A Large-Scale Comparative
Evaluation of IR-based
Tools for Bug Localization

SHAYAN AKBAR

AVI KAK

PURDUE UNIVERSITY

[AN MSR 2020 PRESENTATION]

We focus on the problem of IR-based bug
localization

* Given a large corpus of source code files belonging to a software repository and
a bug report, find a list of source code files ranked based on their relevancy to
the bug report

Source code files

Bug

Ranked list
of source
code files

localization
system

Contents

Motivation / Introduction

The three generations of IR-based bug localization

Eight retrieval algorithms selected from the three generations to study
Bugzbook --- A large, diverse bug localization dataset

Results

Conclusion

Why yet another study on bug localization?

* Because previous studies...
* mostly relied only on Java software repositories
* are based on datasets with only few thousand bug reports

* conducted experiments only on very few software projects

* We created Bugzbook --- a new large and diverse bug localization dataset

containing over 20000 bug reports

* These bug reports belong to 29 different software projects
 The projects belong to Java, C/C++ and Python programming languages

We experimented with past bug localization
algorithms on Bugzbook

* We divided the past 15 years of studies in IR-based bug localization into
three generations

* Each generation tells a story of what happened in the field of bug
localization during that generation

* We compiled a list of the prominent papers published in each generation

* From all the three generations we selected eight algorithms and conducted
experiments on Bugzbook dataset to evaluate their relative performances

The three generations of IR-based bug localization
(spanning studies from last 15 years)

1t generation

an ge

nleration

3rd ger}eration

A l

Lukins [WCRE] -

LDA based bug
localization

Kuhn [WCRE]

LS| based software

comprehension Past bug history for bug

Nochols [ACMSE] |

Zhou [ICSE]

(BugLocator)
Uses bug history for
bug localization

Davies [WCRE]

Uses bug history for
bug localization

Wong [ICSME]
- (BRTracer)

Structured information
and stack trace extraction

Moreno [ICSME]

(LOBSTER)
Uses stack traces and AST

\ Sisman [JSEP]
_ (MRF)

Imposes ordering
constraints on retrieval

| Uneno [ICQRS]
(CombBL)

Imposes semantic
constraints on retrieval

Rahman [FSE]

Marcus localization Wang [lCPC] L Wen [ASE]
- [(Amalgam) (BLIZZARD)
[WCRE] Rao [MSR] - Sisman [MSR] B(dg ion hi d (LOCUS] Context-aware que
(DEbPA) lganaver-ionhtonyan Uses code change histo e RIRSX
LSl based Compares VSM, UM, U el structured information g ry reformulation
concept LSI, LDA, CBDM for e change - Ye |ICSE
location bug localization history for bug - Ye [FSE] Im c!:ses sen:!antic
localization Learning to rank based bug corﬁ)straints in TR
® [) (Y ® ¢ localization ® s
2004 2007 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
’ _ ° @
Conferences: - Saha [ASE] (BLUiR) Xi
Conferences: : : | Xiao [IST] "
WCRE: Working Conference on Reverse Engineering Structured information based - Moreno [FSE] (D Loc) Akbar [MSR]
bug localization (Quest) SERLOC (SCOR)

ACMSE: ACM Software Engineering

MSR: Mining Software Repositories

ICSE: Int'l Conference on Software Engineering

ASE: Automated Software Engineering

FSE: Foundations of Software Engineering

ISSRE: Int'l Symp on Software Reliability Engineering
APSEC: Asia-Pacific Software Engineering Conference
ICQRS: Int'l Conf on Software Quality, Reliability and Security
Journals:

IST: Information and Software Technology

JSEP: Journal of Software Evolution and Process

TSE: Transactions on Software Engineering

| Sisman [MSR] (scpgr)
Query reformulation based bug
localization

- Kim [TSE] (Bugscout)
Uses Naive Bayes to identify
buggy files given a bug report

- Thomas [TSE]

Combines classifiers to improve
bug localization

_ Davies [ISSRE]

Stack trace extraction

Learn the best query
configuration for bug
localization

- Youm [APSEC]

(BLIA)

Stack traces and comments
in bug reports, structured
information of files, and
code change history.

Uses semantic vectors
and enhanced CNN for
bug localization

. Nguyen [ICSE]
Imposes semantic
constraints on retrieval

L Lam [ICPC]

(DNNLoc)

Uses neural network
to identify buggy files
given a bug report

Imposes semantics
and ordering
constraints

- Huo [TSE]
(TRANP-CNN)
Extracts transferable
semantic features
from source project

1st generation [2004 — 2011]

* Most of the early works in bug localization relied on using
traditional BoW (Bag of Words) based IR tools to rank files
based on their relevancy to the bug report

* Tradition BoW IR techniques:
* UM (Unigram Model)
¢ TFIDF (Term Frequency Inverse Document Frequency)
* DLM (Dirichlet Language Model)
* VSM (Vector Space Model)
+ LSI (Latent Semantic Indexing)

2nd generation [2011 — 2016]

* Software-centric information modelled in bug localization systems

* Information derived from:
* bug report history

* version history

structure of bug reports

structure of code files

* BugLocator, BLUiR, DHbPd, BRTracer, BLIA, LOBSTER, and Amalgam are some of the
tools developed during this generation

3rd generation [2016 — present]

Term-term proximity, order and semantic relationships modelled in bug
localization systems

Proximity: Code files that contain bug report terms in similar proximities as in the bug
report itself are more likely to be relevant to the bug report

Order: Code files should be ranked higher in the list if they contain bug report terms in the
same order as they appear in the bug report text

Semantics: In addition to exact matching between terms in the code files and bug report,
terms should also be matched based on semantics

From the three generations we selected eight
retrieval algorithms to study

TFIDF (Term Frequency Inverse Document Frequency)

15t generation
DLM (Dirichlet Language Model)

g o 2nd generation
BLUIR (Bug Localization Using Information Retrieval)

MRF-SD (Markov Random Fields — Sequential Dependence)
MREF-FD (Markov Random Fields —Full Dependence)
PWSM (Per Word Semantic Model)

SCOR (Source Code Retrieval with Semantics and Order)

3rd generation

P N O N | —

15t Generation Tools (Simple BoW Models)

* TFIDF

* works by combining frequencies of query terms in the file (IF) and the inverse
document frequencies of query terms in the corpus (IDF) to determine the relevance
of a file to a query

SCOTetfidf(f: Q) x tf(q;, f) *idf(q;)
- DL

* a probabilistic model that estimates a smoothed first order probability distribution of
the query terms in the file to produce the relevance score for a file to a query

scoreqim(f, Q) < tf(q; f) * cf(q;)

2nd Generation Tools (Software-centric information)

* Bugl.ocator

* takes into account the history of the past bug reports and leverages bug
reports that have been previously fixed to improve bug localization

- BLUiR

» extracts code entities such as classes, methods, variables, and comments
from code files to help in localizing a buggy file

34 Generation Tools (Modelling Proximity and Order)

- MREF-SD

« measures the probability distribution of the frequencies of pairs of consecutively
occurring query terms appearing in the file to compute the relevance score for the file
to a query

scoresq(f, Q) < tf(q;qiv1,) * cf (qiqiv1)
* MREF-FD

* is a term-term dependency model that considers frequencies of all pairs of query
terms appearing in the file to determine the relevance of the file to the query

scorerq(f, Q) « tf (q:q; f) * cf(q:q;)

34 Generation Tools (Modeling semantics)

In order to discuss how to model semantics in retrieval process first we need to
discuss semantic word embeddings

3rd Generation Tools

(word2vec for constructing semantic word embeddings)

word2vec neural network

Input layer

X1

Millions of
source code
files

X3

Xk

»

X9 ‘ 3

Projection layer Output layer
h
h, Q
. Wy, .
h | @ :

Y1
Y2

V3

Yj

v

40

30 1

20 +

»

_10 -

—24— ﬁmggon)

10

0 -

Semantic word vectors

e

gvrite
‘)utﬁ'HSe

‘;efpe“ darser
dnput
‘ead f&lﬁh

S

@et

T T T
=30 =20 -10 0

T
10

https://engineering.

SCOR Word Embeddings_

urdue.edu/RVL/SCOR_WordEmbeddings/

3rd Generation Tools (Modelling Semantics as in SCOR)
|71

. pairwise t, t, t t t Maximum Largest Sum and

' cosine ’ across all q, £ =3 normalize
d, l...l similarities 0] © columns Q. values E.h by &,
=T S

* IHEEE : ;
Enlory amboriant Match Layer 1 (ML1) Best-matching vector Best-of-best vector score_ .(f, Q)
E r?: isad ng Each cell is cosine similarity Each cell represents Retain cosine similarities Relevance
Ni-idcim S‘é"c'tzrafofase between a query term q, cosine similarity for top § query terms score based on
query term leamed A e B betweena query [rom pest-matching ~ Single term
using word2vec e tanT vector

Convolve with| 05 | 00
the 2x2 kernel| 0.0 | 05

Maximum Largest Sum and

L. L b Lt across all E. =3 normalize

12 23 4''s

q,.4q, b
q,q, columns values £ =2 y E 2
0,q, - —>
0.0
i a9,
...l. %% Best-matching vector Best-of-best vector score_ . (f, Q)

File embeddings Match Layer 2 (ML2) Each cell represents Retain cosine similarities Relevance score
Each row is a dense Each cell represents similarity cosine similarity between for top &, query term by comparing 2
—_ N-dim vector for a file between 2 consecutive query 2 consecutive query terms pajrs from best-matching consecutive

term learned using terms q.q. and file terms t,.t and their 2 consecutive vector query and file
word2vec e e best matched file terms terms

34 Generation Tools (Modelling Semantics)

- PWSM:

* uses embeddings derived from word2vec algorithm to model term-term contextual
semantic relationships in retrieval process

SCOT €, s (f, Q)= v . sCOTey, (f,Q) + B . score, s, (f,Q)

« combines MRF based term-term dependency modeling with semantic word
embeddings as made possible by word2vec algorithm to improve bug localization

SCOT@SC()r(ﬁQ) =a. SCOT@dlm(f;Q) + ﬁ . SCO?"esd(f,Q) +
u. scorepwsm(f,QH Q . score,, 6,(f,Q)

Components built into each of the eight algorithms

TFIDF DLM | BugLocator | BLUiR | MRFSD | MRFFD PWSM SCOR
BoW v v v v v v v v
Order v v v
Semantics v v
Stack Trace v v v v
Structure v
Bug History v

We experimented with these eight algorithms on Bugzbook
(features of Bugzbook dataset)

* Bugzbook contains over 20000 bug reports from 29 projects belonging to Java,
C/C++, and Python projects

* We processed over 4 million source code files belonging to all the 29 projects

Out of 29 projects, 23 projects belong to Apache community (Ambari, Spark, Camel, ...)

We downloaded Apache bug reports from well-managed Jira platform

Also present in Bugzbook are bug reports from other large-scale projects (OpenCV, Pandas, ...)

The bug reports for non-Apache projects were downloaded from GitHub

How Bugzbook compare with other datasets?

Dataset Number of projects Number of bug reports
moreBugs 2 ~400
BUGLinks 2 ~4000

iBUGS 3 ~400
Bench4BL 46 ~10000
Bugzbook 29 ~20000

Bugzbook stats

(number of bug reports)

Apache Java projects

Ambari 2253 JCR 457 Spark 185
Bigtop 5 Karaf 390 Sqoop 201
Camel 2308 Mahout 162 Tez 177
Cassandra 514 Math 17 Tika 183
CXF 1795 OpenNLP 84 Wicket 567
Drill 800 PDFBox 1163 WW 87
Hbase 2476 PIG 47 Zookeeper 20

Hive 2221 SOLR 471

Total

Other Java projects

Project #bugs

Eclipse 4035

Aspect] 291
C/C++, Python projects

Project #bugs
Chrome 147
OpenCV 8
Pandas 179
Tensorflow 10
#projects 29
#bugs 21253

Eclipse and Chrome bug reports taken from BUGLinks dataset
Aspect] bug reports taken from iBUGS dataset

Bugzbook construction

M oM oMM

Download bug reports from Remove bug reports with Use commits to identify Bug reports come Verify randomly chosen
Jira and GitHub, and source duplicate tags. Also, remove which bugs it fixes. Also, with a tag that tells bugs for each project.
code files from project reports that are not tagged use modified associated which version was Check if bug ID, title,
archives as “bug”. with the commits as affected by the bug description, fixed files are
relevant files for the correctly recorded in

respective bug. Bugzbook.

Results on Bugzbook dataset

Highlights of the results

* Experiment 1 (Performance of retrieval algorithms belongingto differentgenerations)

* Results on Java only projects
* Results on C/C++and Python projects

* Results on all projects

* Experiment 2 (Effect of semantic word embeddings)

* Can we cross-utilize word embeddings across different programming languages?

* Does changingthe size of word vectors and the word embeddingalgorithm affectretrieval?

Highlights of the results (contd.)

« 31 generation tools are the most effective in terms of retrieval precision

* SCOR word embeddings (trained on Java language) can be used for
searching in C/C++ and Python projects

* The size (500, 1000, 1500 dimensions) and type (word2vec, Glo Ve, FastText)
of word embeddings do not affect the performance of retrieval

Results for Java projects

Average MAP values for eight algorithms across all Java projects

SCOR, a third
generation tool, sCoR - | 0.3992

outperforms all cwo EEE———————— s
other algorithms
o N 0.348568
so N 0.356532
BRI 0.34654
Buglocator - | 0.357072
Fl N 0.329064

TR | 0.361052

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 045

Results for C/C++ and Python projects

Average MAP values for eight algorithms across all C/C++ and
SCOR and MREF SD, Python projects
both third generation

tools, outperforms all
other algorithms PwvsM [03795

0 I (375
sD | 0.396575
SR N 0232125
Buglocztor | O 153105
Fl N 0.335125
THDF | 0.2676

1] 0.05 0.1 0.15 0.2 025 0.3 0.35 0.4 045

SCOR 0.383725

v—
3

SCOR, a third
generation tool,
outperforms all
other algorithms

SCOR

PW35M

FO

sD

BLUIR

Buglocator

Fl

TADF

N 0.3984
N 0.3505
N, 0347

Average MAP values for eight algorithms across all projects

Results for all projects

T 0.3706

N 055!
N 5255
R O 303
I 0.3¢51

0

0.05

0.1

015

0.2

0.25

0.3

035

0.4

0.45

Cross-utilization of word embeddings

SCOR word embeddings were trained on Java-only projects

The following 5 Java projects presentin Bugzbook dataset were not presentin the SCOR dataset:
* Aspect], Bigtop, OpenNLP, PDFBox, and Drill

Therefore, the word embedding algorithm was not trained on these 5 projects

However, the buglocalization precision on these 5 datasetsincreases when semantic word
embeddings based retrieval algorithms --- PWSM and SCOR --- are used for retrieval.

Therefore, the SCOR word embeddings are generic enough to be applied for retrieval in new projects

We also observe the same results on the following C/C++and Python projects

* Chrome, OpenCV, Pandas, and Tensorflow

Effect of changing word vector size and word
embedding algorithm

We observe thatthe word vector size does not affect the retrieval precision of SCOR when
tested on 4000 bug reports of Eclipse dataset

0.3191 0.3204 0.3193

SCOR500 means word vectors having 500 dimensions used for retrieval

We also trained GloVe and FastText (the two semantic word embedding algorithms that compete with word2vec)
on the same SCOR dataset, and used the resulting word vectors for retrieval with SCOR

We notice that the change in word embedding algorithm does not affect the retrieval performance of SCOR

0.3204 0.3192 0.3182

SCOR (glove) means GloVe word embeddings (size=500) were used for retrieval

Conclusion

* The third generation tools are far superior in performance than the first and
second generation tools

* SCOR semantic word embeddings are very generic:

« They can be used to perform bug localization in those Java projects on word2vec was
not trained on

 Also, they are very effective for bug localization in non-Java projects

* It’'s time to merge techniques from 2" and 3™ generations to develop hybrid
approaches for IR-based bug localization

Thankyou ...

Questions?

Dataset will be made available at:

https://engineering. purdue.edu/RVL/Bugzbook/

https://engineering.purdue.edu/RVL/Bugzbook/

