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Theory of symmetry-protected two-photon coherence
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In a recent article [X. Lai et al., Phys. Rev. Lett. 133, 033601 (2024)], the coherence time of degenerate
entangled photon pairs (biphotons) generated via backward spontaneous four-wave mixing in a cold atomic
ensemble was shown to be immune to optical loss and dephasing. This finding is crucial for practical applications
in quantum information processing, quantum communication, and networking, where loss is inevitable. However,
in studying the underlying mechanism for this loss- and dephasing-insensitive biphoton coherence time, the
previous article did not take quantum noise into account. In this work, we employ the Heisenberg-Langevin
approach to study this effect and provide a rigorous theoretical proof of the symmetry-protected biphoton
coherence by taking quantum noise into consideration, as compared to the perturbation theory in the interaction
picture.

DOI: 10.1103/gqpg-1nv3

I. INTRODUCTION

Entangled photon pairs with ultranarrow bandwidth and
long coherence time play a crucial role in quantum informa-
tion processing [1–3], distributed quantum sensor networks
[4,5], distributed quantum computing [6], and long-distance
quantum communication [7,8], and have therefore attracted
considerable interest [9–12]. In a traditional scheme, a
biphoton can be generated using spontaneous parametric
down-conversion (SPDC) in a nonlinear crystal [13–17], typ-
ically resulting in a biphoton bandwidth of the order of
terahertz and a coherence time of picoseconds. The coherence
time of a biphoton can be extended close to 1 µs by placing
the nonlinear crystal inside a high-finesse optical cavity [18].
Further increasing the photon-pair coherence time in SPDC
requires optimizing material properties, engineering phase-
matching conditions, and incorporating high-finesse optical
cavities with precise fabrication techniques, which remain
challenging. On the other hand, using near-resonant bipho-
ton generation via spontaneous four-wave mixing (SFWM)
in a cold atomic ensemble [10,19,20], long-coherence-time
biphotons can be guaranteed by reducing the group veloc-
ity (Vg) using electromagnetically induced transparency (EIT)
[21–23]. Narrowband biphoton generation with a coherence
time of 13.4 µs has been demonstrated in the cold atomic
system in free space [11].

In atomic systems, further increasing biphoton coherence
time is primarily limited by the inability to achieve higher
atomic density, as well as atomic loss and dephasing. In
the normal spontaneous four-wave mixing (SFWM) scheme
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[20], the coherence time is constrained by the exponentially
decaying temporal biphoton waveform. This decay profile
is due to photon pairs generated at different regions of the
atomic ensemble experiencing varying levels of loss [20,24].
However, a recent study on narrowband biphotons generated
via a degenerate four-wave mixing scheme has shown that co-
herence time can be preserved by spatial-temporal symmetry
even in the presence of significant atomic loss and dephasing
[24]. These findings overcome one of the crucial limiting
factors, i.e., loss, in achieving long-coherence-time photon
pairs, opening up new possibilities for practical quantum
applications, e.g., long-distance entanglement distribution,
even in the presence of realistic challenges such as loss and
dephasing.

However, previous explanations relied on the simplified
“cartoon” model and a perturbative calculation in the inter-
action picture [24]. The role of quantum noise induced by
loss and dephasing is not discussed. In this work, we employ
the Heisenberg-Langevin approach to comprehensively study
the degenerate backward SFWM process, where Langevin
quantum noise has been rigorously incorporated. This type of
quantum noise naturally emerges from the interaction between
the system and its reservoir in open quantum systems and is
modeled using the input-output formalism. By incorporating
the Langevin quantum noise, we establish a rigorous theoreti-
cal framework and provide a proof of the symmetry-protected
two-photon coherence in the presence of loss and dephasing.

II. HEISENBERG PICTURE

We consider backward-wave biphoton generation from a
uniform nonlinear medium of length L, as shown in Fig. 1(a),
with photon 1 propagating in the −z direction and photon
2 in the +z direction. Both photons experience the same
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FIG. 1. Cartoon picture of symmetry-protected two-photon co-
herence. (a) Backward-wave degenerate biphoton generation with an
identical loss coefficient α for photons 1 and 2, propagating in oppo-
site directions, leads to a two-photon joint probability (coincidence)
amplitude attenuation e−α(L/2+z)e−α(L/2−z) = e−αL , which is indepen-
dent of the photon-pair generation position z. (b) Biphoton coherence
is quantified by measuring the two-photon coincidence amplitude as
a function of the relative time delay τ = t1 − t2 = 2z/Vg, correspond-
ing to the arrival-time difference of photons 1 and 2 at the detectors.
The coincidence amplitude exhibits a rectangular waveform with a
coherence time of 2L/Vg.

absorption loss, characterized by the absorption coefficient
α and slow group velocity Vg � c, where c is the speed of
light in vacuum. A photon pair can be generated at any point
with uniform probability within the medium. Two single-
photon counters are positioned at the two ends of the medium
(z = −L/2 and z = L/2) to detect generated photon pairs.
For paired photons generated at position z, the relative time
difference for photon 1 arriving at z = −L/2 and photon
2 arriving at z = L/2 is τ = t1 − t2 = 2z/Vg, registered as
a coincidence count shown in Fig. 1(b), which displays a
symmetric rectangular-shaped two-photon joint probability
amplitude function ψ (τ ) with a coherence time determined
by 2L/Vg [24], which is twice as long as in the nondegenerate
case (photons 1 and 2 have different frequencies) [20].

The positive-frequency parts of the generated fields are
quantized as

E (+)
1 (z, t ) =

√
2h̄ω0

cε0A
â1(z, t )e−i(ω0t+k0z),

E (+)
2 (z, t ) =

√
2h̄ω0

cε0A
â2(z, t )e−i(ω0t−k0z), (1)

with k0 = ω0/c and A being the single-mode cross-
section area. Under the slowly varying envelope approxima-
tion, the two photon fields are governed by the following
coupled Heisenberg-Langevin equations:

i

[(
∂
∂z − 1

Vg

∂
∂t

)
, 0

0,
(

∂
∂z + 1

Vg

∂
∂t

)][
â1(z, t )

â†
2(z, t )

]
= Ĥ0

[
â1(z, t )

â†
2(z, t )

]

+ i
√

2α

[
f̂1(z, t )

f̂ †
2 (z, t )

]
, (2)

where the effective Hamiltonian is

Ĥ0 =
[

iα κ

κ −iα

]
, (3)

with κ being the (real) nonlinear coupling coefficient, and f̂1,2

and f̂ †
1,2 being the Langevin noise (field) operators [25], which

are introduced due to loss.
Interestingly, the operation on the left side of Eq. (2),

i

[(
∂
∂z − 1

Vg

∂
∂t

)
, 0

0,
(

∂
∂z + 1

Vg

∂
∂t

)], (4)

is invariant under the following two transformations: (1) par-
ity inversion P: z → − z, and (2) time reversal T: complex
conjugation i → −i, and t → − t . The effective Hamiltonian
Ĥ0 in Eq. (3) also follows parity-time (PT) symmetry [25–27].
In conventional photonic systems, balanced gain and loss give
rise to their PT symmetry [28–30]. In the backward degenerate
biphoton generation described in this work, the PT symmetry
effectively “turns” the loss of one mode into “gain” to com-
pensate for the loss in another mode so that the coherence of
the two-photon joint amplitude is protected.

To derive the biphoton joint probability amplitude func-
tion, we take the following Fourier transform:

â1(z, t ) = 1√
2π

∫
â1(z,
 )e−i
 t d
,

â2(z, t ) = 1√
2π

∫
â2(z,
 )ei
 t d
, (5)

where we define â1(z,
 ) ≡ â1(z, ω0 + 
 ) and â2(z,
 ) ≡
â2(z, ω0 − 
 ), fulfilling energy conservation ω1 + ω2 = 2ω0.
Then, Eq. (2) reduces to

i
∂

∂z

[
â1(z,
 )

â†
2(z,
 )

]
= Ĥ

[
â1(z,
 )

â†
2(z,
 )

]
+ i

√
2α

[
f̂1(z,
 )

f̂ †
2 (z,
 )

]
, (6)

where the modified Hamiltonian is

Ĥ =
[



Vg

+ iα κ

κ −

Vg

− iα

]
, (7)

and f̂1(z,
 ) and f̂ †
2 (z,
 ) are the corresponding Fourier

components of the Langevin field operators.
With vacuum state input, the photon and Langevin field

operators satisfy the following correlations:

〈
â†

m(z,
1)ân(z,
2)
〉 = 0,〈

âm(z,
1)â†
n(z,
2)

〉 = δmnδ(
1 − 
2),

〈âm(z,
1)ân(z,
2)〉 = 〈
â†

m(z,
1)â†
n(z,
2)

〉 = 0,〈
f̂ †
m(z1,
1) f̂n(z2,
2)

〉 = 0,〈
f̂m(z1,
1) f̂ †

n (z2,
2)
〉 = δmnδ(
1 − 
2)δ(z1 − z2),〈

f̂m(z1,
1) f̂n(z2,
2)
〉 = 〈

f̂ †
m(z1,
1) f̂ †

n (z2,
2)
〉 = 0.

(8)
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From Eq. (6), we obtain solutions for â1(−L/2) and â2(L/2) [25] (here we omit the variable 
 for simplification):[
â1(−L/2)
â†

2(L/2)

]
=

[
A B
C D

][
â1(L/2)

â†
2(−L/2)

]
+

√
2α

[−A 0
−C 1

] ∫ L/2

−L/2

[
Ā1(z) B̄1(z)
C̄1(z) D̄1(z)

][
f̂1(z)
f̂ †
2 (z)

]
dz, (9)

where A = 1
Ā(L) , B = − B̄(L)

Ā(L) , C = C̄(L)
Ā(L) , D = D̄(L) − B̄(L)C̄(L)

Ā(L) ,

e−iĤL ≡ [Ā B̄
C̄ D̄], and e−iĤ(L/2−z) ≡ [Ā1(z) B̄1(z)

C̄1(z) D̄1(z)].
The two-photon Glauber correlation can be computed

by [31]

G2(τ )=〈â†
2(L/2, t2)â†

1(−L/2, t1)â1(−L/2, t1)â2(L/2, t2)〉
= 〈â†

2(L/2, t2)â†
1(−L/2, t1)〉〈â1(−L/2, t1)â2(L/2, t2)〉

+〈â†
2(L/2, t2)â1(−L/2, t1)〉〈â†

1(−L/2, t1)â2(L/2, t2)〉
+〈â†

1(−L/2, t1)â1(−L/2, t1)〉〈â†
2(L/2, t2)â2(L/2, t2)〉

= |ψ (τ )|2 + |ψ ′(τ )|2 + R1R2, (10)

where τ = t1 − t2. Here, we have applied the Gaussian mo-
ment theorem to decompose the fourth fields correlations to
the sum of the products of second-order field correlations
(see the supplemental material of Ref. [25]). One can show

that with our solution in Eq. (9), the second term in Eq. (10)
vanishes, i.e., ψ ′(τ ) = 0. R1 and R2 are the photon generation
rates for field 1 and field 2, respectively, whose products
contribute to the constant background accidental coincidence
in G(2)(τ ). The biphoton temporal wave function, or the two-
photon joint probability amplitude, is determined by

ψ (τ ) = 〈â1(−L/2, t1)â2(L/2, t2)〉

= 1

2π

∫∫
d
1d
2e−i
1t1 ei
2t2

× 〈â1(−L/2,
1)â2(L/2,
2)〉

= 1

2π

∫
d
e−i
τφ(
 ), (11)

where

φ(
 ) = B(
 )D∗(
 )︸ ︷︷ ︸
φ0(
 )

−2αA(
 )
∫ L/2

−L/2
B̄1(z,
 )

[
D̄∗

1(z,
 ) − C∗(
 )B̄∗
1(z,
 )

]
dz︸ ︷︷ ︸

φ1(
 )

.
(12)

The terms in Eq. (12) are

φ0(
 ) = iκη∗ sinh(Lη)

|η cosh(Lη) + β sinh(Lη)|2 , (13)

φ1(
 ) = i2κα|η|2[cosh(Lη) − cosh(Lη∗ )]

(η2 − η∗2)|η cosh(Lη) + β sinh(Lη)|2

+ i2καβ∗[η∗ sinh(Lη) − η sinh(Lη∗ )]

(η2 − η∗2)|η cosh(Lη) + β sinh(Lη)|2 , (14)

with η =
√

β2 − κ2 and β = α − i
/Vg. For the biphoton
generation with small parameter gain, we take the approxi-
mation η =

√
β2 − κ2 
 β, which leads to

φ(
 ) 
 iκe−(β+β∗ )L(eβL − eβ∗L )

β − β∗

= iκLe−αLsinc(
L/Vg). (15)

The biphoton wave function in Eq. (11) becomes

ψ (τ ) = i

2
κVg e−αL �(τ ; −L/Vg, L/Vg), (16)

where � is a unit rectangular function defined as
� = 1 for τ ∈ [−L/Vg, L/Vg], and � = 0 otherwise. Thus
we analytically derive the biphoton wave function from the
Heisenberg-Langevin equations, providing a rigorous theoret-
ical foundation for the results presented in Ref. [24].

However, under the same approximation, without Langevin
field, we have

φ0(
 ) 
 iκLe−2αLsinc(
L/Vg + iαL), (17)

and its Fourier transformation is

ψ0(τ ) = e−αLe−αVgτψ (τ ), (18)

which shows an exponentially decaying waveform with the
presence of loss. Correspondingly, the Langevin field con-
tributes to the wave function with

ψ1(τ ) = (
1 − e−αLe−αVgτ

)
ψ (τ ). (19)

Our analysis reveals that within the Heisenberg-Langevin
framework, the Langevin field operators play a critical role not
only in preserving the commutation relations of the generated
biphoton fields during propagation and evolution, but also
in significantly contributing to the waveform of the bipho-
ton joint probability amplitude. Despite the presence of loss,
which acts as a common attenuation factor on the entire
waveform, the two-photon coherence time, determined by the
relative group delay 2L/Vg, is preserved.

III. INTERACTION PICTURE

In the above Heisenberg picture, the state remains in
the vacuum while the field operators evolve over time and
space, and the biphoton wave function is computed from the
field correlation in Eq. (11). In this section, we derive the
biphoton state and wave function from the interaction pic-
ture, where the two counterpropagating fields 1 and 2 with
symmetric loss are represented by their complex wave num-
bers k1 = −(k0 + 
1/Vg + iα) and k2 = k0 + 
2/Vg + iα.
The generated quantized fields illustrated in Fig. 1 thus can be
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expressed as

â1(z, t ) = eαz

√
2π

∫
d
1â1(
1)e−i
1(t+z/Vg),

â2(z, t ) = e−αz

√
2π

∫
d
2â2(
2)e−i
2(t−z/Vg), (20)

where the annihilation operators in frequency domain
satisfy the commutation relation [â1(
 ), â†

1(
 ′)] =
[â2(
 ), â†

2(
 ′)] = δ(
 − 
 ′). The interaction Hamiltonian
for the SFWM process can be described as [20]

ĤI = −cε0A

2ω0

∫ L/2

−L/2
dz κE (−)

2 (z, t )E (−)
1 (z, t ) + H.c.

= −h̄κ

∫ L/2

−L/2
dz â†

2(z, t )â†
1(z, t ) + H.c. (21)

As shown in Eq. (20), the symmetric loss-induced factors eαz

and e−αz cancel in the product â†
2(z, t )â†

1(z, t ). As a result, the
interaction Hamiltonian becomes loss independent,

ĤI = − h̄κL

2π

∫∫
d
1d
2ei(
1+
2 )t sinc

[
(
1 − 
2)L

2Vg

]
× â†

2(
2)â†
1(
1). (22)

Using first-order perturbation theory, we obtain the two-
photon state,

|�〉 = − i

h̄

∫ +∞

−∞
dtĤI (t )|0〉

= iκL
∫∫

d
1d
2 sinc

[
(
1 − 
2)L

2Vg

]
× δ(
1 + 
2)â†

2(
2)â†
1(
1)|0〉

= iκL
∫

d
 sinc
(

L/Vg

)
â†

2(−
 )â†
1(
 )|0〉, (23)

where the time integration results in the Dirac δ function,∫
ei(
1+
2 )t dt = 2πδ(
1 + 
2), indicating energy conserva-

tion 
1 = −
2 = 
 .
The two-photon wave function, defined as the biphoton

joint probability amplitude [20], is

ψ (τ ) = 〈0|â1(t1,−L/2)â2(t2, L/2)|�〉

= iκL

2π
e−αL

∫
d
 sinc(
L/Vg)e−i
τ ,

= i

2
κVge−αL �(τ ; −L/Vg, L/Vg), (24)

which is the same result as Eq. (16) obtained in the Heisenberg
picture.

IV. COMPARISON OF BIPHOTON WAVE FUNCTION
IN TWO PICTURES

In both the Heisenberg and interaction pictures, the
rectangular-shaped biphoton waveform derived in Eqs. (16)
and (24) relies on the small-parametric gain approximation
κ � |β|. This assumption can break down for large nonlinear
coupling κ . With large κ , the perturbative result from the
interaction picture to the first order is no longer an accurate

FIG. 2. Numerical simulations of degenerate biphoton coinci-
dence in the interaction picture (I) and Heisenberg picture (H).
Common parameters: loss α(
 = 0)L = 0.51 and group veloc-
ity Vg(
 = 0) = 2.4 × 104 m/s. (a),(c),(e) The left column shows
simulations with constant κ , α, and Vg, while (b),(d),(f) the right
column corresponds to simulations based on realistic experimental
conditions [24] with frequency-dependent κ (
 ), α(
 ), and Vg(
 ).
Nonlinear coupling is varied: (a),(b) κ (
 = 0)L = 0.03; (c),(d)
κ (
 = 0)L = 0.87; (e),(f) κ (
 = 0)L = 1.40.

description for photon-pair generation, and the Heisenberg
picture method is preferred. To assess the impact of varying κ ,
we perform Heisenberg picture simulations without approxi-
mating η =

√
β2 − κ2 and plot the results based on Eq. (12),

comparing them with those obtained using the interaction
picture formalism [Eq. (24)].

Under the condition κ � α, and αL = α(
 = 0)L = 0.51
and Vg = Vg(
 = 0) = 2.4 × 104 m/s, both pictures yield a
rectangular biphoton waveform, as shown in Fig. 2(a), con-
sistent with the analytic results from Secs. II and III. As κ

increases, the Heisenberg picture shows clear deviations from
the rectangular waveform. However, the interaction picture
always produces a rectangular shape, even when it no longer
accurately represents the true waveform—this discrepancy is
visible in Figs. 2(c) and 2(e).

In realistic experimental systems, the parameters κ (
 ),
α(
 ), and Vg(
 ) vary with frequency. We numerically sim-
ulate biphoton generation in a cold 87Rb atomic ensemble
[24] and observe that the interaction picture with perturbation
increasingly deviates from the actual waveform as κ grows,
while the Heisenberg picture continues to capture the cor-
rect dynamics. This behavior is illustrated in Figs. 2(b), 2(d)
and 2(f).
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FIG. 3. Impact of Langevin term on the biphoton waveform in
the Heisenberg picture. Common parameters: nonlinear coupling
κ (
 = 0)L = 0.03 and group velocity Vg(
 = 0) = 2.4 × 104 m/s.
(a),(c),(e) The left column shows simulations with constant κ ,
α, and Vg, while (b),(d),(f) the right column corresponds to sim-
ulations based on realistic SFWM experimental conditions [24]
with frequency-dependent κ (
 ), α(
 ), and Vg(
 ). Loss is var-
ied: (a),(b) α(
 = 0)L = 0.13; (c),(d) α(
 = 0)L = 0.51; (e),(f)
α(
 = 0)L = 1.26.

V. ROLE OF LANGEVIN FIELDS

In the Heisenberg picture, as shown in Sec. II, the Langevin
field operators play a critical role in the waveform of biphoton
joint probability amplitude. If the contribution from Langevin
field operators is not taken into account, the biphoton wave
function ψ0(τ ) exhibits exponential decay due to system loss,
as shown in Eq. (18). The Langevin field compensates for this
decay and recovers the two-photon coherence, as revealed by
Eq. (16). In this section, we perform numerical simulations to
illustrate the critical role of the Langevin field in preserving
the coherence time by varying the loss α.

Similarly to Sec. IV, we simulate the following two cases:
(1) κ , α, and Vg are constants, and (2) they are frequency de-
pendent in realistic SFWM experimental conditions [24]. As
shown in Fig. 3, for both cases, ψ0(τ ), i.e., the biphoton wave
function without taking the Langevin field into consideration,
shows reduced coherence time as loss increases (red dashed
lines). However, this effect is compensated for by ψ1(τ ), i.e.,
the Langevin field contribution to the biphoton wave function
(blue dashed lines). Therefore, the overall coherence in bipho-
ton wave function ψ (τ ) is preserved, as depicted by black
solid lines.

Regardless of the loss, the Langevin field consistently
compensates for the loss-induced decoherence, acting as a
“restoring force” that counteracts the effects of loss and

preserves the symmetry and correlation properties of the gen-
erated photon pairs. However, this compensation comes at
the cost of a reduced biphoton generation rate and signal-to-
noise ratio, quantified by |ψ (τ )|2/(R1R2), where R1 and R2

denote the photon generation rates of photon 1 and photon 2,
respectively.

VI. CONCLUSION

In summary, we have established a rigorous theoretical
framework for symmetry-protected coherence in degener-
ate backward biphoton generation, analyzed in both the
Heisenberg and interaction pictures. In the regime of small
parametric coupling κ , both approaches yield the same ana-
lytical expression for a rectangular-shaped biphoton temporal
wave function, whose coherence time, 2L/Vg, is preserved
against loss and dephasing by space-time symmetry and de-
pends only on the length of the medium and the group
velocity. The Langevin field plays a significant role in bipho-
ton coherence time preservation, which acts as a “restoring
force” that counteracts the effects of loss and preserves the
waveform of the generated photon pairs.

In the regime of strong parametric coupling, the
Heisenberg-Langevin formalism remains valid and captures
the effects of multiphoton processes, which lead to deviations
from the ideal rectangular waveform. In contrast, the first-
order perturbation theory in the interaction picture becomes
inadequate for describing the multiphoton state, as it neglects
higher-order contributions arising from multiple photon-pair
generation. To accurately model higher-order processes in
four-wave mixing, one might consider extending perturbation
theory to higher orders using the Dyson series (a Taylor-like
expansion). However, this approach becomes inadequate in
the strong-pump, nonperturbative regime [32–34]. In such
cases, alternative methods such as the Magnus expansion,
used in Ref. [35], can better capture the higher-order effects.
Nevertheless, the application of the Magnus expansion is be-
yond the scope of this article.

In the backward degenerate biphoton generation, parity-
time symmetry is inherent in the system Hamiltonian [Eq. (3)]
due to the backward propagation of field 1, which effectively
turns the “loss” into “gain” to compensate for the loss in
field 2. However, the underlying physics explaining how this
symmetry may result in a coherence-protected biphoton wave
function has yet to be fully explored.
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