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1 Theory

In the present day, cameras are a powerful tool. Not only can they produce 2-D images of a scene, but given
a set of images (as few as two!), a 3-D reconstruction of objects in that scene can be performed. Methods
for performing this reconstruction were the focus of this assignment. First, projective stereo reconstruction
of an object imaged from two slightly different views (stereo) was implemented with image rectification
and interest point detection. Then, a second technique for finding interest points in a pair of rectified
stereo images, called dense stereo matching, was performed. This method also enables the visualization of
differences in the two images, especially occluded areas.

1.1 Projective stereo reconstruction

Projective stereo reconstruction describes the methods used to create a 3-D reconstruction of a scene from a
pair of 2-D stereo images. The major steps in the process are 1) image rectification to align physical world
points to corresponding image rows, 2) interest point detection to match interest points in each image row,
and 3) 3-D projective reconstruction to obtain the 3-D world coordinates from the 2-D rectified correspon-
dences. In this assignment, the 3-D reconstruction could only be accurate up to containing projective, affine,
and similarity distortions because an uncalibrated camera was used to capture the stereo image pair.

1.1.1 Image rectification

Image rectification is used to transform a pair of stereo images such that the physical world points (or pixels
corresponding to physical world points) in one image are mapped to the same row as the corresponding
world points/pixels in a second image.

The rectification process begins with the manual selection of several corresponding interest points between
the two stereo images. Although these points can be selected automatically, it was not required for this
assignment. The goal is to use these correspondences to estimate the 3 × 3 fundamental matrix F , which
mathematically describes the geometry of the scene, known as the epipolar geometry. Since F is a homoge-
neous matrix, we require at least 8 correspondences to calculate it. Before calculation, however, the pixel
coordinates of the correspondences must be normalized per-image. We can do this as follows:

1. Compute the mean x-coordinate of the correspondences as x

2. Compute the mean y-coordinate of the correspondences as y

3. Compute the distance from each (x, y) coordinate to the mean coordinate (x, y) and store each distance
value in a list D:

Di =
√

(xi − x)2 + (yi − y)2

4. Compute the mean of the distances computed in the previous step as D.

5. Set up the following normalization matrix where c =
√
2

D
:

T =

c 0 −cx
0 c −cy
0 0 1


1



6. Compute the normalized pixel coordinates with x̂ = Tx, where x and x̂ are homogeneous 3-vectors.
Remember to convert back to normalized physical coordinates after the transformation.

With the normalized points, we can now compute an initial estimate for the 3× 3 fundamental matrix (also
called the essential matrix when normalized coordinates are used) describing the epipolar geometry of the
scene. To do this, we use each normalized correspondence pair (x̂, ŷ) in image 1 and (x̂′, ŷ′) in image 2 to
construct the matrix A where each row i of A is:

Ai =
(
x̂x̂′ x̂′ŷ x̂′ ŷ′x̂ ŷ′ŷ ŷ′ x̂ ŷ 1

)
We then solve the linear least-squares problem Af = 0, where f is the eight unknowns in F written in vector
form. The problem can be solved by taking the eigenvector corresponding to the smallest eigenvalue of the
singular value decomposition (SVD) of A. This will give us an initial estimate of F when f is reshaped
back into matrix form. However, we also require that F be of rank 2 to ensure all epipolar lines correspond
exactly to each other between the two images. To enforce this rank constraint, we perform the following:

1. Take the SVD of F as svd(F ) = UDV T .

2. Set the smallest eigenvalue of D to zero. Let this new D be D′.

3. Recompute F = UD′V T .

The last step in computing F is to “de-normalize” it to put it back into the image coordinate system by
applying the normalization matrices T1 and T2 used to normalize the initial correspondences in images 1 and
2, respectively. That is,

Ffinal = TT
2 FT1

With the information contained in F , we can now focus our attention on the projection matrices P and P ′

used in both image rectification and as the projection matrices to transform image pixel coordinates to 3-D
world coordinates. The first step in computing these projection matrices is to compute the epipoles ~e and
~e′ of both images as homogeneous vectors. We do this by solving the equations:

F~e = 0 and ~e′
T
F = 0

We then compute P and P ′ using the canonical camera configuration approach, as:

P = [I|0] =

1 0 0 0
0 1 0 0
0 0 1 0



P ′ = [[~e′]xF |~e′] where [~e′]x =

 0 −e′z e′y
e′z 0 −e′x
−e′y e′x 0

 with ~e′ =

e′xe′y
e′z


We now have all the information we need to rectify both input images and compute a 3-D projective
reconstruction of the scene. However, especially when initial correspondences are selected manually, it is
likely that the results calculated above may be imperfect. This may cause corresponding pixels between
the two images to not fall in exactly the same row in each image after rectification. One way to combat
this is to use nonlinear least-squares optimization to minimize this error. The Levenberg-Marquardt (LM)
algorithm was used for this assignment to refine F (and subsequently recalculate P and P ′) to ensure proper
image rectification. To do this, the cost function computes the 3-D world coordinates of each point and then
reprojects them back into the image plane to compute an error metric. The calculation of the 3-D world
coordinates from pixel correspondences is detailed in the “3-D projective reconstruction” section below.

With the initial point correspondences as (~xi, ~x′i) and the reprojected correspondences as ( ~̂xi,
~̂ ′xi), the LM

cost function is given by:

cost =
∑
i

(||~xi − ~̂xi||2 + ||~x′i −
~̂ ′xi||2)

This will minimize the error in F and ultimately refine the projection matrices P and P ′.
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The final step is to rectify each input image through a homography that takes into account the epipoles
and projections for each image. The homographies H and H ′ to rectify images 1 and 2, respectively, can be
obtained through the following process, first by computing H ′, then H:

1. Compute H ′:

(a) Compute the translation matrix T that sends the image center to the origin, given by:

T =

1 0 −w/2
0 1 −h/2
0 0 1


where w is the input image width, and h is the input image height.

(b) Compute the angle θ necessary to rotate the epipole to be parallel with the x-axis:

θ = tan−1(
e′y − h/2
−e′x − w/2

)

(c) Use the angle θ to compute the rotation matrix R to perform the rotation:

R =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


(d) Compute the scale factor f to send the epipole to infinity:

f = (e′x − w/2) ∗ cos(θ)− (e′y − h/2) ∗ sin(θ)

(e) Compute the transformation matrix G to send the epipole to infinity:

G =

 1 0 0
0 1 0
−1/f 0 1


(f) Compute an initial homography to rectify the image center as H ′center = GRT

(g) Apply H ′center to the image center to rectify it. The rectified center is now (x̃, ỹ).

(h) Compute the translation matrix T2 to move the rectified image center back to the true image
center:

T2 =

1 0 w/2− x̃
0 1 h/2− ỹ
0 0 1


(i) Construct the final homography to rectify image 2 as H ′ = T2GRT .

2. Compute H:

(a) Repeat steps (a) through (f) above using image 1 and its epipoles to compute an initial H̃.

(b) The homography is then given by the matrix that minimizes the distance between transformed
points. This is equivalent to finding the homography that minimizes the cost:

cost =
∑
i

(dist(H̃xi, H
′x′i))

or equivalently minimizing:

cost =
∑
i

(axi + byi + c− x2i )

We solve the problem using linear least-squares to obtain values for a, b, and c.
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(c) Compute the homography to rectify the center of image 1:

Hcenter =

a b c
0 1 0
0 0 1

 H̃

(d) Obtain the translation matrix T1 to move the rectified image center back to the true image center
as in steps (g) and (h) above.

(e) The final homography is given by H = T1H̃

The two homographies H and H ′ calculated above can then be applied to the pixels in images 1 and 2,
respectively, to rectify them. The rectification should produce images such that the pixel associated with a
specific 3-D world point appears in the same row in both rectified images.

1.1.2 Interest point detection

To obtain a robust 3-D reconstruction, a large number of correspondences are needed between the two
images. One way a large number of correspondences can be obtained is by performing edge detection on
the rectified images to extract pixels of interest in the scene (perhaps the edges and corners of the object
we wish to reconstruct). Since we know that corresponding world points in the scene must lie in the same
row of two rectified images, for each edge pixel in one image, we search the same row in the other image.
Depending on the nature of how the images were taken, there may be a rightward or leftward polarity in
which the search can be conducted, which speeds up the algorithm. Finally, we match interest points by
asserting that the order of interest points in the direction of polarity along an epipolar line (in each image
row) must be the same in both images. The SSD or NCC metrics can also be used to filter correspondences
or break ties if there are several potential correspondences for a single pixel.

1.1.3 3-D projective reconstruction

With many correspondences between two stereo rectified images, it is possible to reconstruct the object
of interest in 3-D using projective reconstruction. The process used to extract world coordinates ~X from
corresponding image points ~x = (x, y) and ~x′ = (x′, y′) and the camera projection matrices P and P ′ is
outlined below. Note the representation for P :

P =


~P1

T

~P2
T

~P3
T


1. Compute the 4× 4 matrix A, given by:

A =


x ~P3

T
− ~P1

T

y ~P3
T
− ~P2

T

x′ ~P ′3
T
− ~P ′1

T

y′ ~P ′3
T
− ~P ′2

T


2. Solve the homogeneous system A ~X = 0 using linear least-squares. The solution ~X is given by the

smallest eigenvector of ATA.

3. Homogenize the solution vector ~X by dividing by its last component.

The process above can be used to obtain several 3-D points on a sort of “mesh” that defines the object of
interest. Interpolation between the points can be used to estimate the shape of the object. It is important
to note, however, that the reconstruction will not be perfect, especially when uncalibrated cameras are
used. Instead, the reconstruction can only be accurate up to a form with projective, affine, and similarity
distortion. The calibrated camera parameters are required to obtain a reconstruction as it appears in the
real world.
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1.2 Dense stereo matching

Dense stereo matching refers to a relatively robust algorithm for finding correspondences in a pair of stereo
images. It is also capable of identifying occluded regions between the images, which contain invalid pixels
(pixels that cannot be matched because they only appear in one of the images). The benefit of this method
over others like a Canny edge detector for finding correspondences is that it can match all pixels in a pair of
rectified images, rather than just a subset.

Dense stereo matching is carried out through a process known as the Census transform. Starting with a pair
of stereo rectified images and known polarity between the images, the process proceeds as follows:

1. For a pixel in the left image, note the intensity values of the pixels in an M ×N neighborhood around
it. This neighborhood does not need to be square, but it can be.

2. Create a second M×N neighborhood around the pixel in the right image that has the same coordinates
as the pixel in the left image that is currently being analyzed.

3. Apply a binary threshold to each neighborhood such that elements strictly greater than the center
element become 1, while those less than or equal to the center element become 0.

4. Perform a bitwise XOR of the two binary neighborhoods.

5. Count the number of 1s in the result of the previous step. This will be the cost value associated with
the pixel in the right image.

6. Staying in the same row, consider the pixel one column over in the right image in the direction of
polarity. In other words, now consider the pixel at a distance d from the original pixel along the
direction of polarity, but still in the same row as the original. Repeat steps 2-5 for this pixel.

7. Repeat step 6 dmax times. This will produce a cost vector of length dmax associated with the pixel of
interest in the left image.

8. Find the minimum value of the cost vector, and the index of its first occurrence in the vector. This
index corresponds to the disparity value d associated with the pixel in the left image.

9. Repeat steps 1-8 for all pixels in the left image to find the disparity value associated with each. The
image formed by all disparity values is known as the disparity map, which highlights the disparity, or
pixel difference, between corresponding world points in a pair of stereo images.

One useful result of disparity maps is their ability to highlight separate objects at different distances from
the camera. Parallax determines how much objects appear to move based on their distance from the imaging
source: objects that are closer appear to move further between views, while objects that are further away do
not move as much. These differences in motion are represented by the disparity map: objects that are closer
move further, and thus have a higher disparity value and are represented by a brighter color. Those that are
further away have a lower disparity value and therefore a darker color. Thus, disparity maps provide a good
representation of the depth of a scene.
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2 Implementation notes

2.1 Task 1: 3-D projective reconstruction

• Much of my implementation for image rectification was referenced from past years’ reports, mainly
report 2 from Fall 2018 and the report from Fall 2008. We were allowed to use open-source/past years
solutions as reference for this, as mentioned in class.

• After image rectification, I found that my images had rightward polarity, so I only needed to search
the second image in the rightward direction starting from the pixel column in the left image.

• A maximum search distance was applied to the interest point search to speed up calculations and to
prevent some invalid correspondences from being selected. This value, set to 45 pixels, was selected
empirically after analyzing the rectified images.

• The SSD metric was used to filter out poor correspondences. However, I left some outliers in my final
results to show that it is difficult to determine correspondences perfectly.

• To ensure that only one correspondence in the right image was selected for each pixel in the left image,
I removed the pixel in the right image when it was matched to a left-image pixel. This way it could
not be selected again.

2.2 Task 2: Dense stereo matching

• The dmax value found from the ground truth disparity map was dmax = 14. This value was held
constant while neighborhood sizes were adjusted.

• I used a square neighborhood (M ×M) for computing the disparity map.

• The polarity between the two images was found to be a leftward polarity from the left image to the
right.

• To improve computational efficiency, to avoid overly complex code, and to reduce the chance of in-
consistent results across the image, dmax was held fixed for each pixel. Pixels that were close enough
to the image border such that not all disparity values or full neighborhoods could be checked were
ignored.

– This created a border around the resulting disparity maps where pixels were not checked. This
was assumed to be acceptable, as the ground truth disparity map also had a similar border.

– The border size was determined by: borderSize = dmax +
⌊
M
2

⌋
• When computing the error between the ground truth and calculated disparity maps, the border region

and any occluded regions were ignored. That is, the error was calculated and then the occlusion mask
was applied to ensure those pixels were not counted.

• Instead of using a colormap to display the disparity map, I scaled the map such that the pixels would
have an even distribution between 0-255. Since the initial map values only ranged from 0-14, the pixel
value differences are easily distinguishable without a colormap.
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3 Results

3.1 Task 1: 3-D projective reconstruction

Below are my results for Task 1, which involved creating a 3-D reconstruction of a box from a pair of images.
I have not explicitly included any images of “before/after LM refinement” because the refinement produced
negligible improvement which is not noticeable in the images. I found that before LM refinement, the
maximum row deviation between corresponding points in the rectified images was 3 pixels, but afterwards
it dropped to near zero (sub-pixel level).

Figure 1: Input image 1 (left image) with manually selected correspondences in green.

Figure 2: Input image 2 (right image) with manually selected correspondences in green.
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Figure 3: Rectified images.

Figure 4: Rectified images after Canny edge detection to identify interest points.

Figure 5: All detected correspondences between the two rectified images (color-coded).
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Figure 6: Selected correspondences between the two rectified images, with lines drawn for clarity. Not all
correspondences are shown here, as the image would not be understandable.

Figure 7: Initially selected correspondences and the corresponding 3-D reconstruction. I find this hard to
interpret easily, so see below for an image with larger dots and no lines.
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Figure 8: Initially selected correspondences and the corresponding 3-D reconstruction with no lines drawn
between correspondences for clarity. The color indicates the correspondences.

Figure 9: Notable areas in the initial images that can be seen in the 3-D reconstruction. Corresponding
areas are circled in the same color. This 3-D reconstruction plot was formed using all correspondences found
between the two Canny edge rectified images.
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3.2 Task 2: Dense stereo matching

For this task, a pair of stereo rectified images was provided, and we were asked to compute the disparity
map for multiple neighborhood sizes. A few notes on the results:

• The quality of the output disparity map seems to increase with M . As can be seen, there is a lot
more noise when M is smaller, likely due to the fact that the neighborhood does not encompass a large
enough region of the object in the window (i.e. it is doing a more local analysis, rather than global).

• We begin to see the finer details in depth (such as the contours on the face) once M surpasses dmax.
I believe this is likely a coincidence, though.

• dmax was taken from the ground truth image, but it can also be measured by determining the maximum
pixel distance a point on an object nearest the camera moves between the two images.

Figure 10: The input image from the left camera viewpoint.

Figure 11: The input image from the right camera viewpoint.
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Figure 12: Ground truth disparity map.

Figure 13: Disparity map for dmax = 14,M = 5.

Figure 14: Disparity map for dmax = 14,M = 9.
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Figure 15: Disparity map for dmax = 14,M = 17.

Figure 16: Disparity map for dmax = 14,M = 31.

Figure 17: Error mask for dmax = 14,M = 9 showing white pixels where error ≤ 1. The accuracy of this
disparity map ignoring the occluded pixels is 75.356%.
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Figure 18: Error mask for dmax = 14,M = 9 showing white pixels where error ≤ 2. The accuracy of this
disparity map ignoring the occluded pixels is 80.444%.

Figure 19: Error mask for dmax = 14,M = 31 showing white pixels where error ≤ 1. Ignoring the border
and occluded pixels, the accuracy of this disparity map is 93.127%.

Figure 20: Error mask for dmax = 14,M = 31 showing white pixels where error ≤ 2. Ignoring the border
and occluded pixels, the accuracy of this disparity map is 95.431%.
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4 Source Code

4.1 Task 1: 3-D projective reconstruction

## ============= FILE INFORMATION ============= ##
#
# Name : Brian He l f r e ch t
# Email : bhelfre@purdue . edu
# Course : ECE 661
# Assignment : Homework 10 , Task 1
# Due date : November 16 , 2020
#
## ============= PACKAGE/FILE IMPORTS ============= ##
import numpy as np
import cv2 as cv
import math
import time
import matp lo t l ib . pyplot as p l t
from mp l t oo l k i t s . mplot3d import Axes3D
from sc ipy import opt imize
## ============= FUNCTION DEFINITIONS ============= ##
def calcEx ( e ) :

re turn np . array ( [ [ 0 , −e [ 2 ] , e [ 1 ] ] ,
[ e [ 2 ] , 0 , −e [ 0 ] ] ,
[−e [ 1 ] , e [ 0 ] , 0 ] ] )

de f condit ionF (uncondF ) :
#Condition the matrix F to make i t rank 2
u , d , vh = np . l i n a l g . svd ( uncondF )
dMat = np . array ( [ [ d [ 0 ] , 0 , 0 ] , [ 0 , d [ 1 ] , 0 ] , [ 0 , 0 , 0 ] ] )
condF = np . dot (np . dot (u , dMat ) , vh )
return condF

def calcF ( normPts1 , normPts2 ) :
A = np . z e ro s ( (8 , 9 ) )

#Populate the matrix to f i nd F
f o r i in range ( 8 ) :

x1 = normPts1 [ i ] [ 0 ] #Image 1
y1 = normPts1 [ i ] [ 1 ]
x2 = normPts2 [ i ] [ 0 ] #Image 2
y2 = normPts2 [ i ] [ 1 ]
A[ i ] = np . array ( [ x1∗x2 , x2∗y1 , x2 , y2∗x1 , y2∗y1 , y2 , x1 , y1 , 1 ] )

#Now, compute F by so l v i ng the l i n e a r l e a s t −squares problem : Af=0
, , vh = np . l i n a l g . svd (A)

uncondFVec = vh [ −1]
uncondF = np . reshape ( uncondFVec , (3 , 3 ) )

#Note that we a l s o have to cond i t i on F by ze ro ing the sma l l e s t e i genva lue .
re turn condit ionF (uncondF )

def normal i zePoints ( pts ) :
xCoords = pts [ : , 0 ]
yCoords = pts [ : , 1 ]

#Compute the mean d i s tance between a l l po int s
xMean = np .mean( xCoords )
yMean = np .mean( yCoords )
d i s t s = np . sq r t ( ( xCoords−xMean)∗∗2 + ( yCoords−yMean)∗∗2)
meanDist = np .mean( d i s t s )

#Compute the transform matrix
c = np . sq r t (2) / meanDist
tMat = np . array ( [ [ c , 0 , −c∗xMean ] , [ 0 , c , −c∗yMean ] , [ 0 , 0 , 1 ] ] )

#Apply the transform matrix to the po int s to normal ize them
#Also convert to HC rep r e s en ta t i on .
normPts = np . hstack ( ( pts , np . ones ( ( l en ( pts ) , 1 ) ) ) )
normPts = np . t ranspose (np . dot ( tMat , np . t ranspose ( normPts ) ) )
return normPts , tMat

def calcE (F ) :
#Compute ep i po l e s us ing the nu l l space vec to r s o f F
u , , vh = np . l i n a l g . svd (F)
e1 = np . t ranspose ( vh[−1 , : ] )
e2 = u [ : , −1]
e1 = e1 / e1 [ 2 ] #Homogenize
e2 = e2 / e2 [ 2 ]
Ex = calcEx ( e2 )
return e1 , e2 , Ex

def calcP (F , e2 , Ex ) :
#Compute camera p r o j e c t i on matr ices
P1 = np . array ( [ [ 1 , 0 , 0 , 0 ] , [ 0 , 1 , 0 , 0 ] , [ 0 , 0 , 1 , 0 ] ] )
P2 = np . hstack ( ( np . dot (Ex , F) , np . t ranspose ( [ e2 ] ) ) )
return P1 , P2

def costFunc ( fVec , c o r r s ) :
#Reference : HW9 Soln 2 from Fa l l 2018
#Compute the cos t f o r LM opt imizat ion
F = np . reshape ( fVec , (3 , 3 ) )
[ , e2 , Ex ] = calcE (F)
[ P1 , P2 ] = calcP (F , e2 , Ex)
img1Pts = np . hstack ( ( c o r r s [ 0 ] , np . ones ( ( l en ( c o r r s [ 0 ] ) , 1 ) ) ) )
img2Pts = np . hstack ( ( c o r r s [ 1 ] , np . ones ( ( l en ( c o r r s [ 1 ] ) , 1 ) ) ) )
e r r o r = [ ]

#Compute the world coo rd ina te s
f o r i in range (np . s i z e ( corrs , 1 ) ) :

A = np . z e ro s ( (4 , 4 ) )
A[ 0 ] = img1Pts [ i ] [ 0 ] ∗ P1 [ 2 , : ] − P1 [ 0 , : ]
A[ 1 ] = img1Pts [ i ] [ 1 ] ∗ P1 [ 2 , : ] − P1 [ 1 , : ]
A[ 2 ] = img2Pts [ i ] [ 0 ] ∗ P2 [ 2 , : ] − P2 [ 0 , : ]
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A[ 3 ] = img2Pts [ i ] [ 1 ] ∗ P2 [ 2 , : ] − P2 [ 1 , : ]

#Compute X
, , vh = np . l i n a l g . svd (A)

vec = np . t ranspose (vh[−1 , : ] )
normVec = vec / vec [ 3 ] #Convert to unit vector

#Estimate x ’ s
x1 = np . dot (P1 , normVec )
x2 = np . dot (P2 , normVec )
x1 = x1 / x1 [ 2 ] #Convert to HC
x2 = x2 / x2 [ 2 ] #Convert to HC

#Add coord inate e r r o r s f o r both images to e r r o r vector
e r r o r . append (np . l i n a l g . norm( x1 − img1Pts [ i ] ) ∗∗ 2)
e r r o r . append (np . l i n a l g . norm( x2 − img2Pts [ i ] ) ∗∗ 2)

return np . r ave l ( e r r o r )

de f calcRectHomography ( img , img1Pts , img2Pts , F , e1 , e2 , P1 , P2 ) :
#Reference : HW9 Soln 2 from Fa l l 2018
he ight = img . shape [ 0 ]
width = img . shape [ 1 ]

’’’===== Computation o f H2 =====’’’
#Compute the t r an s l a t i o n matrix
T = np . array ( [ [ 1 , 0 , −width / 2 ] , \

[ 0 , 1 , −he ight / 2 ] , \
[ 0 , 0 , 1 ] ] )

#Compute the ro ta t i on matrix to move the ep i po l e s to the x−ax i s
angle = math . atan2 ( e2 [ 1 ] − he ight /2 , −(e2 [ 0 ] − width /2))
R = np . array ( [ [ math . cos ( angle ) , −math . s i n ( angle ) , 0 ] , \

[ math . s i n ( angle ) , math . cos ( angle ) , 0 ] , \
[ 0 , 0 , 1 ] ] )

#Compute the matrix to send the ep ipo l e to i n f i n i t y
f = ( e2 [ 0 ] − width /2)∗math . cos ( angle ) − ( e2 [ 1 ] − he ight /2)∗math . s i n ( angle )
G = np . array ( [ [ 1 , 0 , 0 ] , \

[ 0 , 1 , 0 ] , \
[−1/ f , 0 , 1 ] ] )

#Compute and apply the homography to r e c t i f y the image cente r
H2Center = np . dot (G, np . dot (R, T) )
img2CenterRect = np . dot (H2Center , np . array ( [ width / 2 , he ight / 2 , 1 ] ) )
img2CenterRect = img2CenterRect / img2CenterRect [ 2 ]

#Now compute the t r an s l a t i o n matrix to move the r e c t i f i e d cente r
T2 = np . array ( [ [ 1 , 0 , width /2 − img2CenterRect [ 0 ] ] , \

[ 0 , 1 , he ight /2 − img2CenterRect [ 1 ] ] , \
[ 0 , 0 , 1 ] ] )

#Compute the o v e r a l l homography to r e c t i f y image 2
H2 = np . dot (np . dot (T2 , G) , np . dot (R, T) )
H2 = H2 / H2 [ 2 , 2 ]

’’’===== Computation o f H1 =====’’’
#Compute the ro ta t i on matrix to move the ep i po l e s to the x−ax i s
angle = math . atan2 ( e1 [ 1 ] − he ight /2 , −(e1 [ 0 ] − width /2))
R = np . array ( [ [ math . cos ( angle ) , −math . s i n ( angle ) , 0 ] , \

[ math . s i n ( angle ) , math . cos ( angle ) , 0 ] , \
[ 0 , 0 , 1 ] ] )

#Compute the matrix to send the ep ipo l e to i n f i n i t y
f = math . cos ( angle )∗ ( e1 [ 0 ] − width /2) − math . s i n ( angle )∗ ( e1 [ 1 ] − he ight /2)
G = np . array ( [ [ 1 , 0 , 0 ] , \

[ 0 , 1 , 0 ] , \
[−1/ f , 0 , 1 ] ] )

#Compute and apply the homography to r e c t i f y the image cente r
H0 = np . dot (G, np . dot (R, T) )

img1Pts = np . hstack ( ( img1Pts , np . ones ( ( l en ( img1Pts ) , 1 ) ) ) )
img2Pts = np . hstack ( ( img2Pts , np . ones ( ( l en ( img2Pts ) , 1 ) ) ) )
x1 = np . t ranspose (np . dot (H0 , np . t ranspose ( img1Pts ) ) )
x2 = np . t ranspose (np . dot (H2 , np . t ranspose ( img2Pts ) ) )
x1 [ : , 0 ] = x1 [ : , 0 ] / x1 [ : , 2 ] #Convert to HC
x1 [ : , 1 ] = x1 [ : , 1 ] / x1 [ : , 2 ]
x1 [ : , 2 ] = x1 [ : , 2 ] / x1 [ : , 2 ]
x2 [ : , 0 ] = x2 [ : , 0 ] / x2 [ : , 2 ] #Only need x−coords f o r img 2

#Minimize us ing l i n e a r l e a s t −squares
abc = np . dot (np . l i n a l g . pinv ( x1 ) , x2 [ : , 0 ] )

#Estab l i sh Ha and use i t to f i nd H1Center
Ha = np . array ( [ [ abc [ 0 ] , abc [ 1 ] , abc [ 2 ] ] , [ 0 , 1 , 0 ] , [ 0 , 0 , 1 ] ] )
H1Center = np . dot (Ha , H0)
img1CenterRect = np . dot (H1Center , np . array ( [ width / 2 , he ight / 2 , 1 ] ) )
img1CenterRect = img1CenterRect / img1CenterRect [ 2 ]

#Now compute the t r an s l a t i o n matrix to move the r e c t i f i e d cente r
T1 = np . array ( [ [ 1 , 0 , width /2 − img1CenterRect [ 0 ] ] , \

[ 0 , 1 , he ight /2 − img1CenterRect [ 1 ] ] , \
[ 0 , 0 , 1 ] ] )

#Compute the o v e r a l l homography to r e c t i f y image 1
H1 = np . dot (T1 , H1Center )
H1 = H1 / H1 [ 2 , 2 ]

re turn H1 , H2

def applyHomography (domainImg , homographyMat ) :
#Apply the homography us ing each p i x e l in the RANGE image corresponding to a p i x e l in the DOMAIN.
#This method ensures a l l p i x e l s in the de s t i na t i on image are f i l l e d and does not l eave gaps .
startTime = time . time ( ) #Track e lapsed time

#Synthes i ze a blank range image
[ width , he ight ] = [ domainImg . shape [ 1 ] , domainImg . shape [ 0 ] ]
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v e r t i c e s = ( (0 , 0) , (0 , height −1) , ( width −1, height −1) , ( width −1, 0) )
p r in t ( v e r t i c e s )
xVerts = [ ]
yVerts = [ ]

#Calcu late transformed vertex coo rd ina te s
f o r i in range ( 4 ) :

x = v e r t i c e s [ i ] [ 0 ]
y = v e r t i c e s [ i ] [ 1 ]
[ newX , newY , newZ ] = np . dot (homographyMat , [ x , y , 1 . 0 ] ) #World to Image
xVerts . append ( round (newX / newZ ))
yVerts . append ( round (newY / newZ ))

pr in t ( xVerts )
p r in t ( yVerts )
#Determine image s i z e and o f f s e t coo rd ina t e s
imgWidth = max( xVerts ) − min( xVerts )
imgHeight = max( yVerts ) − min( yVerts )

#Determine aspect r a t i o f o r s c a l i n g
aspectRat io = he ight / width
newHeight = aspectRat io ∗ imgWidth
scaleX = 1.0
scaleY = newHeight / imgHeight

#Determine o f f s e t s f o r s h i f t i n g coo rd ina te s to (0 , 0)
o f f s e tX = min( xVerts )
o f f s e tY = min( yVerts )
rangeImg = np . ze ro s ( ( round ( newHeight ) , round ( imgWidth ) , 3) , np . u int8 )
#rangeImg = np . ze ro s ( ( round ( imgHeight ) , round ( imgWidth ) , 3) , np . u int8 )
p r in t ( rangeImg . shape )

hInv = np . l i n a l g . pinv (homographyMat ) #Inver t to transform Image to World

#Use ve c to r i z ed opera t i ons to speed up c a l c u l a t i o n s
#when applying the homography .
f ina lWidth = rangeImg . shape [ 1 ]
f i n a lHe i gh t = rangeImg . shape [ 0 ]
xyIdxs = np . i nd i c e s ( ( f inalWidth , f i n a lHe i gh t ) )
xIdxs = xyIdxs [ 0 ] . reshape ( f inalWidth ∗ f i na lHe ight , 1)
yIdxs = xyIdxs [ 1 ] . reshape ( f inalWidth ∗ f i na lHe ight , 1)
zIdxs = np . ones ( ( f inalWidth ∗ f i na lHe ight , 1 ) )
f i n a l I d x s = np . ndarray . astype (np . concatenate ( ( xIdxs , yIdxs , z Idxs ) , 1) , i n t )
s c a l e I dx s = f i n a l I d x s . copy ( )
s c a l e I dx s [ : , 0 ] = s c a l e I dx s [ : , 0 ] / scaleX + o f f s e tX
s c a l e I dx s [ : , 1 ] = s c a l e I dx s [ : , 1 ] / scaleY + o f f s e tY
newIdxs = np . t ranspose (np . dot ( hInv , np . t ranspose ( s c a l e I dx s ) ) )
newIdxs [ : , 0 ] = newIdxs [ : , 0 ] / newIdxs [ : , 2 ]
newIdxs [ : , 1 ] = newIdxs [ : , 1 ] / newIdxs [ : , 2 ]
newIdxs = np . ndarray . astype (np . round ( newIdxs ) , i n t )

#Trim rows that correspond to po int s out s ide the domain image
f i n a l I d x s = f i n a l I d x s [ newIdxs [ : , 0 ] >= 0] #Trim any x < 0
newIdxs = newIdxs [ newIdxs [ : , 0 ] >= 0] #Trim any x < 0
f i n a l I d x s = f i n a l I d x s [ newIdxs [ : , 1 ] >= 0] #Trim any y < 0
newIdxs = newIdxs [ newIdxs [ : , 1 ] >= 0] #Trim any y < 0
f i n a l I d x s = f i n a l I d x s [ newIdxs [ : , 0 ] < domainImg . shape [ 1 ] ] #Trim any x > width
newIdxs = newIdxs [ newIdxs [ : , 0 ] < domainImg . shape [ 1 ] ] #Trim any x > width
f i n a l I d x s = f i n a l I d x s [ newIdxs [ : , 1 ] < domainImg . shape [ 0 ] ] #Trim any y > width
newIdxs = newIdxs [ newIdxs [ : , 1 ] < domainImg . shape [ 0 ] ] #Trim any y > width

#I t e r a t e over the remaining p i x e l s . I could not f i nd a be t t e r method f o r t h i s ( yet )
f o r row in range (np . s i z e ( newIdxs , 0 ) ) :

rangeImg [ f i n a l I d x s [ row , 1 ] ] [ f i n a l I d x s [ row , 0 ] ] = domainImg [ newIdxs [ row , 1 ] ] [ newIdxs [ row , 0 ] ]

endTime = time . time ( )
p r in t ( ’ Elapsed time : ’ , endTime − startTime ) #Print e lapsed time
return rangeImg

def extractEdges ( img ) :
#Ensure we use a g ray s ca l e image
i f ( l en ( img . shape ) > 2 ) :

gray = cv . cvtColor ( img , cv .COLOR BGR2GRAY)
gray = cv . b lur ( gray , (3 , 3 ) )
edges = cv . Canny( gray , 350 , 200 , 5) #Extract edges
return edges

de f f indCorr s ( edges1 , edges2 , windowSize , maxSearchDist ) :
#Find corresponding i n t e r e s t po int s between the two Canny edge images .

#Ensure we use g ray s ca l e images
i f ( l en ( edges1 . shape ) > 2 ) :

edges1 = cv . cvtColor ( edges1 , cv .COLOR BGR2GRAY)
i f ( l en ( edges2 . shape ) > 2 ) :

edges2 = cv . cvtColor ( edges2 , cv .COLOR BGR2GRAY)

co r r s = [ ]

#Loop over each row in the l e f t image and f ind correspondences in the r i gh t image
f o r row in range ( edges1 . shape [ 0 ] ) :

co l IdxsL = np . where ( edges1 [ row ] > 0 ) [ 0 ]
i f np . s i z e ( co l IdxsL ) == 0 : #I f l i s t i s empty , cont inue

cont inue

#For each va l i d p i x e l in the l e f t image , f i nd the l e f t −most p i x e l
#in the same row of the r i gh t image
f o r colL in co l IdxsL :

searchVecR = edges2 [ row , colL : colL + maxSearchDist + 1 ]
potent ia lCo l sR = np . where ( searchVecR > 0 ) [ 0 ]
i f np . s i z e ( potent ia lCo l sR ) == 0 : #I f l i s t i s empty , cont inue

cont inue

#Determine the g l oba l image coord inate and append to l i s t
colR = potent ia lCo l sR [ 0 ] + colL
edges2 [ row , colR ] = 0 #Don ’ t cons ide r t h i s p i x e l anymore
co r r s . append ( [ [ colL , row ] , [ colR , row ] ] )

re turn co r r s
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def f i l t e r C o r r s ( img1 , img2 , corrs , winSz , maxCorrs ) :
#Compute the SSD fo r each correspondence pair , and e l im ina t e those
#that do not meet a de s i r ed metr ic
p r in t ( ’ F i l t e r i n g correspondences . . . ’ )
halfWinSz = in t ( winSz / 2)
i f (maxCorrs > l en ( c o r r s ) ) :

p r in t ( ’Warning : Des ired maxCorrs i s g r ea t e r than the number o f ’ + \
’ correspondences detected ! ’ )

p r in t ( ’ Des ired maxCorrs : ’ , maxCorrs , ’ Actual c o r r s : ’ , l en ( c o r r s ) )
maxCorrs = len ( co r r s )

ssdVec = [ ]

f o r co r rPa i r in co r r s :
cor r1 = cor rPa i r [ 0 ]
cor r2 = cor rPa i r [ 1 ]
win1 = img1 [ cor r1 [ 1 ] − halfWinSz : cor r1 [ 1 ] + halfWinSz + 1 , \

cor r1 [ 0 ] − halfWinSz : cor r1 [ 0 ] + halfWinSz + 1 ]
win2 = img2 [ cor r2 [ 1 ] − halfWinSz : cor r2 [ 1 ] + halfWinSz + 1 , \

cor r2 [ 0 ] − halfWinSz : cor r2 [ 0 ] + halfWinSz + 1 ]

ssdVec . append (np . sum(( win1 − win2 ) ∗∗ 2))

#Sort the correspondences by lowest SSD and take the best maxCorrs
sor tedCorrs = [ pt f o r , pt in sor ted ( z ip ( ssdVec , c o r r s ) , key=lambda pa i r : pa i r [ 0 ] ) ]
re turn sortedCorrs [ 0 : maxCorrs ]

de f showCorrespondences ( img1 , img2 , correspondences , skipX , showLines ) :
#Find the image with the sho r t e s t he ight
img1Height = img1 . shape [ 0 ]
img2Height = img2 . shape [ 0 ]
i f ( img1Height < img2Height ) : #Image 1 sho r t e r

img1 = np . concatenate ( ( img1 , np . z e ro s ( ( img2Height−img1Height , img1 . shape [ 1 ] , 3) , np . u int8 ) ) , 0)
e l i f ( img2Height < img1Height ) : #Image 2 sho r t e r

img2 = np . concatenate ( ( img2 , np . z e ro s ( ( img1Height−img2Height , img2 . shape [ 1 ] , 3 ) ) , np . u int8 ) , 0)

newImg = np . concatenate ( ( img1 , img2 ) , 1) #Stack images ho r i z on t a l l y
img2OffsetX = img1 . shape [ 1 ]

#Estab l i sh po s s i b l e l i n e c o l o r s
# RBGCMY ( randomly ass igned to d i f f e r e n t i a t e )
c o l o r s = ((255 , 0 , 0) , #R

( 0 , 255 , 0) , #G
( 0 , 0 , 255) , #B
( 0 , 255 , 255) , #C
(255 , 0 , 255) , #M
(255 , 255 , 0) ) #Y

#Draw correspondence po int s and l i n e s between them
j = 0
f o r i in range ( l en ( correspondences ) ) :

i f ( not i % skipX == 0 ) :
cont inue

ptSet = correspondences [ i ]
c o l o r Idx = j % len ( c o l o r s )
pt1 = tup le ( ptSet [ 0 ] )
pt2 = tup le (np . array ( ptSet [ 1 ] ) + [ img2OffsetX , 0 ] )
i f ( showLines ) :

cv . l i n e (newImg , pt1 , pt2 , c o l o r s [ c o l o r Idx ] , 1)
cv . c i r c l e (newImg , pt1 , 1 , c o l o r s [ c o l o r Idx ] , −1)
cv . c i r c l e (newImg , pt2 , 1 , c o l o r s [ c o l o r Idx ] , −1)
j += 1

return newImg

def pro jReconstruct ( corrs , P1 , P2 ) :
worldCoords = [ ]

#Compute the world coo rd ina te s
f o r i in range ( l en ( c o r r s ) ) :

A = np . z e ro s ( (4 , 4 ) )
cor r1 = co r r s [ i ] [ 0 ]
cor r2 = co r r s [ i ] [ 1 ]
A[ 0 ] = corr1 [ 0 ] ∗P1 [ 2 , : ] − P1 [ 0 , : ]
A[ 1 ] = corr1 [ 1 ] ∗P1 [ 2 , : ] − P1 [ 1 , : ]
A[ 2 ] = corr2 [ 0 ] ∗P2 [ 2 , : ] − P2 [ 0 , : ]
A[ 3 ] = corr2 [ 1 ] ∗P2 [ 2 , : ] − P2 [ 1 , : ]

#Compute X
, , vh = np . l i n a l g . svd (np . dot (np . t ranspose (A) , A) )

vec = np . t ranspose (vh[−1 , : ] )
worldCoords . append ( vec / vec [ 3 ] ) #Convert to 3−D HC vector

worldCoords = np . reshape ( worldCoords , ( l en ( c o r r s ) , 4 ) )
return worldCoords

## ============= MAIN CODE BEGINS BELOW ============= ##

INITIAL CORRS = np . array ( [ [ [ 2 5 1 , 331 ] , #Image 1 po int s
[ 222 , 212 ] ,
[ 389 , 464 ] ,
[ 402 , 358 ] ,
[ 583 , 296 ] ,
[ 626 , 187 ] ,
[ 459 , 93 ] , #[432 , 160 ] ,
[ 364 , 2 1 1 ] ] ,

[ [ 2 4 4 , 321 ] , #Image 2 corresponding po int s
[ 212 , 206 ] ,
[ 361 , 455 ] ,
[ 363 , 352 ] ,
[ 573 , 302 ] ,
[ 611 , 195 ] ,
[ 456 , 98 ] , #[420 , 163 ] ,
[ 346 , 2 1 0 ] ] ] )

img1 = cv . imread ( ’ . / inputs /1 .JPG’ )
img2 = cv . imread ( ’ . / inputs /2 .JPG’ )
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f o r i in range ( 8 ) :
cv . c i r c l e ( img1 , tup le (INITIAL CORRS [ 0 ] [ i ] ) , 3 , (0 , 255 , 0) , −1)
cv . c i r c l e ( img2 , tup le (INITIAL CORRS [ 1 ] [ i ] ) , 3 , (0 , 255 , 0) , −1)

cv . imwrite ( ’ . / outputs / img1 s e l e c t . jpg ’ , img1 )
cv . imwrite ( ’ . / outputs / img2 s e l e c t . jpg ’ , img2 )
#cv . imshow ( ’ img1 ’ , img1 )
#cv . imshow ( ’ img2 ’ , img2 )
#cv . waitKey (0)

#Normalize the correspondences
normPts1 , tMat1 = normal izePoints (INITIAL CORRS [ 0 ] )
normPts2 , tMat2 = normal izePoints (INITIAL CORRS [ 1 ] )
i n i t i a l F = calcF ( normPts1 , normPts2 ) #Compute the fundamental matrix
finalFNoLM = np . dot (np . dot (np . t ranspose ( tMat2 ) , i n i t i a l F ) , tMat1 )
finalFNoLM = finalFNoLM / finalFNoLM [2 , 2 ] #Homogenize F

#Find ep i po l e s and p ro j e c t i on matr i ces
#[e1NoLM, e2NoLM, ExNoLM] = calcE ( finalFNoLM)
#[P1NoLM, P2NoLM] = calcP ( finalFNoLM , e2NoLM, ExNoLM)

#Compute non l inear l ea s t −squares minimizat ion
fVec = np . r ave l ( finalFNoLM)
f i na lF = opt imize . l e a s t s q u a r e s ( costFunc , fVec , \

args = [ INITIAL CORRS ] , method = ’ lm ’ ) . x

#f i na lF = finalFNoLM

#Compute the r e f i n ed parameters
f i n a lF = np . reshape ( f ina lF , (3 , 3 ) )
f i n a lF = condit ionF ( f i n a lF )
f i n a lF = f i na lF / f i na lF [ 2 , 2 ]
[ e1 , e2 , Ex ] = calcE ( f i n a lF )
[ P1 , P2 ] = calcP ( f ina lF , e2 , Ex)

’ ’ ’ ===== BEGIN IMAGE RECTIFICATION ===== ’ ’ ’
#Compute the homographies and use them to r e c t i f y the images
H1 , H2 = calcRectHomography ( img1 , INITIAL CORRS [ 0 ] , INITIAL CORRS [ 1 ] , f ina lF , e1 , e2 , P1 , P2)

img1Rect = applyHomography ( img1 , H1)
img2Rect = applyHomography ( img2 , H2)

#cv . imshow ( ’ img1Rect ’ , img1Rect )
#cv . imshow ( ’ img2Rect ’ , img2Rect )
#cv . imwrite ( ’ . / outputs / img1Rect . jpg ’ , img1Rect )
#cv . imwrite ( ’ . / outputs / img2Rect . jpg ’ , img2Rect )
#cv . waitKey (0)

’ ’ ’ ===== BEGIN INTEREST POINT DETECTION ===== ’ ’ ’
edges1 = extractEdges ( img1Rect )
edges2 = extractEdges ( img2Rect )

#cv . imshow ( ’ edges1 ’ , edges1 )
#cv . imshow ( ’ edges2 ’ , edges2 )
#cv . imwrite ( ’ . / outputs / edges1 . jpg ’ , edges1 )
#cv . imwrite ( ’ . / outputs / edges2 . jpg ’ , edges2 )
#cv . waitKey (0)

’ ’ ’ ===== BEGIN INTEREST POINT MATCHING ===== ’ ’ ’
c o r r s = f indCorr s ( edges1 , edges2 , 21 , 45)
f i l t e r e dCo r r s = f i l t e r C o r r s ( img1Rect , img2Rect , corrs , 15 , 1 e6 )
corrImg = showCorrespondences ( img1Rect , img2Rect , f i l t e r e dCo r r s , 10 , False )
cv . imwrite ( ’ . / outputs / corrImg . jpg ’ , corrImg )
#cv . imshow ( ’ corrImg ’ , corrImg )
#cv . waitKey (0)

’ ’ ’ ===== BEGIN PROJECTIVE RECONSTRUCTION ===== ’ ’ ’
#Rect i fy the i n i t a l corner correspondences ( wr i t ten manually f o r ease o f use )
r ec tCor r s = [ [ [ 3 1 1 , 332 ] , [ 355 , 3 3 2 ] ] ,

[ [ 2 7 9 , 225 ] , [ 309 , 2 2 5 ] ] ,
[ [ 4 5 7 , 445 ] , [ 493 , 4 4 5 ] ] ,
[ [ 4 7 2 , 352 ] , [ 489 , 3 5 2 ] ] ,
[ [ 6 4 1 , 297 ] , [ 683 , 2 9 7 ] ] ,
[ [ 6 7 9 , 209 ] , [ 709 , 2 0 9 ] ] ,
[ [ 5 2 6 , 126 ] , [ 566 , 1 2 6 ] ] ,
[ [ 4 3 3 , 226 ] , [ 462 , 2 2 6 ] ] ]

t rueCorners = pro jReconstruct ( rectCorrs , P1 , P2)
worldCoords = pro jReconstruct ( f i l t e r e dCo r r s , P1 , P2)

#Set up the p l o t t i n g f i g u r e
#Reference : https :// matp lo t l ib . org / mp l t oo l k i t s /mplot3d/ t u t o r i a l . html
f i g = p l t . f i g u r e ( )
ax = f i g . add subplot (111 , p r o j e c t i on =’3d ’ )
ax . s c a t t e r ( worldCoords [ : , 0 ] , worldCoords [ : , 1 ] , worldCoords [ : , 2 ] )
ax . s c a t t e r ( trueCorners [ : , 0 ] , t rueCorners [ : , 1 ] , t rueCorners [ : , 2 ] )

pa i r s = [ [ 0 , 2 ] ,
[ 0 , 1 ] ,
[ 2 , 3 ] ,
[ 2 , 4 ] ,
[ 4 , 5 ] ,
[ 5 , 3 ] ,
[ 1 , 6 ] ,
[ 5 , 6 ] ,
[ 1 , 3 ] ]

f o r pa i r in pa i r s :
ax . p lo t ( [ t rueCorners [ pa i r [ 0 ] ] [ 0 ] , t rueCorners [ pa i r [ 1 ] ] [ 0 ] ] , \

[ t rueCorners [ pa i r [ 0 ] ] [ 1 ] , t rueCorners [ pa i r [ 1 ] ] [ 1 ] ] , \
[ t rueCorners [ pa i r [ 0 ] ] [ 2 ] , t rueCorners [ pa i r [ 1 ] ] [ 2 ] ] )

p l t . show ( )
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4.2 Task 2: Dense stereo matching

## ============= FILE INFORMATION ============= ##
#
# Name : Brian He l f r e ch t
# Email : bhelfre@purdue . edu
# Course : ECE 661
# Assignment : Homework 10 , Task 2
# Due date : November 16 , 2020
#
## ============= PACKAGE/FILE IMPORTS ============= ##
import numpy as np
import cv2 as cv
## ============= FUNCTION DEFINITIONS ============= ##
def applyCensus ( imgL , imgR , M, dMax ) :

#Ensure we use g ray s ca l e images
i f ( l en ( imgL . shape ) > 2 ) :

imgL = cv . cvtColor ( imgL , cv .COLOR BGR2GRAY)
i f ( l en ( imgR . shape ) > 2 ) :

imgR = cv . cvtColor ( imgR , cv .COLOR BGR2GRAY)

halfWinSz = in t (M / 2)
borderSz = dMax + halfWinSz

width , he ight = imgL . shape [ 1 ] , imgL . shape [ 0 ]
dMap = np . ze ro s ( ( height , width ) )

#I t e r a t e over a l l rows in the l e f t image
f o r rowL in range ( borderSz , he ight − borderSz ) :

p r in t ( ’ Analyzing row %d/%d . . . ’ % ( rowL + 1 , he ight ) )

#I t e r a t e over a l l p i x e l s ( c o l s ) in the row
f o r colL in range ( width − borderSz − 1 , borderSz − 1 , −1):

costVec = [ ]
windowL = imgL [ rowL − halfWinSz : rowL + halfWinSz + 1 , \

colL − halfWinSz : colL + halfWinSz + 1 ]
binWinL = np . r ave l ( ( windowL > imgL [ rowL , colL ] ) ∗ 1)

#I t e r a t e over d i s p a r i t y va lues to c r ea t e r i gh t image windows
f o r d in range (dMax + 1 ) :

rowR = rowL
colR = colL − d
windowR = imgR [ rowR − halfWinSz : rowR + halfWinSz + 1 , \

colR − halfWinSz : colR + halfWinSz + 1 ]
binWinR = np . r ave l ( (windowR > imgR [ rowR , colR ] ) ∗ 1)
costVec . append (sum(binWinL ˆ binWinR ))

dMap [ rowL , colL ] = np . argmin ( costVec )

dMap = dMap . astype (np . u int8 )
return dMap

## ============= MAIN CODE BEGINS BELOW ============= ##

M = 31 #9, 31

#Accuracy :
# − M = 9
# d <= 1: 75.35639879210656
# d <= 2: 80.44429878976568
# − M = 31
# d <= 1: 75.35639879210656 −> 93.12662916723831
# d <= 2: 80.44429878976568 −> 95.43147208121827

#Read in the ground truth d i s p a r i t y map to determine dMax
gtDMap8 = cv . imread ( ’ . / inputs /Task2 Images/ l e f t t r u e d i s p .pgm ’ )
gtDMap8 = cv . cvtColor (gtDMap8 , cv .COLOR BGR2GRAY)
gtDMap16 = gtDMap8 . astype (np . f l o a t 3 2 ) / 16 .0
gtDMap16 = gtDMap16 . astype (np . u int8 ) #np . int16 produces same r e s u l t s but

#leads to data type i s s u e s in OpenCV
dMax = np .max(gtDMap16)
pr in t ( ’dMax : ’ , dMax)
#cv . imwrite ( ’ . / outputs /gtDMap . jpg ’ , gtDMap)

#Read in the input images
imgL = cv . imread ( ’ . / inputs /Task2 Images/ Le f t .ppm’ )
imgR = cv . imread ( ’ . / inputs /Task2 Images/Right .ppm’ )
#cv . imwrite ( ’ . / outputs / Le f t . jpg ’ , imgL)
#cv . imwrite ( ’ . / outputs /Right . jpg ’ , imgR)

#Apply census transform to l e f t image to est imate the d i s p a r i t y map .
dMap = applyCensus ( imgL , imgR , M, dMax)
pr in t (np . min (dMap) , np .max(dMap) )
dMapView = (dMap / np .max(dMap) ∗ 255) . astype (np . u int8 ) #Convert to view the mask
cv . imwrite ( ’ . / outputs /dMap’ + s t r (dMax) + ’ ’ + s t r (M) + ’ . jpg ’ , dMapView)
cv . imshow ( ’dmap ’ , dMapView)
#cv . waitKey (0)

#Compute the e r r o r
e r r o r = abs (dMap . astype (np . int16 ) − gtDMap16 . astype (np . int16 ) ) . astype (np . u int8 )
p r in t ( ’ Error min/max : ’ , np . min ( e r r o r ) , np .max( e r r o r ) )
cha l l enge1 = ( e r r o r <= 1) ∗ 255
cha l l enge1 = cha l l enge1 . astype (np . u int8 ) #Ensure data type
cha l l enge2 = ( e r r o r <= 2) ∗ 255
cha l l enge2 = cha l l enge2 . astype (np . u int8 ) #Ensure data type

#validMask = cv . imread ( ’ . / inputs /Task2 Images/mask0nocc . png ’ )
validMask = cv . cvtColor ( validMask , cv .COLOR BGR2GRAY)
N = cv . countNonZero ( validMask ) #Compute number o f va l i d p i x e l s

#Apply masks to e l im ina t e uncons idered e r r o r p i x e l s
va l idErr1 = cv . b i tw i se and ( validMask , cha l l enge1 )
va l idErr2 = cv . b i tw i se and ( validMask , cha l l enge2 )

#Compute e r r o r in the r e s u l t s
d1Error = cv . countNonZero ( va l idErr1 ) / N
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d2Error = cv . countNonZero ( va l idErr2 ) / N
pr in t ( ’ d = 1 e r r o r : ’ , d1Error )
p r in t ( ’ d = 2 e r r o r : ’ , d2Error )

#Show and save the r e s u l t i n g images
cv . imshow ( ’ cha l l enge1 ’ , va l idErr1 )
cv . imshow ( ’ cha l l enge2 ’ , va l idErr2 )
cv . imwrite ( ’ . / outputs / error ’ + s t r (dMax) + ’ ’ + s t r (M) + ’ . jpg ’ , e r r o r )
cv . imwrite ( ’ . / outputs / cha l l enge1 ’ + s t r (dMax) + ’ ’ + s t r (M) + ’ . jpg ’ , cha l l enge1 )
cv . imwrite ( ’ . / outputs / cha l l enge2 ’ + s t r (dMax) + ’ ’ + s t r (M) + ’ . jpg ’ , cha l l enge2 )
cv . waitKey (0)
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