ECE 661 — Homework 7
Ran Xu
xu943@purdue.edu
10/30/2018
1. Algorithms
1.1 Feature Extraction — Local Binary Patterns (LBP)

The purpose of LBP is to generate a rotation-invariant feature vector of an image so that a classifier can use
this feature vector to classify the image. 5 steps to extract Local Binary Patterns (LBP) from a grey-scale
image are shown as follows,

Step 1: Compute P-neighbors in the image

In this step, for each pixel (x, y) in the image, I select P neighbors that are R away with rotation angle 8 =

0, 27;*1) Zn*(:_l). The pixel coordinate of the i-th neighbor is shown as follows,

2m i
xi=x+R-cos()

o 2mxi
yi =y +R-sin(P

)

To compute the pixel value whose coordinate is not integer, I use bilinear interpolation. Denote the
integer part and fractional part of the i-th neighbor as (X, ¥;) and (du, dv). Denote the surrounding pixels
with integer coordinate of the i-th neighbor as A, B, C, and D in the top-left, top-right, bottom-left and
bottom-right directions. The coordinate of A, B, C, and D are shown as follows,

A: (%, 5, B: (X, 7+ 1)
C:(x,+1,y),D:(x,+1,y,+1)
The pixel value of the i-th neighbor in terms of A, B, C, D, du and dv is as follows,
Value(x;,y;) = (1 —du)(1 —dv)A+ (1 —du)dv-B +du(l —dv)C+du-dv-D

* Computation-optimized version (1000x faster than pixel-wise computation)

Instead of iterating among all pixels, I use vector operations to speed up the processing, I first construct a
matrix with shape (H * W, P * 4) which includes the reference of all 4 integer neighbor of the P neighbors
of each pixel. I then right-multiply this matrix with a transformation matrix as follows and directly get the
pixel values of the H*W*P neighbors.

(1 —dug)(1 —dvy) 0 0
(1 — dugy)dy, 0 0
dug(1 — dvy) 0 0
dug - dv, 0 0
0 (1-duy))(1 —dvy) 0
0 (1 —-duy)dv, 0
o 0 du, (1 —dv,) 0
TransMatrix = 0 du, - dv, 0
0 0 (1 —dup-1)(1 —dvp_4)
0 0 (1 —dup_1)dvp_4
0 0 dup_1(1—dvp_y)
0 0 dup_qdvp_q

Step 2: Compute the binary P-neighbors in the image

In this step, the pixel values of the P neighbors are compared with the original pixel value in the image and
end up with 1 if greater and equal and 0 otherwise.

Step 3: Compute rotation-invariant integer representation

In this step, the P 1s and Os are firstly encoded to an integer but concatenate them together. To against the
rotation, I shift the integer left by x bits (x=0, 1, ... P-1). Note that the left x bits are concatenated to the
rightmost of the integer. I select the minimum integer among the P shiftings. This integer is a rotation-
invariant feature of the image.

Step 4: Encode the rotation-invariant integer using 0-1 runs

In this step, I further encode the rotation-invariant integer by its 0-1 runs. If the binary representation is all
0, the encoding is 0; if the binary representation is Os and followed by 1s, the encoding is the number of the
Is; if the binary representation is all 1, the encoding is P; otherwise the encoding is P+1

Step 5: Compute the histogram among the image

Finally, I compute the histogram with P+2 bins on the 0-1 runs among the image. The histogram count is
normalized by the sum so that it represents the occurrence of each 0-1 run.

1.2 Euclidean Distance Based Classifier

The purpose of an Euclidean Distance Based Classifier is to classify a test image given a dataset of training
images. Denote the LBP histogram of test image as LBPyes; and that of Nipgining training images as

LBPtrainingOr LBPtrainingl' sy LBPtraining(Ntmining—l)

The Euclidean Distance (ED) between the test image and the i-th training image is defined as

ED = J I1LBPos; — LBPeraining il

where || - || represents the 12-norm. The 5 smallest ED between the test image and all training images are
picked. The classification is firstly made based on the majority of the class labels of the 5 training images.
If multiple classes have a tie, we sum the ED inside each classes and choose the class label of the smallest
summed ED as final prediction on the test image.

2. Observations

Firstly, the LBP histograms of the first images in each class in the training dataset are shown as follows,

Image

LBP histograms, where R =1, P = 8

imagesDatabaseHW7/training/building/01.jpg
imagesDatabaseHW7/training/car/01 jpg
imagesDatabaseHW7/training/mountain/01.jpg
imagesDatabaseHW7/training/tree/01.jpg

imagesDatabaseHW7/training/beach/10.jpg

[0.134 0.099 0.038 0.100 0.099 0.056 0.024 0.083 0.076 0.292]
[0.114 0.307 0.034 0.099 0.093 0.058 0.027 0.056 0.063 0.148]
[0.208 0.191 0.041 0.071 0.057 0.050 0.036 0.056 0.083 0.206]
[0.145 0.081 0.054 0.079 0.071 0.073 0.050 0.082 0.145 0.222]
[0.190 0.111 0.043 0.124 0.094 0.080 0.037 0.060 0.084 0.177]

Secondly, using R = 1,P = 8, I get the confusion matrix as follows, the overall test accuracy is 68%.
Wrong predictions are labelled in bold and underline. The overall test accuracy is much better than random
guessing (20% accuracy) while far less than a production system. The accuracy can be improved a lot if
using better features. However due to the fundamental limitation of LBP, the accuracy cannot be as high as

90%.

Prediction
building car mountain tree beach
building 3 0 0 2 0
car 0 3 0 0 2
Gtrl‘jl‘tl;‘d mountain 0 0 3 0 2
tree 1 0 0 4 0
beach 0 0 1 0 4

Finally, the 8 of 25 test images that are wrongly classified are shown as follows,

Ground truth: beach

Prediction: mountain

Ground truth: building

Prediction: tree

Ground truth: building

Prediction: tree

Ground truth: car

Ground truth: mountain

Ground truth: car

Prediction: beach

Ground truth: tree

Ground truth: mountain

Prediction: beach Prediction: beach Prediction: beach Prediction: building

Table 1: Wrongly classified test images

As can be seen in Table 1, the first misclassified image maybe because the rocks on the beach misleads the
classifier. However, in other misclassified images, I cannot even reason why they get wrongly classified.
The reason is that LBP histogram cannot well distinguish the classes, and thus we cannot easily achieve
higher accuracy than 68%.

3. Source code
3.1 Helper functions (LBP feature extraction, bit shifting operation and so on)

import numpy as np

import subprocess

import cv2

import time

import matplotlib.pyplot as plt

def LoadImages (Dataset): # Load images from training or testing dataset
ClassEncs = ["building", "car", "mountain", "tree", "beach"]
if (Dataset=="Train"):
Paths, Imgs = ([], [])

for ClassEnc in ClassEncs:
List all images
ImgDir = "imagesDatabaseHW7/training/%s/" %ClassEnc
out, = subprocess.Popen("ls "+ImgDir, shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE) .communicate ()
Paths = Paths + [ImgDir + x.decode ("utf-8") for x in out.split()]

GT = [0]*%20 + [11*20 + [2]*20 + [31*20 + [4]1*20
else: # Dataset=="Test"
Paths, Imgs = ([], [1)

for ClassEnc in ClassEncs:
List all images
cmd = "ls imagesDatabaseHW7/testing/%$s_*" %$ClassEnc
out, = = subprocess.Popen(cmd, shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE) .communicate ()
Paths = Paths + [x.decode("utf-8") for x in out.split()]
GT = [0]*5 + [1]1*5 4+ [2]*5 + [3]*5 + [4]1*5
for Path in Paths:
Read images
Img = cv2.imread(Path, cv2.IMREAD GRAYSCALE) # (H, W) uint8 np ndarray
Imgs.append (Img)
return Imgs, Paths, GT # list of (2D uint8, str, int)
def LBP Parameters(R = 1, P = 8): # Init parameters in LBP
dh = np.zeros ((P*4,)).astype("int") # Ist dim
dw = np.zeros((P*4,)).astype("int") # 2nd dim
Each 4 colomns is the multipler in bilinear interpolatation
BLI Matrix = np.zeros((P*4, P))
for idx P in range (P):
h = R * np.cos(2*np.pi*idx P/P)
w = R * np.sin(2*np.pi*idx P/P)
dh[4*idx P] = np.floor (h).astype("int")
dh[4*idx P+1] = np.floor (h).astype("int")
dh[4*idx P+2] (np.floor (h)+1) .astype ("int")
dh[4*idx P+3] (np.floor (h)+1) .astype ("int")
dw[4*idx P] = np.floor (w).astype("int")
1
]
1

dw[4*idx P+1] = (np.floor (w)+1l).astype("int")
dw[4*idx P+2] = np.floor(w).astype("int")
dw[4*idx P+3] = (np.floor (w)+1l).astype("int")

LT
QWO O W™

dv, du = (h-np.floor (h), w-np.floor (w))

BLI Matrix[4*idx P, idx P] = (1-du)*(1-dv) # A
BLI Matrix[4*idx P+1, idx P] = (1-du)*dv # B
BLI Matrix([4*idx P+2, idx P] = du* (1-dv) # C
BLI Matrix[4*idx P+3, idx P] = du*dv # D

return BLI Ma
def LBP(Imgs, R =
Init with p

trix, dh, dw
1, P =28): # Img is 2D grey-scale image
arameters

BLI Matrix, dh, dw = LBP Parameters(R, P)

ImgHists = np.

for idx, Img

Step la:

ImgInterp
for idx p
ImgIn

Step 1b:

#
ImgInterp
ImgInterp

Step 2:
RawImg =

ImgBin =

Step 3:
ImgIntVal
ImgRotInt
ImgMinInt

zeros ((P+2, len(Imgs)))

in enumerate (Imgs) :

Construct a (H*W, P*4) matrix of the 4-neighbor of each 8 points

0 = np.zeros((int ((Img.shape[0]-2*R-2)* (Img.shape[l]-2*R-2)), P*4))

0, (dhO, dw0O) in enumerate (zip(dh, dw)):

terp0[:,idx p0] = Img[R+1+dhO0:Img.shape[0]-R-1+dhO,
R+1+dw0O:Img.shape[l]-R-1+dw0].flatten ()

ImgInterp0 * BLI Matrix, then unflatten and get the raw LBP
Output shape: (H-2R-2, H-2R-2, P)
= np.matmul (ImgInterpO, BLI Matrix)
= np.reshape (ImgInterp, (int((Img.shape[0]-2*R-2)),
int ((Img.shape[l]-2*R-2)), P))
Compare ImgInterp with Img, output shape: (H-2R-2, H-2R-2, P)
np.expand dims (Img[R+1:Img.shape[0]-R-1,
R+1:Img.shape[l]-R-1], axis=-1)
(ImgInterp - RawlImg) > O

Get MinIntVal

= np.zeros ((int (Img.shape[0]-2*R-2), int (Img.shape[l]-2*R-2)))
Val = np.zeros((int (Img.shape[0]-2*R-2), int (Img.shape[l]-2*R-2), P))
Val = np.zeros((int (Img.shape[0]-2*R-2), int (Img.shape[l]-2*R-2)))

for idx P in range (P):

ImgIntVal = ImgIntVal + ImgBin[:, :, idx P] * (2**idx P)
ImgIntVal = ImgIntVal.astype ("int")
for idx P in range (P):

ImgRotIntVal[:, :, idx P] = rol(ImgIntvVal, idx P, P)
ImgMinIntVal = np.min(ImgRotIntVal, axis = -1)
Step 4: Encode the MinIntVal using "runs"
ImgEnc = np.zeros (ImgMinIntVal.shape)

ImgEncOcc

= np.zeros (ImgMinIntVal.shape)

for idx P in range(P+1l): # There is idx P 1's followed by 0
MaskNumber = (2**idx P)-
ImgEnc = ImgEnc + (ImgMinIntVal==MaskNumber)*idx P
ImgEncOcc = ImgEncOcc + (ImgMinIntVal==MaskNumber)

ImgEnc = ImgEnc + (1-ImgEncOcc)* (P+1)

Step 5: Get histogram

histogram bin = np.arange(-0.5, P+1+0.5+1e-3, 1) # (P+3)-long, P+2 bins
hist, = np.histogram(ImgEnc, bins = histogram bin)

ImgHists[:,

idx] = hist/sum(hist)

return ImgHists
Bit-wise rotate left: 0b00001001 --> 0b00010010

rol = lambda val,

1 bits, max bits: \

(val << 1 bits) & (2**max bits-1) | \
((val & (2**max bits-1)) >> (max bits-1 bits))

3.2 Main function

(R, P) = (1, 8)
Train & Test

— training and testing

TrainImgs, TrainPaths, TrainingGT = LoadImages ("Train")
Patterns Train = LBP(TrainImgs, R, P)

TestImgs, TestPaths, TestGT = LoadImages ("Test")
Patterns Test = LBP(TestImgs, R, P)

for x in range(5):
print ("%$s: %.3f $.3f %$.3f $.3f $.3f %.3f $.3f %$.3f $.3f $.3f"
5 (TrainPaths [x*20], Patterns Train[0, x*20], Patterns Train[l, x*20], Patter
ns Train([2, x*20],
Patterns Train([3, x*20], Patterns Train[4, x*20], Patterns Train[5, x*20],
Patterns Train([6, x*20], Patterns Train[7, x*20], Patterns Train[8, x*20],
Patterns Train[9, x*20]))

Matching patterns
ConfMatrix = np.zeros((5, 5))
N Train, N Test = (len(TrainImgs), len(TestImgs))
for idx testimg in range (N Test) :
Compute Distance

EU Dis = np.zeros((N Train,))
for idx trainimg in range (N _Train):
EU Dis[idx trainimg] = np.sqrt(np.sum((Patterns Test[:,idx testimg] -

Patterns Train[:,idx trainimg]) **2))

Sort in increasing order (EU Dis, TrainingGT)

Sorted EU Dis, Sorted TrainingGT = zip(*sorted(zip(EU Dis, TrainingGT)))
Sorted EU Dis = np.array(Sorted EU Dis)

Sorted TrainingGT = np.array(Sorted TrainingGT)

The GroundTruth is TestGT[idx testimg]
ClassScore = np.zeros ((5,))
for idx cls in range(5):

Mask = (Sorted TrainingGT[0:5]==idx cls)

ClassScore[idx cls] = np.sum(Mask)*100 + 1 - np.sum(Sorted EU Dis[0:5]*Mask)
Prediction = np.argmax (ClassScore)
ConfMatrix[TestGT[idx testimg], Prediction] = ConfMatrix[TestGT[idx testimg], Pred
iction] + 1
ConfMatrixDiag = [ConfMatrix[x,x] for x in range (5)]
print ("ConfMatrix = \n", ConfMatrix.astype ("int"))
print (" (R, P) = (%d, %d), Test accuracy = %.0£%%" % (R, P, np.sum(ConfMatrixDiag)/25*10

0))

