
ECE661: Homework 10

Fall 2020
Due Date: Nov 16, 2020 (11:59 PM)

Turn in typed solutions via BrightSpace. Additional instructions can be
found at BrightSpace.

1 Introduction

This homework consists of two parts:

1. Creating a 3D reconstruction from a pair of images recorded with an
uncalibrated camera (such as your own cellphone). Such reconstruc-
tions are related to the actual scene structure by a 4x4 homography
as you will see.

2. Given two rectified images, calculating the disparity map for the left
image vis-a-vis the right image. Note that rectification means that
the two images have been subject to appropriate homographies so
that their epipolar lines correspond to the rows in the images and the
corresponding rows in two images are also in epipolar correspondence.

2 Task 1: Projective Stereo Reconstruction

A 3D reconstruction is called projective if it is related by a 4x4 homography
to the real scene. Obviously, this means that what we obtain from projective
reconstruction might appear distorted when compared to the actual scene.
In practice, depending on how rich the scene structure is and how much
prior knowledge one has about the objects in the scene, one may be able
to use additional constraints derived from the reconstruction to remove the
projective, the affine, and the similarity distortions. In this task, however,
our focus is on just creating a projective reconstruction of a scene.

A 2008 submission for this homework contains a very nice summary of
what it takes to create a projective reconstruction of a scene from its two
images recorded with an uncalibrated camera:

https://engineering.purdue.edu/kak/courses-i-teach/ECE661.08/

solution/hw9_s1.pdf

1

https://engineering.purdue.edu/kak/courses-i-teach/ECE661.08/solution/hw9_s1.pdf
https://engineering.purdue.edu/kak/courses-i-teach/ECE661.08/solution/hw9_s1.pdf

2.1 Reading

1. Image Rectification: For image rectification using 8-point algo-
rithm, refer to page 21-6 of Lecture 21 scroll or page 282 of the text
[1]. For non-linear refinement of the fundamental matrix F, refer to
pages 22-1 and 22-2 of Lecture 22.

2. Projective Reconstruction: Pages 22-2 and 22-3 on Lecture 22
and Section 10.3 and 12.2 of the text [1].

3. Displaying Projective Distortion: The previous years’ solutions
have some examples of how to display projective distortions with the
help of 3D plots. You can also refer to Fig. 10.3 on page 267 of the
text [1].

2.2 Programming Task

Take a pair of stereo images with your camera, with no particular con-
straints on how the second image is recorded vis-a-vis the first, as long as
the two views are of the same scene. Using the two stereo images perform
thefollowing tasks : -

2.2.1 Image Rectification

Manually extract a set of corresponding points (a minimum of 8) between
the two images. Use these correspondences to estimate the fundamental
matrix F using the 8-point algorithm. See page 21-6 of the Lecture 21 scroll
or page 282 of the text for the 8-point algorithm for estimating F from these
correspondences. (The comment on page 21-6 regarding you needing 40 cor-
respondences does not apply to manually selected correspondences.) After
the linear least-squares estimation of F, you must also refine F by nonlinear
optimization as described on pages 22-1 and 22-2 of Lecture 22 scroll. And,
yes, do not forget to enforce the rank constraint on the fundamental matrix.
Rectify the images using the estimated fundamental matrix.

2.2.2 Interest Point Detection

Your next goal is to construct automatically a large set of correspondences
between the two images. Toward that end:

• Use Canny edge detector to extract edge features in your scene. Obtain
pixel coordinates from the Canny edge mask. Use these points as your
interest points.

2

• If your image rectification is“perfect”, given a pixel in the first image,
all you’d need to do for finding the corresponding pixel in the second
image is to look at the same row in the latter. Ordinarily, you’d
look in the same row and in a small number of adjoining rows for
the correspondences. If your rectification procedure is not working at
all, directly use the epipolar constraint to establish correspondences
between the extracted interest points between the two images.

• In most cases, for any given pixel in the first image, you will end up
with multiple candidates in the second image. In such cases, use the
SSD or the NCC metric to select the best candidate for each pair of
correspondences.

• You also need to ensure that the ordering of the interest points on an
epipolar line (which would be a row if your rectification procedure is
working well) in the second image is the same as that of the corre-
sponding points in the second image.

2.2.3 Projective Reconstruction

For triangulating from the correspondences, use the procedure described on
pages 22-2 and 22-3 of Lecture 22 scroll or in Sections 10.3 and 12.2 of the
text. In light of the fact that you’ll be reconstructing your scene with uncal-
ibrated camera, your reconstruction will assume a canonical configuration
for the cameras.

2.2.4 3D Visual Inspection

• Make a 3D plot of the reconstructed points. Draw some ‘pointer lines’
between the corresponding pixels in the two images, on the one hand,
and between those pixels and the reconstructed 3D points on the other.

• Remember to include a display of the projective distortion in a fashion
similar to the one on page 267 of the text. You can also refer to the
previous years’ solutions too for that

3 Task 2 : Dense Stereo Matching

Given a stereo rectified pair, the dense stereo matching problem essentially
involves finding as many accurate pixel correspondences as possible and

3

mark occluded regions invalid. For this task, you will implement a rudimen-
tary dense stereo matching algorithm using Census Transform, you won’t
be doing the additional test for finding the “invalid” pixels. The goal of this
task is not to outperform the state-of-the-art approaches. The focus is to
gain some insights on the challenges that are involved in the dense stereo
matching.

Before diving into the programming task, you need to understand the
notions of the disparity map and Census Transform.

3.1 What is a Disparity Map?

Left Image Right Image

Disparity Map

d = xL - xR

Figure 1: Example ground truth Disparity map, the disparity map stores
per-pixel difference in x–coordinates. The black pixels in the disparity map
are occluded and therefore invalid pixels. The stereo pair is a part of the
Middlebury 2014 stereo dataset.

Dense stereo matching problem essentially boils down to finding per-
pixel correspondences in the given stereo rectified pair. Concretely speaking
to compute the disparity map for the left image vis-a-vis the right image, for
every pixel in the left image we scan all the potential matching candidates
along the same row in the right image. After establishing the correspon-
dences, we simply store the difference in the x-coordinates as the output

4

disparity map. As one can guess, in untextured regions you would find many
possible correspondences, such as the black background in the scene in Fig.
1. To overcome this ambiguity, there are more sophisticated approaches that
aggregate global or semi-global information from a pair. However, for this
homework you will only use the local context around each pixel to find the
correspondences in the right image, as explained in the next section 3.2. The
example in Fig. 1 is from Middlebury 2014 high resolution stereo dataset.
For this homework you will use a low-resolution stereo pair from Middlebury
2001 dataset.

3.2 Census Transform

d=0d=1d=dmax

Left Image Right Image

(a) Scanning a stereo pair for dense stereo matching

(b) Census Transform. Note that the red cells are the
center pixels and the numbers in each cell represent pixel
intensity value. The corresponding M2 bitvector is com-
puted by setting a bit one wherever the pixel value is
strictly greater than the center pixel value.

Figure 2: Dense stereo matching using Census Transform

Fig. 3b shows the summary of computing the Census transform. On the
left hand side, you have a local pixel intensity distribution within the M×M

5

window in the left image centered at pixel p and on the right you have the
corresponding local view of a pixel q = [px−d,py] at disparity d. Note that
the pixel position q is defined in the right image. We compute a bitvector
of size M2 , wherever the pixel intensity value is strictly grater than the
center pixel value we make that bit one. This gives us two M2 bitvectors
at pixel p in the left image and at pixel q in the right image. After the
bitwise XOR operation between the two bitvectors, we simply compute the
number of ones in the output bitvector. This gives us the data cost between
the two pixels. Note that d ∈ {0, · · · , dmax}. We pick the disparity value d
such the data cost is minimized. In the case of multiple minima, pick the
first disparity value that results in the minimum data cost. The assumption
here is that we iterate from 0 to dmax.

Compute the disparity maps for at least two different values of M . Note
that it doesn’t have to be a square window, e.g., 9× 7 is also a valid size for
the census window.

3.3 Programming Task

You’re provided with a stereo rectified image pair and the corresponding
ground truth disparity map for evaluating your stereo matching accuracy.
Fig. 3 shows the given stereo pair for Task 2. Note that all the images are
of the same size. You can read the input images using OpenCV’s imread
function.

• Estimate disparity maps using the Census transform for at least two
different values of M and evaluate the accuracy as explained in the
next point.

• Let Dgt be the given ground truth disparity map and D be the esti-
mated disparity map. Let N be the total number of valid pixels, i.e.,
wherever you see the white pixels in the ground truth non-occlusion
mask in Fig. 3d. Report the accuracy as the percentage of N in the
Dgt such that |Dp −Dgtp| ≤ δ, for δ ∈ {1, 2}

• In order to highlight challenging regions in the given stereo pair, also
show binary error masks with the value of 255 for pixels where the
disparity error is ≤ δ and 0 otherwise for different values of M .

• Special note: After reading the ground truth disparity map, convert
it into Float32 and divide the disparity values by 16, then convert it
back to int16 value. You can obtain the dmax value from the ground

6

(a) Left Image (b) Right Image

(c) Ground Truth Disparity (d) Ground truth non-occlusion mask

Figure 3: Input stereo pair for the task 2 and the ground truth disparity
map and non-occlusion binary mask.

truth disparity map, after the aforementioned adjustment. We need
this adjustment because the ground truth disparity map was generated
for a higher resolution stereo pair. This is how it’s available in the
Middlebury 2001 dataset.

4 Submission Instructions

Include a typed report explaining how did you solve the given programming
tasks.

1. Turn in a zipped file, it should include (a) a typed self-contained pdf
report with source code and results and (b) source code files (.py,
.cpp,.c). (c) Your output disparity maps for Task2. Rename your .zip
file as hw10 <First Name><Last Name>.zip and follow the same file
naming convention for your pdf report too.

2. Your pdf must include the source code for the both tasks and a de-
scription of

• Task1

7

– A good description how you implemented each of the sub-
tasks with relevant equations.

– The manually selected points used to estimate the fundamen-
tal matrix as well as the matched correspondences between
interest points.

– The reconstructed results with some marker or guide lines to
understand the scene structure.

– Any improvements that you see by using the LM method.

• Task 2

– Explain in your own words the dense stereo matching algo-
rithm using Census transform.

– Accuracy and error masks for δ ∈ {1, 2} and for different
values of M

– Your estimated disparity maps, in other words, specify a col-
ormap with matplotlib’s plotting function.

– Your observations on the output quality for different values
of M .

• Your source code. Make sure that your source code files are
adequately commented and cleaned up.

References

[1] Richard Hartley and Andrew Zisserman. Multiple view geometry in com-
puter vision. Cambridge university press, 2003.

8

	Introduction
	Task 1: Projective Stereo Reconstruction
	Reading
	Programming Task
	Image Rectification
	Interest Point Detection
	Projective Reconstruction
	3D Visual Inspection

	 Task 2 : Dense Stereo Matching
	What is a Disparity Map?
	Census Transform
	Programming Task

	Submission Instructions

