 templist.append(np.cross(self.roiList[queueImage][0], self

.roiList[queueImage][1]))
510 templist.append(np.cross(self.roiList[queueImage][0], self

.roiList[queueImage][3]))
511 templist.append(np.cross(self.roiList[queueImage][1], self

Arjun Kramadhati Gopi Purdue University

.roiList[queueImage][2]))
512
513 for i,element in enumerate(templist):
514 templist[i] = element/element [2]
515
516 for i in range (0,10,2):
517 matrixAT.append ([templist[i][0]* templist[i+1][0] ,(

templist[i][0]* templist[i+1][1]+ templist[i][1]*
templist[i+1][0])/2,templist[i][1]* templist[i
+1][1] ,(templist[i][0]* templist[i+1][2]+ templist[i
][2]* templist[i+1][0]) /2,(templist[i][1]* templist[
i+1][2]+ templist[i][2]* templist[i+1][1]) /2])

518 matrixA.append([-templist[i][2]* templist[i+1][2]])
519
520 matrixAT = np.asarray(matrixAT)
521 matrixA = np.asarray(matrixA)
522 matrixS = np.dot(np.linalg.pinv(matrixAT),matrixA)
523 matrixS = matrixS/np.max(matrixS)
524
525 matrixSRearranged = np.zeros ((2,2))
526 matrixSRearranged [0][0] = matrixS [0]
527 matrixSRearranged [0][1] = matrixS [1] * 0.5
528 matrixSRearranged [1][0] = matrixS [1] * 0.5
529 matrixSRearranged [1][1] = matrixS [2]
530 matrixST = np.array([matrixS [3]*0.5 , matrixS [4]*0.5])
531 v,lambdamatrix ,q = np.linalg.svd(matrixSRearranged)
532 lambdavalue = np.sqrt(np.diag(lambdamatrix))
533 Hmatrix = np.dot(np.dot(v,lambdavalue),v.transpose ())
534 Vmatrix = np.dot(np.linalg.pinv(Hmatrix),matrixST)
535
536 onestepHomography =np.zeros ((3,3))
537 onestepHomography [0][0] = Hmatrix [0][0]
538 onestepHomography [0][1] = Hmatrix [0][1]
539 onestepHomography [1][0] = Hmatrix [1][0]
540 onestepHomography [1][1] = Hmatrix [1][1]
541 onestepHomography [2][0] = Vmatrix [0]
542 onestepHomography [2][1] = Vmatrix [1]
543 onestepHomography [2][2]=1
544
545 inverseH = np.linalg.pinv(onestepHomography)
546 self.homographies.append(inverseH)
547 inverseH = np.linalg.pinv(inverseH)
548 self.homographies.append(inverseH/inverseH [2][2])
549
550
551
552
553
554 if __name__ == "__main__ ":
555
556 """
557 The code begins here. Make sure the input image paths are

properly inserted.

Arjun Kramadhati Gopi Purdue University

558
559 """
560
561 tester = removeDistortion ([’ hw3_Task1_Images/Images /1.jpg ’,’

hw3_Task1_Images/Images /2.jpg ’,’hw3_Task1_Images/Images /3.
jpg ’])

562 tester.getROIFromUser ()
563 for i in range (0,3):
564 tester.objectMatrixFunction(i)
565 tester.parameterMatrixFunction(i,i)
566 tester.calculateHomography ()
567 resultImg = tester.createImage (0,i)
568 cv.imwrite ("ptp" +str(i)+".jpg",resultImg)
569
570 tester.getROIFromUser ()
571
572 for i in range (0,3):
573 tester.projectiveDistortionHomography(i)
574 resultImg = tester.createImage (0,i)
575 # resultImg = tester.createImageVectorised (0,0)
576 cv.imwrite(’1’ +str(i)+’.jpg ’,resultImg)
577 tester.affineDistortionHomography(i)
578 resultImg = tester.createImage (2,i)
579 cv.imwrite(’2’ +str(i)+’.jpg ’,resultImg)
580 tester.oneStepDistortionHomography(i)
581 resultImg = tester.createImage (4,i)
582 cv.imwrite(’3’ +str(i)+’.jpg ’,resultImg)
583
584 ###### Custom Input Images ########
585
586 tester = removeDistortion ([’ hw3_Task1_Images/Images/sn.jpg ’,’

hw3_Task1_Images/Images/laptop.jpg ’])
587 tester.getROIFromUser ()
588 for i in range (0,2):
589 tester.objectMatrixFunction(i)
590 tester.parameterMatrixFunction(i,i)
591 tester.calculateHomography ()
592 resultImg = tester.createImage (0,i)
593 cv.imwrite ("ptp" +str(i)+".jpg",resultImg)
594
595 tester.getROIFromUser ()
596
597 for i in range (0,2):
598 tester.projectiveDistortionHomography(i)
599 resultImg = tester.createImage (0,i)
600 # resultImg = tester.createImageVectorised (0,0)
601 cv.imwrite(’1’ +str(i)+’.jpg ’,resultImg)
602 tester.affineDistortionHomography(i)
603 resultImg = tester.createImage (2,i)
604 cv.imwrite(’2’ +str(i)+’.jpg ’,resultImg)
605 tester.oneStepDistortionHomography(i)
606 resultImg = tester.createImage (4,i)
607 cv.imwrite(’3’ +str(i)+’.jpg ’,resultImg)

