
ECE 661 Fall 2020 - Homework 11

Brian Helfrecht

bhelfre@purdue.edu

1 Theory

As discussed several times in past assignments, image classification is an important topic in computer vi-
sion. Typically, small image sizes can be analyzed with relative ease. However, in the modern area, a single
image can contain tens of millions of pixels—analysis of which can increase processing times exponentially.
Additionally, high-dimensional feature vectors can lead to issues during classification. To combat this, the
input images can be represented in a lower dimensional space that contains far fewer data points than the
number of pixels in the image while still retaining the image’s unique information. This dimensionality re-
duction can be accomplished in several ways, but two—principal component analysis and linear discriminant
analysis—are explored in this assignment. The target application was the classification of several faces.

Furthermore, algorithms for classifying objects in an image are a large focus in computer vision. The second
half of this assignment focused on implementing the cascaded AdaBoost classifier using the Viola and Jones
algorithm, which aims to achieve an extremely low false positive rate. For this task, the false positive and
negative rates for images containing cars were analyzed as a function of the number of cascade stages in the
classifier.

1.1 Principal Component Analysis (PCA)

The first method to reduce the dimensionality of an image is through principal component analysis (PCA).
The general idea of this method is to find an orthogonal set of direction vectors upon which to project each
input image vector. This can be accomplished by retaining only the largest, most influential eigenvectors of a
matrix containing image features. These eigenvectors, which are often far fewer in number than the number
of features in the initial set, can then be used for testing and training. The general process for obtaining
feature vectors using PCA is as follows:

1. Vectorize each image. That is, convert it from an m× n array to an mn× 1 vector.

2. Normalize each vectorized image xi by dividing by its length:

x̂i =
xi
||xi||

3. Compute the global mean vector ~m of all N images in the data set:

~m =
1

N

N∑
i=1

x̂i

4. Subtract the global mean ~m from each normalized image vector x̂i and concatenate all the results into
the columns of a matrix X.

5. Compute the eigenvalues and eigenvectors ΛK = [λ̃1|λ̃2|...|λ̃K ] of XTX, which is an orthogonal matrix
of PCA feature vectors.
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6. Sort the eigenvectors in ΛK by ordering their corresponding eigenvalues from largest to smallest. This
process will enable dimensionality reduction by taking only the K largest, most influential eigenvectors
from the original vector matrix.

7. Compute the final eigenvectors λi of the inital image matrix X using:

λi = Xλ̃i

8. Normalize the final eigenvectors:

λ̂i =
λi
||λi||

9. Finally, retain only the P largest eigenvectors as columns in a matrix WP , where P is the desired
dimensionality of the classifier.

10. Then, feature vectors yi for testing and training images can be calculated as follows:

yi = WT
P (x̂i − ~m)

The training and testing feature vectors can then be used for classification. For this assignment, the Nearest-
Neighbor classifier was implemented, which uses the Euclidean distance between a test vector and all training
vectors to find the closest match. The class of the nearest training vector becomes the predicted class for the
test vector. In this assignment, the number of nearest neighbors used for each prediction was varied between
1 and 10. However, it was found that a single nearest-neighbor classifier worked the best. This single NN
classifier was used for testing of both PCA and LDA, the latter of which is described below.

1.2 Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) is a method similar to LDA for dimensionality reduction. However,
it seeks to find P maximally discriminating direction vectors between image classes. This is possible by
maximizing the ratio between within-class and between-class scatter of the feature vectors. This can be
expressed mathematically by finding the eigenvectors that maximize the Fisher Discriminant function:

J(~w) =
~wTSB ~w

~wTSW ~w

This formula can be used directly provided SW is not singular. However, this is often not the case. As such,
a modified method must be used. As with PCA, once the feature vectors have been computed, test image
classes can be predicted with a NN classifier or similar. A general outline of LDA for computing feature
vectors when SW is singular is described below:

1. As with PCA, vectorize each image. That is, convert it from an m× n array to an mn× 1 vector.

2. Normalize each vectorized image xi by dividing by its length:

x̂i =
xi
||xi||

3. Compute the global mean vector ~mG of all N images in the data set:

~mG =
1

N

N∑
i=1

x̂i

4. Compute the class mean vector for each class using the C images in the class:

~mC =
1

C

C∑
i=1

x̂i
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5. Compute the mean matrix M by subtracting the global mean vector from each class mean vector. The
resulting vectors should appear in the columns of M :

M = ~mC − ~mG for each ~mC

6. Compute the eigenvalues and eigenvectors of MTM through eigen decomposition, and sort the eigen-
vectors from largest to smallest based on their corresponding eigenvalues.

7. Compute the final eigenvectors λi of M using:

λi = Mλ̃i

8. Normalize the final eigenvectors:

λ̂i =
λi
||λi||

9. Create a new matrix ΛK = [λ̃1|λ̃2|...|λ̃K ] containing only eigenvectors corresponding to the K eigenval-
ues that are not nearly zero (vectors with eigenvalues greater than 1E-6 will suffice). This is necessary
because we will be computing an inverse with the eigenvalues shortly, and we cannot do this with a
singular matrix.

10. Create a diagonal matrix DB containing the K non-zero eigenvalues along the main diagonal.

11. Determine the product Z = ΛD−0.5
B .

12. Compute the matrix X of within-class difference vectors with ~Xi = x̂i − ~mC , where i represents the
column of X. In other words, for each normalized image vector, subtract its corresponding class mean,
and assemble the results into the columns of the matrix X.

13. Compute the eigenvalues and initial eigenvectors ṽi of the product (ZTX)(ZTX)T . Sort the eigenvec-
tors from largest to smallest based on the eigenvalues.

14. Compute the final eigenvectors using vi = Zṽi and normalize them.

15. Take the P eigenvectors with largest eigenvalues as the columns of a matrix WP .

16. Finally, a feature vector yi can be computed using the P eigevectors using yi = WT
P (x̂i − ~m) where ~m

is the global mean of all image vectors in the training set and x̂i is the image vector for which we wish
to find the corresponding feature vector.

As with PCA, when computing the feature vectors for images in the test set, the global mean of all images
in the training set is used. Then, a NN classifier can predict the class of an unknown test image vector.

1.3 The cascaded AdaBoost classifier

For the second task in this assignment, a cascaded AdaBoost classifier employing the Viola and Jones
algorithm was implemented for object detection. This algorithm prioritizes a low false-positive rate. At a
high level, the algorithm works by creating several stages, or cascades, of weak classifiers that, when linked
together, form a very strong classifier. Each weak classifier need not be extremely robust—in fact, so long
as it classifies at least half of the images properly, it can be used. If not, a “polarity” parameter for the
classifier can be inverted such that the classifier does correctly classify at least half the images. In total,
several simple weak classifiers applied in succession can construct a highly accurate overall classifier. Details
on the implementation of such a classification algorithm are enumerated below.
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1.3.1 Feature extraction

The weak classifiers making up the cascaded AdaBoost classifier work most effectively on a large feature set.
That is, classification will work best if each image can decomposed into a set of thousands, or even tens of
thousands of features. To extract these features, we can use Haar filters of differing sizes and orientations. For
simplicity, we can use n-dimensional Haar vectors oriented either horizontally or vertically. The horizontal
filters will be of size 1× 2, 1× 4, ..., 1×N where N is the width of the image in pixels. Similarly, the vertical
filters will be of sizes 2× 1, 4× 1, ...,M × 1, where M is the height of the image in pixels. These vectors are
filled half with -1 elements and half with 1. See below for examples of 1× 4 and 4× 1 filters.

Example 1× 4 Haar vector filter:
(
−1 −1 1 1

)

Example 4× 1 Haar vector filter:


−1
−1
1
1


Each of these filters is then convolved with the input image, and the output at each pixel becomes an element
in the feature vector associated with that image. For this assignment, the implementation simply subtracted
the sum of the negative pixel filter region from the sum of the positive pixel filter region for efficiency, rather
than using a convolution function. In total, there were 11,940 elements in each feature vector (per image).
This amount of processing can take quite some time, especially when there are hundreds or thousands of
images to process. Consequently, the features vectors associated with each image were saved to a file so that
feature extraction did not have to be performed each time the program was run.

1.3.2 Strong and weak classifier construction

The cascaded AdaBoost classifier uses an iterative method that continually updates its parameters to
achieve an extremely low false positive rate. Several weak classifiers can constitute a strong classifier,
which is used as part of one cascade in the classifier. Each weak classifier can be thought of as a function
weak(input, feature, threshold, polarity) that classifies the input based on its feature value when compared
to the threshold. The polarity of the classifier determines whether the classifier assigns the input to the first
or second of two classes if the feature value is greater than the threshold value. The steps to create a strong
(and weak) classifier are outlined below:

1. Before beginning, create a matrix containing the feature vectors for all images representing both positive
and negative labels. Additionally, a vector of labels identifying the true label for each row (or column)
in the feature matrix is needed for training. From here forward, images containing the object of interest
will be referred to as “positive images”, and those not depicting the object of interest will be called
“negative images”.

2. Establish initial weights for the M positive and N negative images. The weights should be initialized
to 1

2M and 1
2N , respectively. These weights are initially set such that the total weight of the positive

and negative images is 1.

3. Now, we can construct the weak classifiers as part of a single cascade. To do this, the following steps
are taken:

(a) Normalize the weights associated with the positive and negative images by dividing the weight
associated with each image by the sum of the weights associated with all images.

(b) Iterate over each feature associated with all images. That is, acquire a vector of each feature
element from all images. For each feature, perform steps (c)-(e).

(c) Sort the features and their corresponding image labels and weights in ascending order, based on
the feature element values. We do this as an efficient precursor to computing the threshold for
separating the set into two classes with > 50% accuracy.
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(d) Compute the classification error if any of the feature elements was used as the threshold, for both
polarities (referenced from ECE 661 Fall 2018 report 1):

Error if polarity 1 is chosen: e1 = S+ + T− − S−

Error if polarity -1 is chosen: e−1 = S− + T+ − S+

• S+: Sum of weights of positive images whose feature value is less than the current threshold.

• S−: Sum of weights of negative images whose feature value is less than the current threshold.

• T+: Sum of weights of positive images.

• T−: Sum of weights of negative images.

The classification error is then calculated as min(e1, e−1). This error is a vector that represents
the error that would result if each feature value was used as a threshold for the corresponding
feature set in all images.

(e) Note the minimum error value ε that results. If it is less than the current minimum error, note
the current feature vector index, the threshold (feature value) that resulted in the minimum error,
and the polarity that produced the minimum error.

(f) Repeat steps (c)-(e) until all feature vectors have been tested. The feature index, threshold, and
polarity parameters associated with the overall minimum error constitute a single weak classifier
in the cascade.

4. After each weak classifier has been found, we have to update the parameters of the algorithm to find
the next weak classifier in the cascade. We first compute the confidence parameters from the weak
classifier:

β =
ε

1− ε
and α = ln(

1

β
)

Keep note of the value of α for the weak classifier as it will be needed during testing.

5. Update the image weights wi according to the following formula, where δ represents the classification
disparity. That is, δ = 1 if the classification of a particular image was incorrect, and δ = 0 if it was
correct.

wi,new = wi,old ∗ β1−δ

6. Now, compute the parameters for determining the final classifications using the weak classifiers created
so far. These weak classifiers constitute one strong classifier.

(a) First, we multiply α by the classifications assigned by the weak classifier. Each iteration, we
will update this list by adding the new product to the sum of the products from the previous
iterations. We will call this list cα.

(b) Also, keep a running sum αtot of the α values from all weak classifiers found so far. If desired,
each α value can be multiplied by a constant to adjust the extent to which it affects the threshold
on the next iteration.

7. Determine the final classifications assigned by the strong classifier so far. These are found by applying
the threshold value αtot to the list cα. From this list, the false negative and positive rates can be found,
as well as their true counterparts.

8. Ideally, the strong classifier should achieve 100% accuracy on positive images, such that no positive
image is misclassified (i.e. the false positive rate is 0). However, this may not be possible from the
current number of weak classifiers found so far. If we do achieve the desired performance rates, we can
stop searching for more weak classifiers for the current cascade. If not, we continue finding more weak
classifiers until we do, or until a maximum number of classifiers are found.
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9. Once all weak classifiers for the current cascade have been found (either by reaching the termination
conditions or by accumulating a set maximum number of classifiers), the data set needs to be revised
such that only the incorrectly classified images remain. However, since we desire to achieve a very low
false positive rate, we must also include all positive images, regardless of whether they were classified
correctly or incorrectly by the current cascade. More simply, we remove all the correctly classified
negative images from the data set, and repeat the steps above to create another cascade.

10. Cascade creation terminates when either the cumulative false positive and negative rates fall below
a set threshold, or no negative images remain. Each cascade is then a strong classifier that will be
applied during the testing phase. As with feature extraction, the final cascade set was saved to a file
so that it could simply be loaded when it came time to test the test set.

1.3.3 Testing with a cascaded AdaBoost classifier

Testing with an AdaBoost classifier is a fairly simple process. Each weak classifier in each cascade is applied
to the each image in the test set. More specifically, the weak classifier denoting the specific feature value to
threshold for each image is applied with the polarity found during testing that produced the most accurate
classification. The classifications found from the output of each weak classifier are then adjusted with the α
values found during training and the α-sum threshold is re-applied to obtain the final classifications. The
images that are classified as positive (whether their true label is positive or not) are kept in the data set
for the next iteration, while the negatively classified samples are removed. Once again, the false positive
and negative rates are monitored after each full cascade is applied, but this time it is to characterize the
performance of the classifier, rather than to provide a termination condition. The testing procedure stops
once no negative images remain in the data set.

2 Results

2.1 Task 1: Face recognition with PCA and LDA

Below are my results for Task 1, which involved classifying several different faces using Principal Component
Analysis and Linear Discriminant Analysis methods.

6



Figure 1: Results of PCA and LDA accuracy vs. classifier dimensionality P.

The plot above shows quite similar results for the performance of PCA and LDA. However, we note that
LDA converges slightly faster to 99% accuracy than PCA. LDA remained above 99% accuracy after P hit 6,
while PCA only remained above 99% accuracy after P hit 10. This matches the expected results: in general,
LDA will converge faster than PCA. Near-perfect accuracy (99%) was selected over perfect (100%) accuracy
as the convergence criterion to eliminate the effect of potential rounding errors in calculations. Additionally,
both methods seemed to jump between 99% and 100% accuracy.

2.2 Task 2: AdaBoost classification

For this task, the Viola and Jones algorithm was implemented to identify whether an image contained a car
or not. This algorithm uses a cascaded version of the AdaBoost classifier described in the theory section. A
few notes:

• Several iterations were performed with limits on the number of weak classifiers per cascade. This is
because my full implementation (with up to 25 weak classifiers per cascade) only required 4 stages,
and thus didn’t show the false negative and false positive trends as well. I tested the system with up
to 1, 5, and 25 weak classifiers per cascade. Limiting the number of weak classifiers per cascade also
dramatically improved training time.

• The maximum number of cascades allowed for the classifier was 10.

• From the plots below, we can see that during training, as the number of cascade stages increases, the
false positive and negative rates both decrease. This is expected because the algorithm attempts to
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minimize the false positive rate, giving it priority over the false negative rate. In all cases, both the
false positive and negative rates tended towards zero after all cascade stages.

• The results of applying the cascaded classifier to the images in the test set show that the false positive
rate is correctly minimized, with priority over the false negative rate. Both rates, after running all
images through the complete classifier, show fairly low false positive and negative rates.

• There is a large spike in the false positive/negative rates for each test data set after cascade 2. I am
not entirely sure what causes this, but it could be due to the algorithms tradeoff of minimizing the
false positive rate at the expense of the false negative rate. Once that stabilizes, the false negative rate
begins to drop as well. It could also be a result of a code flaw.

Figure 2: False positive (blue) and negative (orange) rates after training with up to 25 weak classifiers per
cascade. The actual number of weak classifiers per cascade were [25, 25, 25, 15].
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Figure 3: False positive and negative rates for the testing data set, when up to 25 weak classifiers per cascade
were used.

Figure 4: False positive (blue) and negative (orange) rates after training with up to 5 weak classifiers per
cascade. The actual number of weak classifiers per cascade were [5, 5, 5, 5, 5, 3].
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Figure 5: False positive and negative rates for the testing data set, when up to 5 weak classifiers per cascade
were used.

Figure 6: False positive (blue) and negative (orange) rates after training with only 1 weak classifier per
cascade.
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Figure 7: False positive and negative rates for the testing data set, when only one weak classifier was used
per cascade.
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3 Source Code

3.1 Task 1: Face recognition with PCA and LDA

## ============= FILE INFORMATION ============= ##
#
# Name : Brian He l f r e ch t
# Email : bhelfre@purdue . edu
# Course : ECE 661
# Assignment : Homework 11 , Task 1
# Due date : December 2 , 2020
#
## ============= PACKAGE/FILE IMPORTS ============= ##
import numpy as np
import cv2 as cv
import math
import os
import time
import matp lo t l ib . pyplot as p l t
## ============= FUNCTION DEFINITIONS ============= ##
def vector i ze Img ( img ) :

#Ensure we use a g ray s ca l e image
i f ( l en ( img . shape ) > 2 ) :

img = cv . cvtColor ( img , cv .COLOR BGR2GRAY)
imgWidth , imgHeight = img . shape [ 1 ] , img . shape [ 0 ]

#Vector i z e the image in to a vector and normal ize i t
imgVec = np . r ave l ( img )
return imgVec / np . l i n a l g . norm( imgVec )

de f calcPCAData ( imgVecs , N, IMG SZ , P) :
#Compute the mean of the image s e t decompose XˆTX
meanImgVecs = np . reshape (np .mean( imgVecs , 1) , ( IMG SZ , 1) )
xMat = imgVecs − meanImgVecs
matToDecompose = np . dot (np . t ranspose (xMat ) , xMat)

#Compute the e i g enva lue s and e i g enve c t o r s and so r t them from l a r g e s t to sma l l e s t
e igenVals , e igenVecs = np . l i n a l g . e i g (matToDecompose )
sortedEigVecs = [ pt f o r , pt in sor ted ( z ip ( e igenVals , e igenVecs ) , \

key = lambda pa i r : pa i r [ 0 ] , r e v e r s e = True ) ]

#Compute the true e i g enve c t o r s and take the P l a r g e s t
f i na lE igVec s = np . z e ro s ( ( IMG SZ , N) )
f o r i in range (N) :

f ina lE igVec = np . dot (xMat , sortedEigVecs [ i ] )
f i na lE igVec s [ : , i ] = f ina lE igVec / np . l i n a l g . norm( f ina lE igVec )

return meanImgVecs , f i na lE igVec s [ : , 0 :P ]

de f calcLDAData ( imgVecs , numLabels , IMGS PER LABEL, IMG SZ , P) :
globalMean = np . reshape (np .mean( imgVecs , 1) , ( IMG SZ , 1) )
classMeans = np . z e ro s ( ( IMG SZ , numLabels ) )
inC la s sD i f fVec s = np . ze ro s ( ( IMG SZ , numLabels∗IMGS PER LABEL))

#Populate the matrix o f c l a s s means
f o r i in range ( numLabels ) :

classMean = np .mean( imgVecs [ : , i ∗IMGS PER LABEL : ( i +1)∗IMGS PER LABEL] , 1)
classMeans [ : , i ] = classMean
inC la s sD i f fVec s [ : , i ∗IMGS PER LABEL : ( i +1)∗IMGS PER LABEL] = \

imgVecs [ : , i ∗IMGS PER LABEL : ( i +1)∗IMGS PER LABEL] − \
np . reshape ( classMean , (IMG SZ , 1) )

meanMat = classMeans − globalMean
matToDecompose = np . dot (np . t ranspose (meanMat ) , meanMat)

#Compute the e i g enva lue s and e i g enve c t o r s and so r t them from l a r g e s t to sma l l e s t
e igenVals , e igenVecs = np . l i n a l g . e i g (matToDecompose )
sortedEigVals = sor ted ( e igenVals , r e v e r s e = True )
sortedEigVecs = [ pt f o r , pt in sor ted ( z ip ( e igenVals , e igenVecs ) , \

key = lambda pa i r : pa i r [ 0 ] , r e v e r s e = True ) ]

#Compute the true e i g enve c t o r s . Only 1 i s ” c l o s e to zero ” , by in sp e c t i on .
#This one vector makes the matrix s ingu la r , so i t must be removed to form the
#upper l e f t submatrix o f Y.
f i na lE igVec s = np . z e ro s ( ( IMG SZ , numLabels −1))
f i n a lE i gVa l s = np . z e ro s ( numLabels−1)
f o r i in range ( numLabels −1):

f ina lE igVec = np . dot (meanMat , sortedEigVecs [ i ] )
f i na lE igVec s [ : , i ] = f ina lE igVec / np . l i n a l g . norm( f ina lE igVec )
f i n a lE i gVa l s [ i ] = sortedEigVals [ i ]

#Compute the e igen matrix decomposit ion
eigenValMat = np . eye ( numLabels−1) ∗ f i n a lE i gVa l s
DB = np . sq r t (np . l i n a l g . inv ( eigenValMat ) )
Z = np . dot ( f ina lE igVecs , DB)
newEigVecDecompMat = np . dot (np . dot (np . t ranspose (Z) , i nC la s sD i f fVec s ) , \

np . t ranspose (np . dot (np . t ranspose (Z) , i nC la s sD i f fVec s ) ) )

#Compute the e i g enve c t o r s o f the new matrix
e igenVals , e igenVecs = np . l i n a l g . e i g (newEigVecDecompMat )
sortedEigVecs = [ pt f o r , pt in sor ted ( z ip ( e igenVals , e igenVecs ) , \

key = lambda pa i r : pa i r [ 0 ] , r e v e r s e = True ) ]

#Compute the true e i g enve c t o r s and take the P l a r g e s t
f i na lE igVec s = np . z e ro s ( ( IMG SZ , numLabels − 1))
f o r i in range (P) :

f ina lE igVec = np . dot (Z , sortedEigVecs [ i ] )
f i na lE igVec s [ : , i ] = f ina lE igVec / np . l i n a l g . norm( f ina lE igVec )

return globalMean , f i na lE igVec s [ : , 0 :P ]

de f p red i c tLabe l ( featureMat , featureVec , numLabels , imgPerLabel , numNeighbors ) :
c l a s sH i t s = np . ze ro s ( numLabels , np . uint16 )
classMeans = np . z e ro s ( numLabels ) #Used to s e t t l e t i e s
groupNums = np . arange (1 , numLabels+1) #Needed s i n c e we trim the vec to r s

#Calcu late the Eucl idean d i s tance between the f e a tu r e vec to r s
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d i s t = np . sq r t (np . sum(( tra inFeatureVecs − f eatureVec ) ∗∗ 2 , 0) )

#Find the N neare s t neighbors , removing the s e l e c t e d entry each time
f o r i in range ( numNeighbors ) :

minIdx = np . argmin ( d i s t )
nearIdx = in t (minIdx / imgPerLabel )
c l a s sH i t s [ nearIdx ] += 1 #Update the number o f c l a s s occurences
classMeans [ nearIdx ] += d i s t [ nearIdx ] #Update the t o t a l d i s tance
d i s t [ minIdx ] = f l o a t ( ’ in f ’ ) #Prevents re−s e l e c t i o n

#Determine the maximum h i t s ( t h i s could be more than 1 c l a s s ! )
maxHits = np .max( c l a s sH i t s )

#Now, pick the c l a s s with the sma l l e s t average d i s tance vector out o f the
#c l a s s e s with the maximum h i t s
classMeans = classMeans [ c l a s sH i t s == maxHits ] / maxHits
groupNums = groupNums [ c l a s sH i t s == maxHits ]

#The pred i c t ed c l a s s i s the c l a s s with the most ” h i t s ” and sma l l e s t d i s tance
return groupNums [ np . argmin ( classMeans ) ]

## ============= MAIN CODE BEGINS BELOW ============= ##

IMG SZ = 128 ∗ 128
MAX P = 20
IMGS PER LABEL = 21
NUM LABELS = 30
NUM NEIGHBORS = 1
TEST DIR = ’ . / inputs /ECE661 2020 hw11 DB1/ t e s t / ’
TRAIN DIR = ’ . / inputs /ECE661 2020 hw11 DB1/ t r a i n / ’

pVals = l i s t (np . arange (1 , MAX P+1))
pAcc = [ ]

’ ’ ’ ===== TRAINING ===== ’ ’ ’
#Acquire f i l e names f o r the images in the de s i r ed d i r e c t o r y
imgFi l e s = [ img f o r img in os . l i s t d i r (TRAIN DIR) i f \

os . path . i s f i l e ( os . path . j o i n (TRAIN DIR , img ) ) ]
N = len ( imgFi l e s )
trainImgVecs = np . z e ro s ( ( IMG SZ , N) )

#Read in each image and v e c t o r i z e i t
p r in t ( ’ Vec to r i z ing t r a i n i n g images . . . ’ )
f o r i in range (N) :

f i l ename = imgFi l e s [ i ]
img = cv . imread (TRAIN DIR + f i l ename )
trainImgVecs [ : , i ] = vector i ze Img ( img )

f o r P in range (1 , MAX P+1):
#Compute f e a tu r e vec to r s us ing PCA or LDA
#meanImgVecs , pEigMat = calcPCAData ( trainImgVecs , N, IMG SZ , P)
meanImgVecs , pEigMat = calcLDAData ( trainImgVecs , NUM LABELS, IMGS PER LABEL, IMG SZ , P)
tra inFeatureVecs = np . dot (np . t ranspose ( pEigMat ) , trainImgVecs − meanImgVecs )

’ ’ ’ ===== TESTING ===== ’ ’ ’
#Acquire f i l e names f o r the images in the de s i r ed d i r e c t o r y
imgFi l e s = [ img f o r img in os . l i s t d i r (TEST DIR) i f \

os . path . i s f i l e ( os . path . j o i n (TEST DIR , img ) ) ]
N = len ( imgFi l e s )
c o r r e c tP r ed i c t i o n s = 0

f o r i in range (N) :
#Read in each image and determine i t s t rue l a b e l
f i l ename = imgFi l e s [ i ]
gtLabel = in t ( f i l ename . s t r i p ( ) . s p l i t ( ’ ’ ) [ 0 ] )

#Vector i z e the image and compute the f e a tu r e vector
img = cv . imread (TEST DIR + f i l ename )
imgVec = np . reshape ( vector i ze Img ( img ) , (IMG SZ , 1) )
featureVec = np . dot (np . t ranspose ( pEigMat ) , imgVec − meanImgVecs )

#Pred ic t the c l a s s o f the image
pred ic tedLabe l = pred i c tLabe l ( tra inFeatureVecs , featureVec , \

NUM LABELS, IMGS PER LABEL, NUM NEIGHBORS)
#pr in t ( ’ Pred i c t i on f o r %s : [%d , %d ] ’ % ( f i lename , gtLabel , pred i c tedLabe l ) )
i f ( pred i c tedLabe l == gtLabel ) :

c o r r e c tP r ed i c t i o n s += 1
acc = co r r e c tP r ed i c t i o n s / N ∗ 100.0
pr in t ( ’ Overa l l accuracy f o r P = %d : %f ’ % (P, acc ) )
pAcc . append ( acc )

p l t . p l o t ( pVals , pAcc )
p l t . y l abe l ( ’ Accuracy ’ )
p l t . x l abe l ( ’P ’ )
p l t . t i t l e ( ’ Accuracy vs . P value ’ )
p l t . show ( )
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3.2 Task 2: AdaBoost Classification

## ============= FILE INFORMATION ============= ##
#
# Name : Brian He l f r e ch t
# Email : bhelfre@purdue . edu
# Course : ECE 661
# Assignment : Homework 11 , Task 2
# Due date : December 2 , 2020
#
## ============= PACKAGE/FILE IMPORTS ============= ##
import numpy as np
import cv2 as cv
import math
import os
import matp lo t l ib . pyplot as p l t
## ============= FUNCTION DEFINITIONS ============= ##
def extractFeatureVec ( img ) :

#Ensure we use a g ray s ca l e image
i f ( l en ( img . shape ) > 2 ) :

img = cv . cvtColor ( img , cv .COLOR BGR2GRAY)
imgWidth , imgHeight = img . shape [ 1 ] , img . shape [ 0 ]

#Create the f e a tu r e vector ob j e c t . Each element in the f e a tu r e vector
#i s the convo lut ion r e s u l t o f a Haar f i l t e r at a p a r t i c u l a r p i x e l l o c a t i on .
featureVec = [ ]
f i l t e rWid th s = np . arange (2 , imgWidth , 2)
f i l t e rH e i g h t s = np . arange (2 , imgHeight , 2)

#Compute ho r i z on ta l f e a t u r e s
f o r f i l t e rWid th in f i l t e rWid th s :

#Apply the e f f e c t i v e convo lut ion ac ro s s columns , then down rows
f o r y in range ( imgHeight ) :

f o r x in range ( imgWidth − f i l t e rWid th + 1 ) :
#Compute the f e a tu r e element . This w i l l be the sum of a l l p i x e l s
#in the ”+1” f i l t e r r eg ion minus the sum of a l l p i x e l s in
#the ”−1” f i l t e r r eg ion . (x , y ) denotes the top l e f t corner o f
#the f i l t e r . The f i l t e r has s t ru c tu r e : [−1 | 1 ]
negSum = np . sum( img [ y : y+1, x : i n t (x+f i l t e rWid th / 2 ) ] ) . astype (np . int32 )
posSum = np . sum( img [ y : y+1, i n t (x+f i l t e rWid th /2 ) : x+f i l t e rWid th ] ) . astype (np . int32 )
featureVec . append (posSum − negSum)

#Compute v e r t i c a l f e a t u r e s
f o r f i l t e rH e i g h t in f i l t e rH e i g h t s :

#Apply the e f f e c t i v e convo lut ion down rows , then ac ro s s columns
f o r x in range ( imgWidth ) :

f o r y in range ( imgHeight − f i l t e rH e i g h t + 1 ) :
#Compute the f e a tu r e element , s im i l a r to the ho r i z on ta l case
negSum = np . sum( img [ y : i n t (y+f i l t e rH e i g h t /2) , x : x+1] ) . astype (np . int32 )
posSum = np . sum( img [ i n t (y+f i l t e rH e i g h t /2 ) : y+f i l t e rHe i g h t , x : x+1] ) . astype (np . int32 )
featureVec . append (posSum − negSum)

return featureVec

def c r ea t eWeakCla s s i f i e r ( f ea tu re s , l abe l s , normWeights ) :

b e s t C l a s s i f i e r = None
b e s tC l a s s i f i e r E r r = f l o a t ( ’ in f ’ )

#Loop over a l l f e a t u r e s a s s o c i a t ed with each image
f o r f in range ( f e a t u r e s . shape [ 1 ] ) :

#Sort the f ea ture s , l abe l s , and weights in accord ing to f e a tu r e va lues
featureVecRow = f e a tu r e s [ : , f ]
f eatureVecCol = featureVecRow . reshape ( ( f e a t u r e s . shape [ 0 ] , 1 ) )
featureData = np . concatenate ( ( featureVecCol , l abe l s , normWeights ) , 1)
sortedData = [ pt f o r , pt in \

so r ted ( z ip ( featureVecRow , featureData ) , key = lambda pa i r : pa i r [ 0 ] ) ]
sortedData = np . reshape ( sortedData , ( f e a t u r e s . shape [ 0 ] , 3 ) )
so r tedFeature s = sortedData [ : , 0 ]
so r t edLabe l s = sortedData [ : , 1 ]
sortedWeights = sortedData [ : , 2 ]

#Now, f i nd parameters f o r c a l c u l a t i n g the e r r o r .
totPosWeight = np . sum( normWeights [ l a b e l s == 1 ] )
totNegWeight = np . sum( normWeights [ l a b e l s == 0 ] )
sortedPosWeights = sortedWeights [ np . where ( so r t edLabe l s == 1 ) [ 0 ] ]
sortedNegWeights = sortedWeights [ np . where ( so r t edLabe l s == 0 ) [ 0 ] ]

#Making the weight vec to r s the same s i z e
f ina lPosWeights = np . ze ro s ( ( f e a t u r e s . shape [ 0 ] , 1 ) )
f inalNegWeights = np . z e ro s ( ( f e a t u r e s . shape [ 0 ] , 1 ) )
f ina lPosWeights [ np . where ( so r t edLabe l s == 1 ) [ 0 ] , 0 ] = sortedPosWeights
f inalNegWeights [ np . where ( so r t edLabe l s == 0 ) [ 0 ] , 0 ] = sortedNegWeights

#Computing the e r r o r
cumPosWeights = np . cumsum( f ina lPosWeights )
cumNegWeights = np . cumsum( f inalNegWeights )
e r rPo l1 = cumPosWeights + totNegWeight − cumNegWeights #Error a s s o c i a t ed with po l a r i t y 1
er rPo l2 = cumNegWeights + totPosWeight − cumPosWeights #Error a s s o c i a t ed with po l a r i t y −1
errPo l1 = np . reshape ( errPol1 , ( l en ( er rPo l1 ) , 1 ) )
e r rPo l2 = np . reshape ( errPol2 , ( l en ( er rPo l2 ) , 1 ) )
er rorVecs = np . concatenate ( ( errPol1 , e r rPo l2 ) , 1)
minIdx = np . unrave l index ( er rorVecs . argmin ( ) , e r rorVecs . shape )
minErr = np . min ( er rorVecs )

#Update the weak c l a s s i f i e r with the new f ea tu r e vector i f i t c l a s s i f i e s
#be t t e r than the cu r r en t l y s e l e c t e d one
i f (minErr < b e s tC l a s s i f i e r E r r ) :

b e s tC l a s s i f i e r E r r = minErr
thre sho ld = sor tedFeatures [ minIdx [ 0 ] ]
f e a tu r e Idx = f

#Compute the po l a r i t y we should use f o r the weak c l a s s i f i e r based
#on which e r r o r vector the minimum came from , and
#as s i gn the thre sho ld and f e a tu r e index f o r the best c l a s s i f i e r
i f (minIdx [ 1 ] == 0 ) : #Error from the f i r s t vector
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po l a r i t y = 1
c l a s s i f i c a t i o n s = featureVecCol >= thresho ld

e l s e : #Error from the second vector
po l a r i t y = −1
c l a s s i f i c a t i o n s = featureVecCol < thre sho ld

b e s t C l a s s i f i e r = [ f eature Idx , thresho ld , po l a r i ty , \
minErr , c l a s s i f i c a t i o n s ]

re turn b e s tC l a s s i f i e r

de f createCascade ( f ea ture s , l abe l s , T, we ightSca lar ) :
#Estab l i sh weights
numPos = np . sum( l a b e l s == 1)
numNeg = np . sum( l a b e l s == 0)
posWeight = 1 / (2 ∗ numPos)
negWeight = 1 / (2 ∗ numNeg)
weights = np . ones ( ( numPos + numNeg , 1) )

#Normalize the weights f o r the f i r s t time
weights [ : numPos ] = weights [ : numPos ] ∗ posWeight
weights [ numPos : ] = weights [ numPos : ] ∗ negWeight
normWeights = weights

weakC l a s s i f i e r s = [ ]
sumAlphaClas s i f i e r s = np . z e ro s ( ( f e a t u r e s . shape [ 0 ] , 1 ) )
aThresh = 0

f o r t in range (T) :
#Find the weak c l a s s i f i e r s
p r in t ( ’ Finding weak c l a s s i f i e r ’ + s t r ( t ) + ’ . . . ’ )
normWeights = normWeights / np . sum( normWeights )
weakClass = crea t eWeakCla s s i f i e r ( f ea tu re s , l abe l s , normWeights )
c las sFeat , c lassThresh , c l a s sPo l , c l a s sErr , \

c l a s s i f i c a t i o n s = weakClass #Unpack the weak c l a s s i f i e r params

#Compute con f idence paramters
Bt = c l a s sE r r / abs (1 − c l a s sE r r + 1e−6)
at = math . log (1 / abs (Bt + 1e−6))
weakClass . append ( at )
p r in t ( weakClass [ : 4 ] )
weakC l a s s i f i e r s . append ( weakClass )

#Update the weights f o r the next i t e r a t i o n
c l a s sD i s p a r i t y = c l a s s i f i c a t i o n s != l a b e l s
normWeights = normWeights ∗ (Bt ∗∗ (1 − c l a s sD i s p a r i t y ) )

#Now, compute the parameters f o r the strong cascade , and c l a s s i f y the samples
sumAlphaClas s i f i e r s = sumAlphaClas s i f i e r s + ( at ∗ c l a s s i f i c a t i o n s )
aThresh = aThresh + ( at ∗ WEIGHT SCALAR)
s t r o n gC l a s s i f i e r = sumAlphaClas s i f i e r s >= aThresh

#Update the performance r a t e s
fa l sePosRate = np . sum( s t r o n gC l a s s i f i e r [ numPos : ] == 1) / numNeg
fa lseNegRate = 1 − (np . sum( s t r o n gC l a s s i f i e r [ : numPos ] == 1) / numPos)

p r in t ( ’ Percent p o s i t i v e images i n c o r r e c t l y c l a s s i f i e d : ’ , fa l seNegRate ∗ 100)
pr in t ( ’ Percent negat ive images i n c o r r e c t l y c l a s s i f i e d : ’ , f a l sePosRate ∗ 100)

#Stop search ing f o r weak c l a s s i f i e r s i f performance c r i t e r i a reached
i f ( fa l sePosRate <= 0.5 and fa lseNegRate <= 0) :

break

#Revise the data s e t to now conta in only the i n c o r r e c t l y c l a s s i f i e d images .
#Reca l l that our cascade was des igned to always ach ieve 100% po s i t i v e detect ion ,
#so we only need to inc lude the negat ive f e a t u r e s that were i n c o r r e c t l y c l a s s i f i e d
#in add i t i on to a l l p o s i t i v e f e a t u r e s .
r ev i s edFeature s = f e a tu r e s [ : numPos , : ]
negFeatures = f e a tu r e s [ numPos : , : ]
negFeatureMask = c l a s s i f i c a t i o n s [ numPos : ]
negFeaturesMasked = negFeatures [ np . where ( negFeatureMask == 1) , : ] [ 0 ]
negFeaturesMasked = np . reshape ( negFeaturesMasked , \

( l en ( negFeaturesMasked ) , np . s i z e ( f ea tu re s , 1 ) ) )
r ev i s edFeature s = np . concatenate ( ( rev i sedFeatures , negFeaturesMasked ) , 0)
r ev i s edLabe l s = np . concatenate ( ( np . ones ( ( numPos , 1) , np . u int8 ) , \

np . z e ro s ( ( l en ( negFeaturesMasked ) , 1) , np . u int8 ) ) , 0)
per fRates = [ fa lsePosRate , fa l seNegRate ] #Package performance va lues

return rev i sedFeatures , r ev i s edLabe l s , perfRates , weakC l a s s i f i e r s

de f testCascade ( cascade , f ea tu re s , we ightSca lar ) :
#Test the cascade stage through a l l i t s weak c l a s s i f i e r s
sumAlphaClas s i f i e r s = np . z e ro s ( ( f e a t u r e s . shape [ 0 ] , 1 ) )
aThresh = 0

#Apply a l l weak c l a s s i f i e r s to the f e a tu r e s e t
f o r weakC l a s s i f i e r in cascade :

#Unpack the weak c l a s s i f i e r parameters
f ea tu r e Idx = weakC l a s s i f i e r [ 0 ]
th re sho ld = weakC l a s s i f i e r [ 1 ]
p o l a r i t y = weakC la s s i f i e r [ 2 ]
at = weakC la s s i f i e r [ 5 ]

#Extract the f e a tu r e f o r each image
featureVecRow = f e a tu r e s [ : , f e a tu r e Idx ]
featureVecCol = featureVecRow . reshape ( ( f e a t u r e s . shape [ 0 ] , 1 ) )

i f ( p o l a r i t y == 1 ) :
c l a s s i f i c a t i o n s = featureVecCol >= thresho ld

e l i f ( p o l a r i t y == −1):
c l a s s i f i c a t i o n s = featureVecCol < thre sho ld

#Create weighted c l a s s i f i c a t i o n vec to r s
sumAlphaClas s i f i e r s = sumAlphaClas s i f i e r s + ( at ∗ c l a s s i f i c a t i o n s )
aThresh = aThresh + ( at ∗ weightSca lar )

#Perform f i n a l c l s a s i f i c a t i o n s
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f i n a l C l a s s i f i c a t i o n s = sumAlphaClas s i f i e r s >= aThresh
return f i n a l C l a s s i f i c a t i o n s

## ============= MAIN CODE BEGINS BELOW ============= ##

TRAIN POS DIR = ’ . / inputs /ECE661 2020 hw11 DB2/ t r a i n / p o s i t i v e / ’
TRAIN NEG DIR = ’ . / inputs /ECE661 2020 hw11 DB2/ t r a i n / negat ive / ’
TEST POS DIR = ’ . / inputs /ECE661 2020 hw11 DB2/ t e s t / p o s i t i v e / ’
TEST NEG DIR = ’ . / inputs /ECE661 2020 hw11 DB2/ t e s t / negat ive / ’

’ ’ ’ ===== FEATURE EXTRACTION ===== ’ ’ ’
’ ’ ’
#Extract f e a t u r e s f o r p o s i t i v e and negat ive images ( those conta in ing and
#not conta in ing cars , r e s p e c t i v e l y ) .

#Compute the f e a tu r e matrix f o r the p o s i t i v e data s e t
#Enumerate the images in the given d i r e c t o r y
imgFi l e s = [ img f o r img in os . l i s t d i r (TEST POS DIR) i f \

os . path . i s f i l e ( os . path . j o i n (TEST POS DIR , img ) ) ]
featureMat = [ ]

#Extract f e a t u r e s
f o r i in range ( l en ( imgFi l e s ) ) :

f i l ename = imgFi l e s [ i ]
p r in t ( ’ Proces s ing image : ’ + f i l ename + ’ . . . ’ )
img = cv . imread (TEST POS DIR + f i l ename )
featureMat . append ( extractFeatureVec ( img ) )

featureMat = np . reshape ( featureMat , ( l en ( featureMat ) , l en ( featureMat [ 0 ] ) ) )
np . savetxt ( ’ . / outputs / t2 / t e s t po s f ea tu r eMat . txt ’ , featureMat , ’%d ’ )

#Compute the f e a tu r e matrix f o r the negat ive data s e t
#Enumerate the images in the Training−Negative d i r e c t o r y
imgFi l e s = [ img f o r img in os . l i s t d i r (TEST NEG DIR) i f \

os . path . i s f i l e ( os . path . j o i n (TEST NEG DIR, img ) ) ]
featureMat = [ ]

#Extract f e a t u r e s
f o r i in range ( l en ( imgFi l e s ) ) :

f i l ename = imgFi l e s [ i ]
p r in t ( ’ Proces s ing image : ’ + f i l ename + ’ . . . ’ )
img = cv . imread (TEST NEG DIR + f i l ename )
featureMat . append ( extractFeatureVec ( img ) )

featureMat = np . reshape ( featureMat , ( l en ( featureMat ) , l en ( featureMat [ 0 ] ) ) )
np . savetxt ( ’ . / outputs / t2 / t e s t neg f ea tu r eMat . txt ’ , featureMat , ’%d ’ )
’ ’ ’

’ ’ ’ ===== WEAK CLASSIFIER CONSTRUCTION ===== ’ ’ ’
’ ’ ’
MAX CLASSIFIERS PER CASCADE = 1
MAX CASCADES = 10
WEIGHT SCALAR = 0.5

#Read in the f e a tu r e matr ices
p r in t ( ’ Loading t r a i n i n g f e a tu r e matr ices . . . ’ )
posTrainFeatures = np . loadtxt ( ’ . / outputs / t2 / t ra in pos f ea tu r eMat . txt ’ , np . int16 )
negTrainFeatures = np . loadtxt ( ’ . / outputs / t2 / t ra in neg f ea tureMat . txt ’ , np . int16 )

#Concatenate the t r a i n i n g f e a t u r e s and c r ea t e l a b e l s (1 f o r p o s i t i v e images , 0 f o r negat ive )
t ra inFeature s = np . concatenate ( ( posTrainFeatures , negTrainFeatures ) , 0)
posLabels = np . ones ( ( posTrainFeatures . shape [ 0 ] , 1) , np . u int8 )
negLabels = np . z e ro s ( ( negTrainFeatures . shape [ 0 ] , 1) , np . u int8 )
t r a inLabe l s = np . concatenate ( ( posLabels , negLabels ) , 0)

cascadeStages = [ ]
f e a t u r e s = t ra inFeature s
l a b e l s = t ra inLabe l s
cumFalsePosRate = 1
cumFalseNegRate = 1
falsePosRateVec = [ ]
falseNegRateVec = [ ]

#Create the cascades
f o r cascadeNum in range (MAX CASCADES) :

p r in t ( ’ Creat ing cascade ’ + s t r ( cascadeNum) + ’ . . . ’ )
f ea tu re s , l abe l s , perfRates , cascade = createCascade ( f ea ture s , l abe l s , \

MAX CLASSIFIERS PER CASCADE, WEIGHT SCALAR)
cascadeStages . append ( cascade )

#Update current performance
fa l sePosRate = per fRates [ 0 ]
fa l seNegRate = per fRates [ 1 ]
cumFalsePosRate = cumFalsePosRate ∗ f a l sePosRate
cumFalseNegRate = cumFalseNegRate ∗ fa l seNegRate
fa lsePosRateVec . append ( cumFalsePosRate ) #Keep track f o r p l o t t i n g
falseNegRateVec . append ( cumFalseNegRate ) #Keep track f o r p l o t t i n g

#Terminate ea r l y i f the e r r o r ra te i s l e s s 1e−6
i f ( cumFalsePosRate < 1e−6 and cumFalseNegRate < 1e −6):

p r in t ( ’ Reached performance c r i t e r i a . ’ )
break

pr in t ( ’ Negative images remaining : ’ , np . sum( l a b e l s == 0))

#Terminate ea r l y i f no negat ive images remain
i f (np . sum( l a b e l s == 0) == 0 ) :

p r in t ( ’No negat ive images remaining . ’ )
break

#Plot performance r a t e s as a funct i on o f the number o f cascades
cascadeVals = (np . arange ( l en ( fa lsePosRateVec ) ) + 1 ) . astype (np . u int8 )
p l t . p l o t ( cascadeVals , fa lsePosRateVec )
p l t . p l o t ( cascadeVals , falseNegRateVec )
p l t . y l abe l ( ’ Cumulative rate ’ )
p l t . x l abe l ( ’Number o f cascades ’ )
p l t . t i t l e ( ’ Cumulative performance r a t e s vs . number o f cascades ’ )
p l t . show ( )
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#Save the cascade to a f i l e
np . save ( ’ . / outputs / t2 / cascades . npy ’ , np . array ( cascadeStages , dtype=ob j ec t ) )
’ ’ ’
’ ’ ’ ===== TESTING ===== ’ ’ ’
WEIGHT SCALAR = 0.5

#Load in the c l a s s i f i e r cascade and t e s t s e t f e a t u r e s
p r in t ( ’ Loading cascade s tage s . . . ’ )
cascades = np . load ( ’ . / outputs / t2 / cascades . npy ’ , a l l ow p i c k l e = True )
p r in t ( ’ Loading t e s t data . . . ’ )
posTestFeatures = np . loadtxt ( ’ . / outputs / t2 / t e s t po s f ea tu r eMat . txt ’ , np . int16 )
negTestFeatures = np . loadtxt ( ’ . / outputs / t2 / t e s t neg f ea tu r eMat . txt ’ , np . int16 )
f e a t u r e s = np . concatenate ( ( posTestFeatures , negTestFeatures ) , 0)
posLabels = np . ones ( ( posTestFeatures . shape [ 0 ] , 1) , np . u int8 )
negLabels = np . z e ro s ( ( negTestFeatures . shape [ 0 ] , 1) , np . u int8 )
l a b e l s = np . concatenate ( ( posLabels , negLabels ) , 0)

fa lsePosRateVec = [ ]
falseNegRateVec = [ ]
numPos = np . sum( l a b e l s == 1)
numNeg = np . sum( l a b e l s == 0)
initNumPos = numPos
initNumNeg = numNeg
cascadeNum = 0
totPosClassNeg = 0
totNegClassNeg = 0

pr in t ( ’ Test ing . . . ’ )
f o r cascade in cascades :

c l a s s i f i c a t i o n s = testCascade ( cascade , f ea tu re s , WEIGHT SCALAR)

#Compute performance parameters . We can only index the arrays with the
#po s i t i v e images because we remove negat ive images each i t e r a t i o n .
numPosClassPos = np . sum( c l a s s i f i c a t i o n s [ : numPos ] == 1)
totPosClassNeg = totPosClassNeg + numPos − numPosClassPos
numNegClassPos = np . sum( c l a s s i f i c a t i o n s [ numPos : ] == 1)
newNumNegClassNeg = numNeg − numNegClassPos
totNegClassNeg = totNegClassNeg + newNumNegClassNeg
falseNegRateVec . append ( totPosClassNeg / initNumPos )
fa lsePosRateVec . append (1 − ( totNegClassNeg / initNumNeg ) )

#Only use p o s i t i v e l y c l a s s i f i e d samples f o r the next cascade
f e a t u r e s = f e a tu r e s [ np . where ( c l a s s i f i c a t i o n s == 1) , : ] [ 0 ]
l a b e l s = l a b e l s [ np . where ( c l a s s i f i c a t i o n s == 1 ) [ 0 ] ]
numPos = np . sum( l a b e l s == 1)
numNeg = np . sum( l a b e l s == 0)

cascadeNum += 1

#No more p o s i t i v e images to c l a s s i f y , so stop .
i f (numPos == 0 ) :

p r in t ( ’No more p o s i t i v e images . ’ )
break

pr in t ( fa lsePosRateVec )
p r in t ( falseNegRateVec )

#Plot the r e s u l t s
cascadeVals = (np . arange ( cascadeNum) + 1 ) . astype (np . u int8 )
p l t . p l o t ( cascadeVals , falsePosRateVec , l a b e l =’False p o s i t i v e rate ’ )
p l t . p l o t ( cascadeVals , falseNegRateVec , l a b e l =’False negat ive rate ’ )
p l t . y l abe l ( ’ Cumulative rate ’ )
p l t . x l abe l ( ’Number o f cascades ’ )
p l t . t i t l e ( ’ Cumulative performance r a t e s vs . number o f cascades ’ )
p l t . legend ( )
p l t . show ( )
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