ECE 661: Homework 1
 Fall 2020

Wenrui Li
Due Data: Sept 03, 2020

Problem 1

What are all the points in the representational space \mathbb{R}^{3} that are the homogeneous coordinates of the origin in the physical space \mathbb{R}^{2} ?

Since an arbitrary homogeneous vector representative of a point is of the form $\left(x_{1}, x_{2}, x_{3}\right)^{\top}$, representing the point $\left(x_{1} / x_{3}, x_{2} / x_{3}\right)^{\top}$ in \mathbb{R}^{2}.

The points in the representational space \mathbb{R}^{3} that are the homogeneous coordinates of the origin $(0 / k, 0 / k)^{\top}$ in the physical space \mathbb{R}^{2} is,

$$
\left(\begin{array}{l}
0 \tag{1}\\
0 \\
k
\end{array}\right), k \in \mathbb{R}, k \neq 0
$$

Problem 2

Are all points at infinity in the physical plane \mathbb{R}^{2} the same? Justify your answer.
No. Points at infinity, or Ideal points are points with last coordinate $x_{3}=0$.
Both $\left(x_{1}, y_{1}, 0\right)$ and $\left(x_{2}, y_{2}, 0\right)$ are Ideal points. In the physical plane \mathbb{R}^{2}, both of them represent points at infinity. However, if $\left(x_{1}, y_{1}\right)$ is not equal to $\left(x_{2}, y_{2}\right)$ and $\left(x_{1} / y_{1}\right)$ is not equal to (x_{2} / y_{2}), these points will reach infinity in different directions.

Problem 3

Argue that the matrix rank of a degenerate conic can never exceed 2.
A degenerated conics can be represented by summation of 2 outer products between 2 lines:

$$
C=l m^{T}+m l^{T}
$$

Since rows of each outer product matrix are linearly dependent, its rank must be 1. Therefore, the matrix of a degenerated conics, which is an summation of two rank 1 matrices, cannot exceed rank 2 .

Problem 4

Derive in just 3 steps the intersection of two lines l_{1} and l_{2} with l_{1} passing through the points $(0 ; 0)$ and $(3 ; 5)$, and with l_{2} passing through the points $(-3 ; 4)$ and $(-7 ; 5)$. How many steps would take you if the second line passed through $(-7 ;-5)$ and $(7 ; 5)$?
(1)

$$
\begin{aligned}
& \left(\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \times\left(\begin{array}{l}
3 \\
5 \\
1
\end{array}\right)\right) \times\left(\left(\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right) \times\left(\begin{array}{c}
-7 \\
5 \\
1
\end{array}\right)\right) \\
& =\left(\left(\begin{array}{l}
-5 \\
3 \\
0
\end{array}\right) \times\left(\begin{array}{l}
-1 \\
-4 \\
13
\end{array}\right)\right) \\
& =\left(\begin{array}{l}
39 \\
65 \\
23
\end{array}\right)=\left(\begin{array}{c}
\frac{39}{23} \\
\frac{65}{23} \\
1
\end{array}\right)
\end{aligned}
$$

First step, calculate l_{1}; second step, calculate l_{2}; Third step, calculate the intersection of two lines.
(2)

$$
l_{2}=\left(\begin{array}{c}
-7 \\
-5 \\
1
\end{array}\right) \times\left(\begin{array}{l}
7 \\
5 \\
1
\end{array}\right)=\left(\begin{array}{c}
-10 \\
14 \\
0
\end{array}\right)
$$

This implies that both l_{1} and l_{2} pass through the origin $[0,0,1]^{T}$. Therefore, the point of intersection is the origin $(0,0)$ in \mathbb{R}^{2}. So it will take 2 steps to find the values of L1 and L2.

Problem 5

Let l_{1} be the line passing through points $(0 ; 0)$ and $(5 ;-3)$ and l_{2} be the line passing through points $(-5 ; 0)$ and $(0 ;-3)$. Find the intersection between these two lines. Comment on your answer.

$$
\begin{gathered}
l_{1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \times\left(\begin{array}{c}
5 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{l}
3 \\
5 \\
0
\end{array}\right) \\
l_{2}=\left(\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right) \times\left(\begin{array}{c}
0 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{c}
3 \\
5 \\
15
\end{array}\right) \\
P_{1,2}=\left(\begin{array}{l}
3 \\
5 \\
0
\end{array}\right) \times\left(\begin{array}{c}
3 \\
5 \\
15
\end{array}\right)=\left(\begin{array}{c}
75 \\
-45 \\
0
\end{array}\right)
\end{gathered}
$$

$P_{1,2}$ is an ideal point, which implies that the lines l_{1} and l_{2} are parallel.

Problem 6

As you know, when a point \mathbf{p} is on a conic \mathbf{C}, the tangent to the conic at that point is given by $\mathbf{l}=\mathbf{C p}$. That raises the question as to what $\mathbf{C p}$ would correspond to when \mathbf{p} was outside the conic. As you'll see later in class, when \mathbf{p} is outside the conic, $\mathbf{C p}$ is the line that joins the two points of contact if you draw tangents to \mathbf{C} from the point \mathbf{p}. This line is referred to as the polar line. Now let our conic \mathbf{C} be an ellipse that is centered at the coordinates (3, 2), with $a=1$ and $b=1 / 2$, where a and b , respectively, are the lengths of semi-major and semi-minor axes. For simplicity, assume that the major axis is parallel to x -axis and the minor axis is parallel to y -axis. Let \mathbf{p} be the origin of the \mathbb{R}^{2} physical plane. Find the intersections points of the polar line with xand y-axes.

The ellipse function,

$$
\begin{gathered}
(x-3)^{2}+4(y-2)^{2}=1 \\
x^{2}+4 y^{2}-6 x-16 y+24=0
\end{gathered}
$$

The conic coefficient matrix is given by

$$
C=\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 4 & -8 \\
-3 & -8 & 24
\end{array}\right]
$$

The polar line

$$
l=\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 4 & -8 \\
-3 & -8 & 24
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-8 \\
24
\end{array}\right]
$$

The polar line function

$$
-3 x-8 y+24=0
$$

Finally, the intersection between l and x-axis is:

$$
\left[\begin{array}{c}
-3 \\
-8 \\
24
\end{array}\right] \times\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-24 \\
0 \\
-3
\end{array}\right]=\left[\begin{array}{l}
8 \\
0 \\
1
\end{array}\right]
$$

Similarly, the intersection between l and $y-a x i s$ is:

$$
\left[\begin{array}{c}
-3 \\
-8 \\
24
\end{array}\right] \times\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
24 \\
8
\end{array}\right]=\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]
$$

The intersection point of the polar line with x -axis is $(8,0)$; The intersection point of the polar line with y-axis is $(0,3)$.

Problem 7

Find the intersection of two lines whose equations are given by $x=1 / 2$ and $y=-1 / 3$

$$
\begin{gathered}
l_{1}=\left(\begin{array}{c}
1 \\
0 \\
-\frac{1}{2}
\end{array}\right) \\
l_{2}=\left(\begin{array}{c}
0 \\
1 \\
\frac{1}{3}
\end{array}\right) \\
P_{1,2}=\left(\begin{array}{c}
1 \\
0 \\
-\frac{1}{2}
\end{array}\right) \times\left(\begin{array}{c}
0 \\
1 \\
\frac{1}{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{3} \\
1
\end{array}\right)
\end{gathered}
$$

