
A Large-Scale Comparative
Evaluation of IR-based
Tools for Bug Localization

SHAYAN AKBAR

AVI KAK

PURDUE UNIVERSITY

[AN MSR 2020 PRESENTATION]

We focus on the problem of IR-based bug
localization

• Given a large corpus of source code files belonging to a software repository and

a bug report, find a list of source code files ranked based on their relevancy to

the bug report

Source code files

Bug report

Bug
localization

system

Ranked list
of source
code files

Contents

• Motivation / Introduction

• The three generations of IR-based bug localization

• Eight retrieval algorithms selected from the three generations to study

• Bugzbook --- A large, diverse bug localization dataset

• Results

• Conclusion

Why yet another study on bug localization?

• Because previous studies …

• mostly relied only on Java software repositories

• are based on datasets with only few thousand bug reports

• conducted experiments only on very few software projects

• We created Bugzbook --- a new large and diverse bug localization dataset

containing over 20000 bug reports

• These bug reports belong to 29 different software projects

• The projects belong to Java, C/C++ and Python programming languages

We experimented with past bug localization
algorithms on Bugzbook

• We divided the past 15 years of studies in IR-based bug localization into

three generations

• Each generation tells a story of what happened in the field of bug

localization during that generation

• We compiled a list of the prominent papers published in each generation

• From all the three generations we selected eight algorithms and conducted

experiments on Bugzbook dataset to evaluate their relative performances

The three generations of IR-based bug localization
(spanning studies from last 15 years)

1st generation 2nd generation 3rd generation

1st generation [2004 – 2011]

• Most of the early works in bug localization relied on using
traditional BoW (Bag of Words) based IR tools to rank files
based on their relevancy to the bug report

• Tradition BoW IR techniques:

• UM (Unigram Model)

• TFIDF (Term Frequency Inverse Document Frequency)

• DLM (Dirichlet Language Model)

• VSM (Vector Space Model)

• LSI (Latent Semantic Indexing)

• …

2nd generation [2011 – 2016]

• Software-centric information modelled in bug localization systems

• Information derived from:

• bug report history

• version history

• structure of bug reports

• structure of code files

• …

• BugLocator, BLUiR, DHbPd, BRTracer, BLIA, LOBSTER, and Amalgam are some of the

tools developed during this generation

3rd generation [2016 – present]

• Term-term proximity, order and semantic relationships modelled in bug

localization systems

• Proximity: Code files that contain bug report terms in similar proximities as in the bug

report itself are more likely to be relevant to the bug report

• Order: Code files should be ranked higher in the list if they contain bug report terms in the

same order as they appear in the bug report text

• Semantics: In addition to exact matching between terms in the code files and bug report,

terms should also be matched based on semantics

From the three generations we selected eight
retrieval algorithms to study

1. TFIDF (Term Frequency Inverse Document Frequency)

2. DLM (Dirichlet Language Model)

3. BugLocator

4. BLUiR (Bug Localization Using Information Retrieval)

5. MRF-SD (Markov Random Fields – Sequential Dependence)

6. MRF-FD (Markov Random Fields –Full Dependence)

7. PWSM (Per Word Semantic Model)

8. SCOR (Source Code Retrieval with Semantics and Order)

1st generation

2nd generation

3rd generation

1st Generation Tools (Simple BoW Models)

• TFIDF

• works by combining frequencies of query terms in the file (TF) and the inverse
document frequencies of query terms in the corpus (IDF) to determine the relevance
of a file to a query

𝑠𝑐𝑜𝑟𝑒𝑡𝑓𝑖𝑑𝑓 𝑓, 𝑄 ∝ 𝑡𝑓 𝑞𝑖 , 𝑓 ∗ 𝑖𝑑𝑓(𝑞𝑖)

• DLM

• a probabilistic model that estimates a smoothed first order probability distribution of
the query terms in the file to produce the relevance score for a file to a query

𝑠𝑐𝑜𝑟𝑒𝑑𝑙𝑚 𝑓, 𝑄 ∝ 𝑡𝑓 𝑞𝑖 , 𝑓 ∗ 𝑐𝑓(𝑞𝑖)

2nd Generation Tools (Software-centric information)

• BugLocator

• takes into account the history of the past bug reports and leverages bug

reports that have been previously fixed to improve bug localization

• BLUiR

• extracts code entities such as classes, methods, variables, and comments

from code files to help in localizing a buggy file

3rd Generation Tools (Modelling Proximity and Order)

• MRF-SD

• measures the probability distribution of the frequencies of pairs of consecutively
occurring query terms appearing in the file to compute the relevance score for the file
to a query

𝑠𝑐𝑜𝑟𝑒𝑠𝑑 𝑓, 𝑄 ∝ 𝑡𝑓 𝑞𝑖𝑞𝑖+1, 𝑓 ∗ 𝑐𝑓(𝑞𝑖𝑞𝑖+1)

• MRF-FD

• is a term-term dependency model that considers frequencies of all pairs of query
terms appearing in the file to determine the relevance of the file to the query

𝑠𝑐𝑜𝑟𝑒𝑓𝑑 𝑓, 𝑄 ∝ 𝑡𝑓(𝑞𝑖𝑞𝑗, 𝑓) ∗ 𝑐𝑓(𝑞𝑖𝑞𝑗)

3rd Generation Tools (Modeling semantics)

• In order to discuss how to model semantics in retrieval process first we need to

discuss semantic word embeddings

3rd Generation Tools
(word2vec for constructing semantic word embeddings)

word2vec neural network

Millions of
source code

files

Semantic word vectors

SCOR Word Embeddings
https://engineering.purdue.edu/RVL/SCOR_WordEmbeddings/

3rd Generation Tools (Modelling Semantics as in SCOR)

3rd Generation Tools (Modelling Semantics)

• PWSM:
• uses embeddings derived from word2vec algorithm to model term-term contextual

semantic relationships in retrieval process

scorepwsm(f,Q) = α . scoredlm(f,Q) + β . scorepwsm(f,Q)

• SCOR:
• combines MRF based term-term dependency modeling with semantic word

embeddings as made possible by word2vec algorithm to improve bug localization

scorescor(f,Q) = α . scoredlm(f,Q) + β . scoresd(f,Q) +
µ . scorepwsm(f,Q) + Ω . scoreordsm(f,Q)

Components built into each of the eight algorithms

TFIDF DLM BugLocator BLUiR MRF SD MRF FD PWSM SCOR

BoW ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Order ✓ ✓ ✓

Semantics ✓ ✓

Stack Trace ✓ ✓ ✓ ✓

Structure ✓

Bug History ✓

We experimented with these eight algorithms on Bugzbook
(features of Bugzbook dataset)

• Bugzbook contains over 20000 bug reports from 29 projects belonging to Java,

C/C++, and Python projects

• We processed over 4 million source code files belonging to all the 29 projects

• Out of 29 projects, 23 projects belong to Apache community (Ambari, Spark, Camel, …)

• We downloaded Apache bug reports from well-managed Jira platform

• Also present in Bugzbook are bug reports from other large-scale projects (OpenCV, Pandas, …)

• The bug reports for non-Apache projects were downloaded from GitHub

How Bugzbook compare with other datasets?

Dataset Number of projects Number of bug reports

moreBugs 2 ~400

BUGLinks 2 ~4000

iBUGS 3 ~400

Bench4BL 46 ~10000

Bugzbook 29 ~20000

Bugzbook stats
(number of bug reports)

Project #bugs

Ambari 2253

Bigtop 5

Camel 2308

Cassandra 514

CXF 1795

Drill 800

Hbase 2476

Hive 2221

Project #bugs

JCR 457

Karaf 390

Mahout 162

Math 17

OpenNLP 84

PDFBox 1163

PIG 47

SOLR 471

Apache Java projects

Project #bugs

Eclipse 4035

AspectJ 291

Other Java projects

Eclipse and Chrome bug reports taken from BUGLinks dataset
AspectJ bug reports taken from iBUGS dataset

Project #bugs

Chrome 147

OpenCV 8

Pandas 179

Tensorflow 10

C/C++, Python projects

#projects 29

#bugs 21253Total

Project #bugs

Spark 185

Sqoop 201

Tez 177

Tika 183

Wicket 567

WW 87

Zookeeper 20

Bugzbook construction

Gather
raw bug
reports

and code
files

Link bug
reports

with
respective
code files

Match bug
reports

with
respective
versions

Filter raw
bug reports

(remove
duplicates,

etc.)

Manual
verification
of dataset

Download bug reports from
Jira and GitHub, and source

code files from project
archives

Remove bug reports with
duplicate tags. Also, remove
reports that are not tagged

as “bug”.

Use commits to identify
which bugs it fixes. Also,
use modified associated

with the commits as
relevant files for the

respective bug.

Bug reports come
with a tag that tells
which version was
affected by the bug

Verify randomly chosen
bugs for each project.
Check if bug ID, title,

description, fixed files are
correctly recorded in

Bugzbook.

Results on Bugzbook dataset

Highlights of the results

• Experiment 1 (Performance of retrieval algorithms belonging to different generations)

• Results on Java only projects

• Results on C/C++ and Python projects

• Results on all projects

• Experiment 2 (Effect of semantic word embeddings)

• Can we cross-utilize word embeddings across different programming languages?

• Does changing the size of word vectors and the word embedding algorithm affect retrieval?

Highlights of the results (contd.)

• 3rd generation tools are the most effective in terms of retrieval precision

• SCOR word embeddings (trained on Java language) can be used for

searching in C/C++ and Python projects

• The size (500, 1000, 1500 dimensions) and type (word2vec, GloVe, FastText)

of word embeddings do not affect the performance of retrieval

Results for Java projects

SCOR, a third
generation tool,
outperforms all
other algorithms

Results for C/C++ and Python projects

SCOR and MRF SD,
both third generation
tools, outperforms all
other algorithms

Results for all projects

SCOR, a third
generation tool,
outperforms all
other algorithms

Cross-utilization of word embeddings

• SCOR word embeddings were trained on Java-only projects

• The following 5 Java projects present in Bugzbook dataset were not present in the SCOR dataset:

• AspectJ, Bigtop, OpenNLP, PDFBox, and Drill

• Therefore, the word embedding algorithm was not trained on these 5 projects

• However, the bug localization precision on these 5 datasets increases when semantic word

embeddings based retrieval algorithms --- PWSM and SCOR --- are used for retrieval.

• Therefore, the SCOR word embeddings are generic enough to be applied for retrieval in new projects

• We also observe the same results on the following C/C++ and Python projects

• Chrome, OpenCV, Pandas, and Tensorflow

Effect of changing word vector size and word
embedding algorithm

• We observe that the word vector size does not affect the retrieval precision of SCOR when

tested on 4000 bug reports of Eclipse dataset

SCOR500 SCOR1000 SCOR1500

0.3191 0.3204 0.3193

SCOR (word2vec) SCOR (glove) SCOR (fasttext)

0.3204 0.3192 0.3182

SCOR500 means word vectors having 500 dimensions used for retrieval

SCOR (glove) means GloVe word embeddings (size=500) were used for retrieval

• We also trained GloVe and FastText (the two semantic word embedding algorithms that compete with word2vec)
on the same SCOR dataset, and used the resulting word vectors for retrieval with SCOR

• We notice that the change in word embedding algorithm does not affect the retrieval performance of SCOR

Conclusion

• The third generation tools are far superior in performance than the first and

second generation tools

• SCOR semantic word embeddings are very generic:

• They can be used to perform bug localization in those Java projects on word2vec was

not trained on

• Also, they are very effective for bug localization in non-Java projects

• It’s time to merge techniques from 2nd and 3rd generations to develop hybrid

approaches for IR-based bug localization

Thank you …

Questions?

Dataset will be made available at:

https://engineering.purdue.edu/RVL/Bugzbook/

https://engineering.purdue.edu/RVL/Bugzbook/

