
ECE661: Homework 2

Fall 2020
Due Date: Sept 10,2020

In this homework, you will estimate homographies between the given set
of images and use the estimated homographies to transform images. You’re
free to choose your own programming language and library from the given
list, however you can NOT use any built-in functions to compute homography
matrices or for image warping.

Turn in typed solutions via BrightSpace. Additional instructions can be
found at BrightSpace.

1 Programming Tasks

You will be calculating a homography between two images by manually
recording the pixel coordinates of a set of corresponding points in the two
images and using these coordinates to calculate the unknown elements of the
homography.

All the necessary information to complete this task is divided in the
following sections. Section 1.1 gives an overview of the problem definition.
Section 1.2 has a list of recommended libraries and tools. The two program-
ming tasks for this homework are defined in Sections 1.3 and 1.4. Section
1.5 has some additional tips to obtain more robust homography estimation.
Finally, the homework submission instructions are given in Section 1.6.

1.1 Overview

The goal of this homework is to apply your conceptual understanding about
homography estimation to transform one image onto another. For homogra-
phy estimation, we need correspondence points between an image pair. For
this homework, you will find the coordinates for the correspondence points
using one or more of the recommended tools given in the following section.
Then show your results for the tasks given in Sections 1.3 and 1.4.



1.2 Recommended Tools and Libraries

The following are some of the recommended options, you’re free to choose
the tools and libraries based on your own comfort level.

• Programming languages:

– Python (Anaconda [4]) with scikit-image or OpenCV. It’s highly
recommended to learn how to manage environments [4] as opposed
to installing libraries system-wide.

– C/C++ with OpenCV, Eigen for linear algebra, etc. Some com-
monly used IDEs are Visual Studio, Eclipse, etc. More seasoned
programmers typically use make or cmake [3] for cross-platform
compilation.

• Tools to obtain a pixel coordinates in an image:

– GUI-based tools: GIMP [1] for Linux users and IrfanView [2] or
GIMP for Windows users.

– Command-line tools: ImageMagick [5] has a nice collection of
command-line image manipulation tools. Alternatively, if you
don’t want to install anything on your system, simply load an
image with python and plot using Matplotlib, when you hover
your mouse pointer over the plotted image you can see the point
coordinates in the status bar.

1.3 Task 1

You are given four images which are shown in Figs. 1a, 1b, 1c, and 1d. The
first three images consist of a painting hanging on a wall, while the fourth
image is a randomly picked image of kittens from the Internet. Complete the
following tasks using these images.

1. Pick a region of interest (ROI) covering the three kittens in Fig. 1d
and project on the frame PQRS shown in Figs. 1a, 1b, and 1c. For
this task, you need to find homographies between the following pairs
of images: (1) images shown in Figs. 1d and 1a, (2) images shown in
Figs. 1d and 1b, and (3) images shown in Figs. 1d and 1c.

2. Find homographies between images shown in Figs. 1a and 1b, and
between images shown in Figs. 1b and 1c. Then apply the product of



(a) View1 of the
painting image

(b) View2 of the
painting image

(c) View3 of the
painting image

(d) Object image for
mapping

Figure 1: Images for Task1. Note that both outer or inner corner points
of the given painting images are acceptable solutions. Download the input
images provided for the Task1 separately.

the two homographies to the image shown in Fig. 1a. The resulting
image should look similar to the image shown in Fig. 1c.

You can use an image editor such as GIMP or IrfanView to determine
the pixel coordinates of a point in an image.

1.4 Task 2

Repeat the steps of Task 1 using your own images. You can capture three
images of a planar surface from three different viewpoints such as the ones
shown in Figs. 1a, 1b, and 1c. For the fourth image you can obtain a picture
of your choice (animal, celebrity, etc.) from the Internet or use a picture of
your own.

1.5 Additional Notes

• To project your chosen ROI shown in Fig. 1d into the frame PQRS you
can draw a bounding box P ′Q′R′S ′ around in Fig. 1d and estimate the
homography using the corresponding pairs of points. In this case PP ′,
QQ′, RR′, and SS ′ are the corresponding pairs of points. However,
using just four correspondences for computing a homography is likely
to give you very poor results. When using a system of linear equations
for calculating the unknowns, a general rule of thumb is that you need
five times as many equations as the number of unknowns. For this
homework, we just want you to experiment with increasing the number
of equations though additional correspondences between the two images



P

Q

R

S

T

U V

W

P

R

S

Q

T

U

V

W

Image 1 with painting Image 2 with object

Figure 2: Increasing the number of correspondences between a pair of images.
Note that the smaller bisectors are just symbolic. They show how to obtain
larger number of correspondences with just four manually picked points.

of an image pair. For example, you can double the number of equations
by using the perpendicular bisectors of the bounding boxes as shown
below (see Fig. 2). Use such ploys to whatever extent you wish and
see how that affects the quality of your homographies.

• For debugging your code efficiently, plot intermediate output at every
important step and verify it visually. For example, after recording pixel
coordinates manually, plot those points on your input images and verify
visually if those points are correct.

1.6 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks.

1. Turn in a zipped file with a typed pdf report with source code files.
Include your input and output images in the report itself. Rename
your .zip file as hw2 <First Name><Last Name>.zip and follow the
same file naming convention for your pdf report too.

2. Your pdf must include a description of

• The logic that you used to solve the given tasks.

• The steps that you used to compute the homographies including
equations.

• Your own input images for Task 2 and output images for the two
tasks.



• Your source code. Make sure that your source code files are ade-
quately commented and cleaned up.

3. Indicate the points that you used on each image to obtain the homo-
graphies.

4. In order to avoid large file size of your submission, include JPEG images
in your report for showing your results and your input images for Task2.

5. The sample solutions from previous years are for reference only, it’s im-
portant not to get too biased by those solutions. You’re free to format
your report however you like as long as it addresses all the required
components in the given programming tasks. There are many possible
ways to format your report. For example, you’re free to generate your
pdf report using Jupyter notebook with inline explanation and results,
and include your python code (.py files) separately. Your code and
final report must be your own work.

References

[1] GNU Image Manipulation Program. URL https://docs.gimp.org/2.

10/en/.

[2] IrfanView. URL https://www.irfanview.com/.

[3] CMake Tutorial. URL https://cmake.org/cmake/help/latest/

guide/tutorial/index.html.

[4] Anaconda – Managing Environments. URL https://docs.conda.io/

projects/conda/en/latest/user-guide/getting-started.html.

[5] ImageMagick – Command-line Tools. URL https://imagemagick.org/

script/command-line-tools.php.

https://docs.gimp.org/2.10/en/
https://docs.gimp.org/2.10/en/
https://www.irfanview.com/
https://cmake.org/cmake/help/latest/guide/tutorial/index.html
https://cmake.org/cmake/help/latest/guide/tutorial/index.html
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://imagemagick.org/script/command-line-tools.php
https://imagemagick.org/script/command-line-tools.php

	Programming Tasks
	Overview
	Recommended Tools and Libraries
	Task 1
	Task 2
	Additional Notes
	Submission Instructions


