
ECE 661: Homework 11 

Christina Eberhardt (eberharc@purdue.edu) 

 

Part 1: Face Recognition 

1.1: Theoretical Background and Implementation 

We want to use the image vectors instead of the images themselves. 

Therefore, when loading the images, we can already flatten them to obtain 

their vectors. We normalize all vectors to unit length to enable better 

comparison between them. 

Afterwards we use PCA and LDA to create a low-dimensional representation of 

the data. Details see Section 1.1.1 and 1.1.2.  

The next step is to project all the training images into the k-dimensional 

subspace with the following formula: 

𝒚 = 𝑾𝑘
𝑇(𝒙 − 𝒎) 

We train a nearest neighbor (NN) classifier with this projected data and the 

given labels.  

Then we project the test images into the subspace and assign the label of the 

nearest neighbor. We compare with the ground truth labels and calculate the 

accuracy with the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑖𝑚𝑎𝑔𝑒𝑠
 

We can repeat this for multiple values of k and compare the results.  

Pick 1 ≤ 𝑘 ≤ 19. 

 

 

  



1.1.1: PCA 

PCA requires the eigendecomposition of the covariance matrix of the image 

vectors 𝒙𝑖, 1 ≤ 𝑖 ≤ 𝑁. For the given dataset N = 630. Each image vector is of 

length 49152(color) or 16384(grayscale). 

𝑪𝒘 = 𝜆𝒘 

We only keep the k eigenvectors that belong to the k largest eigenvalues. 

We cannot calculate the eigenvectors of C directly without risking numerical 

instability due to its huge size of 49152x49152 (or 16384x16384).  

Instead we can look at  

𝑿 =  [𝒙1 − 𝐦 | 𝒙2 − 𝒎 | ⋯ | 𝒙𝑁 − 𝒎] 

Where m is the mean image of the normalized training images, making the 

vectors zero-mean.  

We then have that  

𝑪 =  𝑿𝑿𝑇 

𝑿𝑿𝑇𝒘 = 𝑪𝒘 = 𝜆𝒘 

Now 𝑿𝑿𝑇 is still of same dimensionality as C, so we do not profit from this 

change. When we look at  

𝑿𝑇𝑿𝒖 = 𝜆𝒖 

the dimensionality is significantly lower with NxN = 630x630. 

Then we can obtain the eigenvectors of C via the following correspondence: 

𝑿𝑿𝑇𝑿𝒖 = (𝑿𝑿𝑇)𝑿𝒖 = 𝑪𝑿𝒖 = 𝜆𝑿𝒖 

And we get 

𝒘 = 𝑿𝒖 

These eigenvectors are not of unit length and need to be normalized. We then 

keep the k eigenvectors that correspond to the largest eigenvalues. 

 

  



1.1.2: LDA 

For LDA we consider the between- class scatter 𝑆𝐵 and the within- class scatter 

𝑆𝑊. Let 𝒎𝑖  be the class mean image, |𝒞| the number of all classes and |𝒞𝑖| the 

number of images in class i. Let 𝑥𝑘
𝑖  be the kth image vector of the ith class. 

𝑺𝐵 =
1

|𝒞|
∑(𝒎𝑖 − 𝒎)(𝒎𝑖 − 𝒎)𝑇

|𝒞|

𝑖=1

 

𝑺𝑊 =
1

|𝒞|
∑

1

|𝒞𝑖|
∑(𝑥𝑘

𝑖 − 𝒎𝑖)(𝑥𝑘
𝑖 − 𝒎𝑖)

𝑇

|𝒞𝑖|

𝑖=1

|𝒞|

𝑖=1

 

We want to find the w that maximize the Fisher Discriminant Function: 

𝐽(𝒘) =
𝒘𝑇𝑺𝐵𝒘

𝒘𝑇𝑺𝑊𝒘
 

This is the case for  

𝑺𝐵𝒘 = 𝝀𝑺𝑊𝒘 

If 𝑺𝑊 is nonsingular we can solve  

𝑺𝑊
−1𝑺𝐵𝒘 = 𝝀 

Usually this is not the case. Therefore, look at the Yu and Yang algorithm. 

 

As a first step calculate the eigendecomposition of 𝑺𝐵. 

𝑺𝐵 = 𝑽𝚲𝑽𝑇 

Discard of those eigenvectors corresponding to eigenvalues in 𝚲 that are close 

to zero. Call the matrix of the k largest eigenvectors that we keep Y. 

𝒀𝑇𝑺𝐵𝒀 = 𝑫𝐵 

Where 𝑫𝐵 is the upper left kxk sub-matrix of 𝚲 (due to the descending order of 

the eigenvalues). 

In the next step construct a matrix Z that unitizes 𝑺𝐵. 

𝒁 = 𝒀𝑫𝐵
−1/2 

Use eigendecomposition to diagonalize 𝒁𝑻𝑺𝑊𝒁. This yields a matrix U of 

eigenvectors s.t. 

𝒁𝑻𝑺𝑊𝒁 = 𝑼𝑫𝑊𝑼𝑇 



We discard of the largest eigenvalues of 𝑺𝑊 and drop their eigenvectors. 

Denote the matrix of eigenvectors that we keep by �̂�. We can then obtain the 

LDA eigenvectors that maximize the Fisher Discriminant Function by 

𝑾𝑇 = �̂�𝑇𝒁𝑇 

We cannot calculate the two eigendecompositions directly as the matrices are 

too big. Hence, we use the same trick we used for PCA to solve the problem. 

 

 

  



1.2: Observations 

For colour images we observe that PCA reaches 100% accuracy for the first 

time at k=13 and LDA for k=7. For small k PCA performs significantly better than 

LDA. Starting at k=5 LDA performs better than PCA until PCA reaches 100% 

accuracy as well. 

 

Figure 1: Accuracies for PCA and LDA for different values of k on colour images 

 

Figure 2: Accuracies for PCA and LDA for different values of k on colour images zoomed in on accuracy >95% 

  



For grayscale images we observe that PCA reaches 100% accuracy for the first 

time at k=13 and LDA for k=7. For small k PCA performs significantly better than 

LDA. Starting at k=6 LDA performs better than PCA until PCA reaches 100% 

accuracy as well. 

 

 

Figure 3:Accuracies for PCA and LDA for different values of k on grayscale images 

 

Figure 4: Accuracies for PCA and LDA for different values of k on grayscale images zoomed in on accuracy >95% 

 

Overall, we can observe that PCA performs better on very small k but LDA 

reaches 100% accuracy for smaller k already than PCA. The overall difference in 

performance between colour and grayscale images is very small. 

 



Part 2: Object Detection with Cascaded AdaBoost Classification 

2.1: Theoretical Background and Implementation 

We have labeled training data (𝒙𝑖 , 𝑦𝑖) where 1 ≤ 𝑖 ≤ 𝑚 and m is the number 

of training samples. The 𝒙𝑖  are the training data and 𝑦𝑖  the class labels. We 

have only two class labels “negative” and “positive”. Represent them by 0 for 

“negative” and +1 for “positive”. To improve the performance, we use a 

classifier cascade with S stages. For each stage we determine an AdaBoost 

classifier of its own. 

Then for each stage we repeat the following: 

For each iteration t of the algorithm in each stage we have a distribution 

𝐷𝑡(𝒙𝑖). The initial distribution of the first stage has a uniform probability 

distribution over the training samples. Denote it as 𝐷0(𝒙𝑖).  

For each iteration of the AdaBoost algorithm we choose a weak classifier. 

Denote it as ℎ𝑡. With this classifier we determine the predicted label ℎ𝑡(𝒙𝑖) 

and compare it to 𝑦𝑖. We repeat this for all m training elements and determine 

the classification error rate. Because of the large number of features this is 

done in a vectorized form. Let the misclassification rate for ℎ𝑡 be denoted by 

𝜖𝑡. Based on 𝜖𝑡 define a trust value 𝛼𝑡 to describe how much we trust the 

classifier. 

Use the set of weak classifiers and take their weighted sum with weights based 

on their 𝛼𝑡. Denote this final classifier as H. 

For each iteration t, 1 ≤ 𝑡 ≤ 𝑇 of the AdaBoost algorithm we carry out 5 steps. 

1. Choose a subset of the training samples based on 𝐷𝑡(𝒙𝑖). Construct a 

weak classifier ℎ𝑡. Make sure that ℎ𝑡 specifically targets training samples 

that were misclassified by ℎ𝑡−1. We do so by using the weight w that is 

initialized the way that 50% of the weight are on the positive samples 

and 50% on the negative samples. 

2. Apply ℎ𝑡.to all training data. 

3. Estimate 𝜖𝑡 =
1

2
∑ 𝐷𝑡(𝒙𝑖) ∙ | ℎ𝑡(𝒙𝑖) − 𝑦𝑖|𝑚

𝑖=1 . 

4. Calculate the trust factor 𝛼𝑡 =
1

2
ln (

1−𝜖𝑡

𝜖𝑡
) 

5. Update the probability distribution 𝐷𝑡+1(𝒙𝑖) =
𝐷𝑡(𝒙𝑖)exp (−𝛼𝑡𝑦𝑖ℎ𝑡(𝒙𝑖))

𝑍𝑡
. 

Where 𝑍𝑡 = ∑ 𝐷𝑡(𝒙𝑖)exp (−𝛼𝑡𝑦𝑖ℎ𝑡(𝒙𝑖))𝑚
𝑖=1  

 



After T iterations we construct H: 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑡

𝑇

𝑡=1

ℎ𝑡(𝑥)) 

We use this H as a feature once again and repeat for the outer loop.  

2.1.1: Obtaining the features 

We use 4 types of weak features and place their windows at every possible 

position in the image to create a large number of features. With all of the types 

and the image size of 40x20 we obtain 192270 features. We use Haar filters of 

different kinds. We sum up the values of all the regions of ones and subtract 

the sum of all the regions of zeros. For a rectangle ABCD we can calculate its 

value by obtaining the integral image and using the corner points of the 

rectangle the following way: 

A B 
D C 

𝑣𝑎𝑙𝑢𝑒(𝐴𝐵𝐶𝐷) = 𝐶 − 𝐵 − 𝐷 + 𝐴 

Type 1 features: 

Use Haar filters that are symmetric along the y-axis. On the left we have only 

zeros, on the right only ones. Then we have the following structure: 

A  B  C 
 0  1  
F  E  D 

Then we get the following formula for the feature: 

𝐷 − 2𝐸 − 𝐶 + 2𝐵 + 𝐹 − 𝐴 

Type 2 features: 

Use Haar filters that are symmetric along the x-axis. On the top we have only 

zeros, on the bottom only ones. Then we have the following structure: 

A  B 
 0  

F  C 
 1  

E  D 

Then we get the following formula for the feature: 

𝐷 − 𝐸 − 2𝐶 + 𝐵 + 2𝐹 − 𝐴 



Type 3 features: 

This feature is an extension of the Type 1 feature. It consists of a block of zeros 

followed by a block of ones followed by a block of zeros horizontally. The three 

blocks are of equal size. 

A  B  C  D 
 0  1  0  
H  G  F  E 

Then we get the following formula for the feature: 

2𝐹 + 2𝐵 − 2𝐶 − 2𝐺 − 𝐴 + 𝐻 − 𝐸 + 𝐷 

 

Type 4 features: 

This feature is an extension of the Type 1 and Type 2 features. It consists of a 

big square consisting of a block of ones and zeros horizontally and vertically 

each.  

A  B  C 
 0  1  

D  E  F 
 1  0  

G  H  I 
Then we get the following formula for the feature: 

2𝐻 − 4𝐸 − 𝐺 + 2𝐷 + 2𝐹 − 𝐶 + 2𝐵 + 𝐴 − 𝐼 

 

2.1.2: A few implementation details of the Cascaded AdaBoost implementation 

In the outer loop we create a strong classifier for each stage. In the inner loop 

we find the best weak feature. Use the vectorized approach to avoid a third 

nested loop.  

We find the error 𝜖 = min (𝑆+ + (𝑇− − 𝑆−), 𝑆− + (𝑇+ − 𝑆+)) where 𝑇+ is the 

total sum of the sample weights of the positive samples and 𝑆+ is the sum of 

the weights of the positive samples that are below the current sample.  

𝑇− is the total sum of the sample weights of the negative samples and 𝑆+ is the 

sum of the weights of the negative samples that are below the current sample.  

By minimizing this error we choose the best sample for thresholding. We 

determine the polarity based on if the first or second term is the better one.  



We check the false positive rate of the classifier. If it is below 50% we are done. 

If not we continue for another iteration until the features together have an 

accuracy of at least 50%. We choose the threshold for feature detection to be 

the smallest value of the positive samples. Then all the samples of the positive 

class cause a true positive rate of 1.  

Once we have a strong classifier, we change the sample space: we do not 

consider samples from the negative class that have been classified correctly 

anymore.  

Next, we check the performance of all stages so far together. If there are no 

negative samples left (i.e. FPR = 0) we terminate the loop. Otherwise we go on 

to another stage. We can then use the obtained classifier to classify the testing 

images by evaluating the strong classifiers.  

In the testing phase we use the condition  

𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 ∙ 𝑓(𝑥) < 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 ∙ 𝜃 

On the weak classifiers. If this is true we assign the sample to class “positive”, 

otherwise to class “negative”. Then we take the result of the classifier and use 

the combination of all the strong classifier results with their respective alphas. 

We threshold the resulting value to obtain the final prediction. 

 

  



2.2: Observations 

 

Figure 5: FPR during training for the different stages 

Due to forcing the true positive rate (TPR) to be 1 constantly during training we 

can ignore it – there is no change. Further stages are added until all negative 

samples are classified correctly and hence the false positive rate FPR = 0.  

6 stages are needed to reach this result. Each stage consists of multiple 

features. Namely the number of features per stage are the following: 

Stage Number of features 

1 5 

2 13 

3 18 

4 24 

5 16 

6 9 

We can observe exponential decay in the FPR. This is because each stage has an 

individual FPR of at most 50%. Hence, we observe the training behaviour that 

we would expect. It is noticeable that those numbers are smaller than in prior 

semesters. This can be explained with the use of the more expressive type 3 

and 4 features. 



 

Figure 6:FPR and FNR during testing for the different stages 

For the testing data we observe that the increased number of stages actually 

improves the performance concerning the FPR. We can also see, that this 

improvement comes at a cost: the false negative rate (FNR) increases and 

hence the true positive rate decreases. This means that some objects of the 

positive class get misclassified as negative. The final FPR is 0.00227 and final 

FNR 0.36517. 

This behaviour can be explained with the multiplicative behaviour of the 

combined rates between the stages.  

For example, (0.5)6 ≈ 0.015625 and (0.95)6 ≈ 0.735. This means that even if 

we observe the smallest errors concerning the TPR then those errors still get 

penalized harshly over multiple stages.  

 

 

 

 

 

 



Part 3: Code 

3.1: Code for Task 1 
import numpy as np 

import cv2 

from sklearn.neighbors import KNeighborsClassifier 

import matplotlib.pyplot as plt 

 

 

trainpath = "./ECE661_2020_hw11_DB1/train/" 

testpath = "./ECE661_2020_hw11_DB1/test/" 

 

def get_images(train_or_test, grayscale): 

    """ 

    This method takes in the string "train" or "test" and returns the list of normalized image vectors with the list of corresponding labels. 

    If "train" is selected the mean normalized image vector is returned as well. 

    """ 

    images = [] 

    labels = [] 

    class_means = [] 

    for label in range(1,31): 

        if label < 10: 

            label = "0%s"%(label) 

        images_of_class = [] 

        for image_no in range(1,22): 

            labels.append(label) 

            if image_no < 10: 

                image_no = "0%s"%(image_no) 

            if grayscale == True: 

                image = cv2.imread("./ECE661_2020_hw11_DB1/%s/%s_%s.png"%(train_or_test,label,image_no),cv2.IMREAD_GRAYSCALE)  

            else: 

                image = cv2.imread("./ECE661_2020_hw11_DB1/%s/%s_%s.png"%(train_or_test,label,image_no)) 

            image = np.ndarray.flatten(image) 

            image_norm = image/np.linalg.norm(image) 

            images.append(image_norm) 

            images_of_class.append(image_norm) 

        class_means.append(np.mean(images_of_class, axis = 0)) 

    if train_or_test == "train": 

        return images, labels, class_means 



    return images, labels 

 

def subtract_mean_image(train_images, test_images): 

    """ 

    Subtracts the mean image from the array of image vectors. 

    """ 

    X = np.array(train_images).astype(np.float64) 

    X_test = np.array(test_images).astype(np.float64) 

    mean_image = np.mean(X, axis = 0) 

    X = np.subtract(X,mean_image) 

    X_test = np.subtract(X_test,mean_image) 

    return X, X_test, mean_image 

 

def get_PCA_eigenvectors(X, k): 

    """ 

    Apply PCA to obtain the k best eigenvectors of the matrix X. 

    """ 

    # Note: X is stored in transposed form to theory 

    xtransx = np.dot(X,np.transpose(X)) 

    u,d,vt = np.linalg.svd(xtransx) 

    v = np.transpose(vt) 

    w = np.dot(np.transpose(X),v) 

    w = w/np.linalg.norm(w, axis = 0) 

    k_eigenvectors = w[:,:k] 

     

    return k_eigenvectors 

 

def get_acc_NN_for_given_w(w, X, X_test, train_labels, test_labels): 

    """ 

    Project the training and testing data into the subspace formed by w. Returns the accuracy on the testing data with NN. 

    """ 

    y = np.dot(np.transpose(w), np.transpose(X)) 

    y_test = np.dot(np.transpose(w), np.transpose(X_test)) 

     

    classifier = KNeighborsClassifier(n_neighbors=1) 

    classifier.fit(np.transpose(y), train_labels) 

     

    y_hat = classifier.predict(np.transpose(y_test)) 

    matching_labels = np.where(y_hat==test_labels) 



    correct_label_count = len(matching_labels[0]) 

    acc = correct_label_count/len(test_images) 

    return acc 

 

def get_LDA_eigenvectors(X, k, number_of_classes = 30, number_of_images_per_class=21):  

    """ 

    Apply LDA to obtain the k best eigenvectors of the matrix X. 

    """ 

    mean_i_minus_mean = [] 

    x_minus_m_i = [] 

    for i in range(number_of_classes): 

        mean_i_minus_mean.append(class_means[i]-mean_image) 

        for j in range(number_of_images_per_class): 

            x_minus_m_i.append(train_images[j+i*number_of_images_per_class]-class_means[i]) 

     

    mean_i_minus_mean = np.array(mean_i_minus_mean) 

    u, d, vt = np.linalg.svd(np.dot(mean_i_minus_mean, np.transpose(mean_i_minus_mean)))  

    Y = np.dot(np.transpose(mean_i_minus_mean),u) 

    d = 1/np.sqrt(d) 

    D = np.diag(d) 

    Z = np.dot(Y,D) 

     

    x_minus_m_i = np.array(x_minus_m_i) 

    X = np.dot(np.transpose(Z),np.transpose(x_minus_m_i)) 

    u, d, vt = np.linalg.svd(np.dot(X, np.transpose(X))) 

     

    w_transpose = np.dot(vt[np.shape(vt)[0]-k:],np.transpose(Z)) 

    w = np.transpose(w_transpose) 

    return w 

 

def draw_accuracy_plots(accuracies_PCA, accuracies_LDA, grayscale): 

    """ 

    This method takes in the list of accuracies for the values of k and plots them into plots together.  

    We obtain 2 plots: 

        - one plot showing all accuracies 

        - one plot zooming in to the area above 95% accuracy 

    """ 

    accuracies_PCA_percent = [element*100 for element in accuracies_PCA] 

    accuracies_LDA_percent = [element*100 for element in accuracies_LDA] 



    plt.clf() 

    plt.plot(range(1,20),accuracies_PCA_percent, label = "PCA", linewidth = 1) 

    plt.plot(range(1,20),accuracies_LDA_percent, label = "LDA",linewidth = 1) 

    plt.scatter(range(1,20),accuracies_PCA_percent, marker = "x") 

    plt.scatter(range(1,20),accuracies_LDA_percent,marker ="x") 

    plt.xticks(ticks=range(0,20)) 

    plt.yticks(ticks=range(20,101,10)) 

    plt.legend(loc="lower right") 

    plt.grid() 

    if grayscale == True: 

        plt.savefig("Grayscale Accuracies of PCA and LDA.jpg") 

    else: 

        plt.savefig("Accuracies of PCA and LDA.jpg") 

    #plt.show() 

     

    plt.clf() 

    plt.plot(range(4,20),accuracies_PCA_percent[3:], label = "PCA", linewidth = 1) 

    plt.plot(range(4,20),accuracies_LDA_percent[3:], label = "LDA",linewidth = 1) 

    plt.scatter(range(4,20),accuracies_PCA_percent[3:], marker = "x") 

    plt.scatter(range(4,20),accuracies_LDA_percent[3:],marker ="x") 

    plt.xticks(ticks=range(4,20)) 

    plt.yticks(ticks=range(95,101,1)) 

    plt.legend(loc="lower right") 

    plt.grid() 

    if grayscale == True: 

        plt.savefig("Grayscale Accuracies of PCA and LDA detail.jpg") 

    else: 

        plt.savefig("Accuracies of PCA and LDA detail.jpg") 

 

 

for grayscale in [True, False]: 

    train_images, train_labels, class_means = get_images("train", grayscale) 

    test_images, test_labels = get_images("test", grayscale) 

     

    accuracies_PCA = [] 

    accuracies_LDA = [] 

     

    for k in range(1,20): 

        X, X_test, mean_image = subtract_mean_image(train_images, test_images)    



         

        w_PCA = get_PCA_eigenvectors(X,k)   

        acc_PCA = get_acc_NN_for_given_w(w_PCA, X, X_test, train_labels, test_labels) 

        accuracies_PCA.append(acc_PCA) 

         

        w_LDA = get_LDA_eigenvectors(X,k)   

        acc_LDA = get_acc_NN_for_given_w(w_LDA, X, X_test, train_labels, test_labels) 

        accuracies_LDA.append(acc_LDA) 

     

    draw_accuracy_plots(accuracies_PCA, accuracies_LDA, grayscale) 

    

 

 

3.2: Code for Task 2 
""" 

Parts of this implementation are strongly based on the vectorized implementation of cascaded AdaBoost by Wan-Eih Huang. 

""" 

 

 

import numpy as np 

import cv2 

import os 

from skimage.transform.integral import integral_image 

import matplotlib.pyplot as plt 

import pickle 

 

 

def get_images(train_or_test, positive_or_negative): 

    """ 

    This method takes in the string "train" or "test" and returns the list of images in grayscale with the list of corresponding labels. 

     

    Due to the cars being able to having any color we know that color is not a valuable feature in this application. 

    Each image is of size 40x20 (width x height) 

    """ 

    path = "./ECE661_2020_hw11_DB2/%s/%s/"%(train_or_test, positive_or_negative) 

    required_images = os.listdir(path) 

    images = [] 

    for extension in required_images: 



        full_path = os.path.join(path,extension) 

        image = cv2.imread(full_path, cv2.IMREAD_GRAYSCALE ) 

        images.append(image) 

    return images 

 

def get_type1_kernels(img_width, img_height): 

    """ 

    Returns all kernels of type 1. 

     

    All images are of same shape, therefore it is sufficient to determine the general shape of all kernels once. The maximum size  of kernel we 

can have is the image size. 

    """ 

    list_of_kernels_type1 = [] 

    for w in range(1, int(img_width/2)+1): 

        for h in range(1, int(img_height)+1): 

            zeros = np.zeros((h,w)) 

            ones = np.ones((h,w)) 

            kernel = np.append(zeros, ones, axis = 1) 

            list_of_kernels_type1.append(kernel) 

    return list_of_kernels_type1  

 

def get_type2_kernels(img_width, img_height): 

    """ 

    Returns all kernels of type 2. 

     

    Type 2 kernels are the transpose variant of Type 1 kernels. 

    All images are of same shape, therefore it is sufficient to determine the general shape of all kernels once. The maximum size  of kernel we 

can have is the image size. 

    """ 

    list_of_kernels_type2 = [] 

    for h in range(1, int(img_height/2)+1): 

        for w in range(1, int(img_width)+1): 

            zeros = np.zeros((w,h)) 

            ones = np.ones((w,h)) 

            kernel = np.append(zeros, ones, axis = 1) 

            kernel2 = np.transpose(kernel) 

            list_of_kernels_type2.append(kernel2) 

    return list_of_kernels_type2    

 



def get_type3_kernels(img_width, img_height): 

    """ 

    Returns all kernels of type 3. 

     

    The kernels of type 3 are a horizontal block of zeros followed by a horizontal block of ones followed by a block of zeros. 

    All images are of same shape, therefore it is sufficient to determine the general shape of all kernels once. The maximum size  of kernel we 

can have is the image size. 

    """ 

    list_of_kernels_type1 = [] 

    for w in range(1, int(img_width/3)+1): 

        for h in range(1, int(img_height)+1): 

            zeros = np.zeros((h,w)) 

            ones = np.ones((h,w)) 

            kernel = np.append(np.append(zeros, ones, axis = 1), zeros, axis=1) 

            list_of_kernels_type1.append(kernel) 

    return list_of_kernels_type1  

 

def get_type4_kernels(img_width, img_height): 

    """ 

    Returns all kernels of type 4. 

     

    They consist of 4 squares of ones and zeros respectively. 

    All images are of same shape, therefore it is sufficient to determine the general shape of all kernels once. The maximum size  of kernel we 

can have is the image size. 

    """ 

    list_of_kernels_type4 = [] 

    s = min(img_width, img_height) 

    for s in range(1, int(s/2)+1): 

        zeros = np.zeros((s,s)) 

        ones = np.ones((s,s)) 

        kernelupper = np.append(zeros, ones, axis = 1) 

        kernellower = np.append(ones, zeros, axis = 1) 

        kernel = np.append(kernelupper, kernellower, axis = 0) 

        list_of_kernels_type4.append(kernel) 

    return list_of_kernels_type4 

 

def get_integral_image(image): 

    """ 

    Returns the integral image of an input image. 



    """ 

    integral_img = integral_image(image) 

    return integral_img 

 

def get_all_integral_images(): 

    """ 

    return the integral images for all images in their respective lists. 

    """ 

    images_train_pos = get_images("train", "positive") 

    images_train_neg = get_images("train", "negative") 

    images_test_pos = get_images("test", "positive") 

    images_test_neg = get_images("test", "negative") 

    integral_images_train_pos = [] 

    integral_images_train_neg = [] 

    integral_images_test_pos = [] 

    integral_images_test_neg = [] 

 

    for image in images_train_pos: 

        integral_images_train_pos.append(get_integral_image(image)) 

     

    for image in images_train_neg: 

        integral_images_train_neg.append(get_integral_image(image)) 

     

    for image in images_test_pos: 

        integral_images_test_pos.append(get_integral_image(image)) 

 

    for image in images_test_neg: 

        integral_images_test_neg.append(get_integral_image(image)) 

    return integral_images_train_pos, integral_images_train_neg, integral_images_test_pos, integral_images_test_neg  

 

def evaluate_Haar_filters_type1(integral_img, list_of_kernels_type1, height, width):  

    """ 

    Create the type1 features at every possible position in the image. 

    """ 

    feature_list = [] 

    for kernel in list_of_kernels_type1: 

        kernel_height, kernel_width = np.shape(kernel) 

        for y in range(height - kernel_height): 

            for x in range(width - kernel_width): 



                coord_x_0 = x 

                coord_x_1 = x + int(kernel_width/2) 

                coord_x_2 = x + kernel_width 

                 

                coord_y_0 = y 

                coord_y_1 = y + kernel_height 

                 

                A = integral_img[coord_y_0, coord_x_0] 

                B = integral_img[coord_y_0, coord_x_1] 

                C = integral_img[coord_y_0, coord_x_2] 

                D = integral_img[coord_y_1, coord_x_2] 

                E = integral_img[coord_y_1, coord_x_1] 

                F = integral_img[coord_y_1, coord_x_0] 

                 

                value = D-2*E-C+2*B+F-A 

                feature_list.append(value) 

    return feature_list 

 

def evaluate_Haar_filters_type2(integral_img, list_of_kernels_type2, height, width):  

    """ 

    Create the type2 features at every possible position in the image. 

    """ 

    feature_list = [] 

    for kernel in list_of_kernels_type2: 

        kernel_height, kernel_width = np.shape(kernel) 

        for y in range(height - kernel_height): 

            for x in range(width - kernel_width): 

                coord_y_0 = y 

                coord_y_1 = y + int(kernel_height/2) 

                coord_y_2 = y + kernel_height 

                 

                coord_x_0 = x 

                coord_x_1 = x + kernel_width 

                 

                A = integral_img[coord_y_0, coord_x_0] 

                B = integral_img[coord_y_0, coord_x_1] 

                C = integral_img[coord_y_1, coord_x_1] 

                D = integral_img[coord_y_2, coord_x_1] 

                E = integral_img[coord_y_2, coord_x_0] 



                F = integral_img[coord_y_1, coord_x_0] 

                 

                value = D-E-2*C+2*F-A +B 

                feature_list.append(value) 

    return feature_list 

 

def evaluate_Haar_filters_type3(integral_img, list_of_kernels_type3, height, width):  

    """ 

    Create the type3 features at every possible position in the image. 

    """ 

    feature_list = [] 

    for kernel in list_of_kernels_type3: 

        kernel_height, kernel_width = np.shape(kernel) 

        for y in range(height - kernel_height): 

            for x in range(width - kernel_width): 

                coord_x_0 = x 

                coord_x_1 = x + int(kernel_width/3) 

                coord_x_2 = x + int(2*kernel_width/3) 

                coord_x_3 = x + kernel_width 

                 

                coord_y_0 = y 

                coord_y_1 = y + kernel_height 

                 

                A = integral_img[coord_y_0, coord_x_0] 

                B = integral_img[coord_y_0, coord_x_1] 

                C = integral_img[coord_y_0, coord_x_2] 

                D = integral_img[coord_y_0, coord_x_3] 

                E = integral_img[coord_y_1, coord_x_3] 

                F = integral_img[coord_y_1, coord_x_2] 

                G = integral_img[coord_y_1, coord_x_1] 

                H = integral_img[coord_y_1, coord_x_0] 

                 

                value = 2*F + 2*B -2*C -2*G -A + H - E + D 

                feature_list.append(value) 

    return feature_list 

 

def evaluate_Haar_filters_type4(integral_img, list_of_kernels_type4, height, width):  

    """ 

    Create the type4 features at every possible position in the image. 



    """ 

    feature_list = [] 

    for kernel in list_of_kernels_type4: 

        kernel_height, kernel_width = np.shape(kernel) 

        for y in range(height - kernel_height): 

            for x in range(width - kernel_width): 

                coord_x_0 = x 

                coord_x_1 = x + int(kernel_width/2) 

                coord_x_2 = x + kernel_width 

                 

                coord_y_0 = y 

                coord_y_1 = y + int(kernel_height/2) 

                coord_y_2 = y + kernel_height 

                 

                A = integral_img[coord_y_0, coord_x_0] 

                B = integral_img[coord_y_0, coord_x_1] 

                C = integral_img[coord_y_0, coord_x_2] 

                D = integral_img[coord_y_1, coord_x_0] 

                E = integral_img[coord_y_1, coord_x_1] 

                F = integral_img[coord_y_1, coord_x_2] 

                G = integral_img[coord_y_2, coord_x_0] 

                H = integral_img[coord_y_2, coord_x_1] 

                I = integral_img[coord_y_2, coord_x_2] 

                 

                value = 2*H -4*E-G+2*D+2*F-C+2*B+A-I 

                feature_list.append(value) 

    return feature_list 

 

def get_features_for_all_images(kernel_list, list_of_kernels_type1, list_of_kernels_type2, list_of_kernels_type3, list_of_kernels_type4,  

height, width): 

    """ 

    Returns the features for all images of a certain image list. 

    """ 

    list_features_per_image = [] 

    for integral_img in kernel_list: 

        feature_list_type1 = evaluate_Haar_filters_type1(integral_img, list_of_kernels_type1,  height, width)  

        feature_list_type2 = evaluate_Haar_filters_type2(integral_img, list_of_kernels_type2,  height, width) 

        feature_list_type3 = evaluate_Haar_filters_type3(integral_img, list_of_kernels_type3,  height, width)  

        feature_list_type4 = evaluate_Haar_filters_type4(integral_img, list_of_kernels_type4,  height, width)  



         

        features = feature_list_type1.copy() 

        features.extend(feature_list_type2) 

        features.extend(feature_list_type3) 

        features.extend(feature_list_type4) 

        list_features_per_image.append(features) 

    return list_features_per_image 

 

def get_features(): 

    """ 

    Returns all the features for training and testing sorted after positive and negative class.  

    """ 

    integral_images_train_pos, integral_images_train_neg, integral_images_test_pos, integral_images_test_neg = get_all_integral_images() 

    height, width = np.shape(integral_images_train_pos[0]) 

     

    list_of_kernels_type1 = get_type1_kernels(width,height) 

    list_of_kernels_type2 = get_type2_kernels(width,height) 

    list_of_kernels_type3 = get_type3_kernels(width,height) 

    list_of_kernels_type4 = get_type4_kernels(width,height) 

     

    features_train_pos = get_features_for_all_images(integral_images_train_pos, list_of_kernels_type1, list_of_kernels_type2, 

list_of_kernels_type3, list_of_kernels_type4, height, width) 

    features_train_neg = get_features_for_all_images(integral_images_train_neg, list_of_kernels_type1, list_of_kernels_type2, 

list_of_kernels_type3, list_of_kernels_type4, height, width) 

    features_test_pos = get_features_for_all_images(integral_images_test_pos, list_of_kernels_type1, list_of_kernels_type2, 

list_of_kernels_type3, list_of_kernels_type4, height, width) 

    features_test_neg = get_features_for_all_images(integral_images_test_neg, list_of_kernels_type1, list_of_kernels_type2, 

list_of_kernels_type3, list_of_kernels_type4, height, width) 

     

    return features_train_pos, features_train_neg, features_test_pos, features_test_neg 

 

def save_features_to_file(features_train_pos, features_train_neg, features_test_pos, features_test_neg):  

    """ 

    Code to save the features to file because calculating them takes a long time. 

    """ 

    filename = "features_train_pos.npz" 

    np.savez(filename, features_train_pos) 

     

    filename = "features_train_neg.npz" 

    np.savez(filename, features_train_neg) 



     

    filename = "features_test_pos.npz" 

    np.savez(filename, features_test_pos) 

     

    filename = "features_test_neg.npz" 

    np.savez(filename, features_test_neg) 

     

     

def get_features_from_file(train_or_test): 

    """ 

    Load the features from the file.  

     

    train_or_test has two possible values: 

        - "train": Training data is returned 

        - "test" : Testing data is returned 

    """ 

    if train_or_test == "train": 

        filename = "features_train_pos.npz" 

        file = np.load(filename) 

        features_train_pos = file["arr_0"] 

         

        filename = "features_train_neg.npz" 

        file = np.load(filename) 

        features_train_neg = file["arr_0"] 

         

        return features_train_pos, features_train_neg 

     

    elif train_or_test == "test": 

        filename = "features_test_pos.npz" 

        file = np.load(filename) 

        features_test_pos = file["arr_0"] 

         

        filename = "features_test_neg.npz" 

        file = np.load(filename) 

        features_test_neg = file["arr_0"] 

         

        return features_test_pos, features_test_neg 

 

 



def cascade(features, number_of_pos_samples, number_of_neg_samples, FPR_stage_max, T, cascade_data):  

    """ 

    This function combines up to T weak classifiers. 

     

    If the classifiers combine to a joined classifier with false positive rate below FPR_stage_max. 

    """ 

    weights_for_pos_samples = np.ones(number_of_pos_samples)*0.5/number_of_pos_samples 

    weights_for_neg_samples = np.ones(number_of_neg_samples)*0.5/number_of_neg_samples 

    weights = np.append(weights_for_pos_samples, weights_for_neg_samples) 

     

    labels_for_pos_samples = np.ones(number_of_pos_samples) 

    labels_for_neg_samples = np.zeros(number_of_neg_samples) 

    labels = np.append(labels_for_pos_samples, labels_for_neg_samples) 

    labels = labels.astype(np.int) 

     

    alphas = [] 

    list_of_ht = [] 

    list_of_h = [] 

         

    for t in range(T): 

        print("t = %s"%(t)) 

        weights, alphas, list_of_h, list_of_ht = find_best_classifier(features, labels, weights, number_of_pos_samples, alphas, list_of_h, 

list_of_ht) 

        s = np.dot(np.asarray(list_of_h).transpose(), np.asarray(alphas)) 

        # smallest value of class positive --> force TPR = 100% 

        internal_threshold = np.min(s[:number_of_pos_samples]) 

 

        s_pred = np.zeros(s.shape) 

        s_pred[s>=internal_threshold] = 1 

         

        fp = np.sum(s_pred[number_of_pos_samples:])/number_of_neg_samples 

        tp = np.sum(s_pred[:number_of_pos_samples])/number_of_pos_samples 

 

        print("FP: %s" %fp) 

        print("TP: %s" %tp) 

 

        if fp < FPR_stage_max: 

            break 

 



    number_of_misclassified = np.sum(s_pred[number_of_pos_samples:]).astype(int) 

     

    updated_features = features[:number_of_pos_samples] 

    for i in range(number_of_neg_samples): 

        neg_id = i + number_of_pos_samples 

        if s_pred[neg_id] == 1: 

            neg_sample = features[neg_id] 

            neg_sample = np.reshape(neg_sample, (1,-1)) 

            updated_features = np.append(updated_features,neg_sample, axis = 0) 

     

    number_of_weak_classifiers = t 

    cascade_classifier = [list_of_ht, updated_features, number_of_misclassified, number_of_weak_classifiers, alphas] 

    return cascade_classifier 

               

         

def find_best_classifier(features, labels, weights, number_of_pos_samples, alphas, list_of_h, list_of_ht):  

    """ 

    This function finds the best weak classifier for certain features and weights. 

     

    This code is vectorized to be able to handle the more than 192K features in a reasonable time. Therefore, it is strongly based on Wan-Eih 

Huang's code. 

    """ 

    weights = weights/np.sum(weights) 

     

    weights_unfolded = np.tile(weights, (np.shape(features)[1],1)) 

    labels_unfolded = np.tile(labels, (np.shape(features)[1],1)) 

    idx = np.argsort(features, axis = 0) 

    row = np.arange(np.shape(features)[1]) 

 

    sorted_weights = weights_unfolded[row,idx] 

    sorted_labels = labels_unfolded[row,idx] 

     

    pos_T = np.sum(weights[:number_of_pos_samples]) 

    neg_T = np.sum(weights[number_of_pos_samples:]) 

    positive_weight_indicator = np.multiply(sorted_weights,sorted_labels) 

 

    pos_S = np.cumsum(positive_weight_indicator, axis = 0) 

    neg_S = np.cumsum(sorted_weights, axis = 0) - pos_S 

 



    err1 = pos_S + neg_T - neg_S 

    err2 = neg_S + pos_T - pos_S 

    error = np.stack((err1,err2), axis = 2) 

     

    min_idx = np.unravel_index(np.argmin(error), error.shape) 

    min_error = error[min_idx] 

 

    ft = min_idx[1] 

    index = idx[:,ft] 

    print("Feature-Index: %s" %ft) 

 

    pred_tmp = np.zeros(features.shape[0]) 

    pred = np.zeros(features.shape[0]) 

     

    if min_idx[2] == 0: 

        polarity = -1 

        pred_tmp[min_idx[0]+1:]=1 

    else: 

        polarity = 1 

        pred_tmp[:min_idx[0]+1]=1 

    pred[index] = pred_tmp 

     

    feature = features[:,ft] 

    feature = feature[index] 

     

    if min_idx[0] == 0: 

        theta = feature[0] - 0.01 

    elif min_idx[0] == -1: 

        theta = feature[-1] + 0.01 

    else: 

        theta = np.mean(feature[min_idx[0]-1:min_idx[0]+1]) 

         

    print("Theta = %s"%(theta)) 

    beta = min_error/(1-min_error) 

 

    alphas.append(np.log(1/beta)) 

    list_of_h.append(np.transpose(pred)) 

    list_of_ht.append([ft, polarity, theta]) 

     



    weights = weights*(beta**(1-np.abs(labels-pred))) 

     

    return weights, alphas, list_of_h, list_of_ht 

     

     

     

 

#---------------------------------------------------------------------------------------------------------- 

# Create features and save them to file  

#features_train_pos, features_train_neg, features_test_pos, features_test_neg = get_features()    

#save_features_to_file(features_train_pos, features_train_neg, features_test_pos, features_test_neg)      

 

 

#---------------------------------------------------------------------------------------------------------- 

# Load important variables for training 

#features_train_pos, features_train_neg = get_features_from_file("train")    

# 

##---------------------------------------------------------------------------------------------------------- 

## Code for training 

#number_of_pos_samples = np.shape(features_train_pos)[0] 

#number_of_neg_samples = np.shape(features_train_neg)[0] 

#original_number_of_neg_samples = number_of_neg_samples 

#number_of_samples = number_of_neg_samples + number_of_pos_samples 

#number_of_features = np.shape(features_train_pos)[1] 

# 

#features = np.concatenate((features_train_pos,features_train_neg),axis = 0) 

# 

## Define crucial values for Adaboost, they have been chosen based on last year's results  

#T = 50 # max number of weak classifiers in a stage 

#S = 10 # max number of stages 

# 

## Define the minimum performance of each stage 

#FPR_stage_max = 0.5 # The smaller FPR per stage the less stages we need to obtain a small overall FPR 

# 

#FPR_of_stages = [] 

#TPR_of_stages = [] 

#FNR_of_stages = [] 

#actual_number_of_stages = [] 

# 



#classifier = [] 

#features_per_stage = [] 

#misclassified_per_stage = [] 

#for stage in range(S): 

#    cascade_classifier = cascade(features, number_of_pos_samples, number_of_neg_samples, FPR_stage_max, T, classifier)  

#    classifier.append(cascade_classifier) 

# 

#    number_of_neg_samples = cascade_classifier[2] 

# 

#    features = cascade_classifier[1] 

#    features_per_stage.append(cascade_classifier[3]) 

#    misclassified_per_stage.append(number_of_neg_samples) 

#     

#    fpr = number_of_neg_samples/original_number_of_neg_samples 

#    FPR_of_stages.append(fpr) 

#    if number_of_neg_samples == 0: 

#        break 

#     

## Save the results    

#open_file = open("classifier_info.csv", "wb") 

#pickle.dump(classifier, open_file) 

#open_file.close() 

# 

#open_file = open("FRP_train.csv", "wb") 

#pickle.dump(FPR_of_stages, open_file) 

#open_file.close() 

# 

#open_file = open("features_per_stage.csv", "wb") 

#pickle.dump( features_per_stage, open_file) 

#open_file.close() 

# 

## Plot the FPR     

#actual_number_of_stages = list(range(stage+1)) 

#actual_number_of_stages = [x + 1 for x in actual_number_of_stages] 

#fig = plt.figure(1) 

#fig.clf() 

#plt.plot(actual_number_of_stages, FPR_of_stages, label = "FPR")        

#plt.grid() 

#plt.xticks(ticks = actual_number_of_stages) 



#plt.legend(loc = "upper right") 

#plt.xlabel("Stage of the cascade") 

#fig.savefig("Plot of FPR train") 

#plt.show() 

     

 

##---------------------------------------------------------------------------------------------------------- 

### Load important variables for testing 

features_test_pos, features_test_neg = get_features_from_file("test")    

 

open_file = open("classifier_info.csv", "rb") 

classifier = pickle.load(open_file) 

open_file.close() 

 

open_file = open("FRP_train.csv", "rb") 

FPR_of_stages = pickle.load(open_file) 

open_file.close() 

 

open_file = open("features_per_stage.csv", "rb") 

features_per_stage = pickle.load(open_file) 

open_file.close() 

# 

##---------------------------------------------------------------------------------------------------------- 

## Code for testing 

number_of_pos_samples = np.shape(features_test_pos)[0] 

number_of_neg_samples = np.shape(features_test_neg)[0] 

 

original_number_of_pos_samples = number_of_pos_samples 

original_number_of_neg_samples = number_of_neg_samples 

 

S = len(classifier) 

 

features = np.concatenate((features_test_pos,features_test_neg),axis = 0) 

     

FPR_of_stages = [] 

FNR_of_stages = [] 

 

for stage in range(S): 

    print("stage = %s" %(stage)) 



 

    list_of_ht = classifier[stage][0] 

    ft = [sublist[0].astype(int) for sublist in list_of_ht] 

    polarity = np.array([sublist[1] for sublist in list_of_ht]) 

    thetas = np.array([sublist[2].astype(int) for sublist in list_of_ht]) 

    alphas = classifier[stage][4] 

     

    stage_threshold = 0.5*np.sum(alphas) 

     

    relevant_features = features[:,ft] 

     

    temp1 = polarity*thetas 

    temp1 = np.tile(temp1, (number_of_pos_samples+number_of_neg_samples,1))  

    temp2 = polarity*relevant_features 

     

    decision_matrix = np.subtract(temp1,temp2) 

     

    inner_prediction = np.zeros(np.shape(decision_matrix)) 

    inner_prediction[decision_matrix >= 0] = 1 

     

    temp3 = np.dot(inner_prediction, alphas) 

     

    outer_prediction = np.zeros(number_of_pos_samples+number_of_neg_samples) 

    outer_prediction[temp3 >= stage_threshold] = 1 

     

    fp = np.sum(outer_prediction[number_of_pos_samples:])/original_number_of_neg_samples 

    tp = np.sum(outer_prediction[:number_of_pos_samples])/original_number_of_pos_samples 

    fn = 1 - tp 

     

    FPR_of_stages.append(fp) 

    FNR_of_stages.append(fn) 

     

    only_pos_array = outer_prediction[:number_of_pos_samples] 

    pos_true_indices = np.where(only_pos_array ==1) 

    updated_features = features[pos_true_indices] 

    for i in range(number_of_neg_samples): 

        neg_id = i + number_of_pos_samples 

        if outer_prediction[neg_id] == 1: 

            neg_sample = features[neg_id] 



            neg_sample = np.reshape(neg_sample, (1,-1)) 

            updated_features = np.append(updated_features,neg_sample, axis = 0) 

    temp = np.sum(outer_prediction[:number_of_pos_samples]).astype(int) 

    number_of_neg_samples = np.sum(outer_prediction[number_of_pos_samples:]).astype(int) 

    number_of_pos_samples = temp 

     

    features = updated_features 

     

# Plot results 

actual_number_of_stages = list(range(stage+1)) 

actual_number_of_stages = [x + 1 for x in actual_number_of_stages] 

fig = plt.figure(2) 

fig.clf() 

plt.plot(actual_number_of_stages, FPR_of_stages, label = "FPR")    

plt.plot(actual_number_of_stages, FNR_of_stages, label = "FNR")     

plt.grid() 

plt.xticks(ticks = actual_number_of_stages) 

plt.legend(loc = "upper right") 

plt.xlabel("Stage of the cascade") 

fig.savefig("Plot of FPR and FNR test") 

plt.show()    


