
SPECTROSCOPY OF ULTRACOLD LITHIUM-RUBIDIUM MOLECULES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ian Stevenson

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2018

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Dan Elliot, Chair

School of Electrical and Computer Engineering

Dr. Yong Chen

School of Electrical and Computer Engineering

Dr. Chris Greene

Department of Physics and Astronomy

Dr. Francis Robicheaux

Department of Physics and Astronomy

Approved by:

Dr. Venkataramanan Balakrishnan

Head of the School of Electrical and Computer Engineering



iii

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Quantum simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Coherent imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 JILA’s path to ultracold molecules . . . . . . . . . . . . . . . . . . . . . . 5

1.5 DeMille’s approach to ultracold molecules . . . . . . . . . . . . . . . . . . 6

1.6 Our Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Dual Species MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 MOTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Extended Cavity Diode Laser . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Saturated Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Acousto-Optic-Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Rb MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Li MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Cohabitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Spectroscopic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Photoassociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 REMPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Depletion Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Short Range PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 2(1) - 4(1) Photoassociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Resonant Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



iv

Page

4.2 Relative Decay Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Decay from 4(1) PA resonance . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Spectroscopy of the d 3Π state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Spectroscopy details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 RE2PI Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Finding d 3Π v = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Spectroscopy of the C 1Σ+, state and A− b complex . . . . . . . . . . . . . . . 61

6.1 C 1Σ+ State Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 A 1Σ+ - b 3Π0+ Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Spectroscopy Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Optical Phase Locked Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1 Optical phased locked loop history . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Noise considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 Method Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.4 Phase Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.5 Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.6 Loop Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.7 STIRAP Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.2 Potential Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.3 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.3.1 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3.2 Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.3.3 Adaptive Recombination Methods . . . . . . . . . . . . . . . . . . . 97

8.3.4 Local Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.3.5 Multi-objective genetic algorithms . . . . . . . . . . . . . . . . . . 106

8.4 Lithium-rubidium X 1Σ+ potential . . . . . . . . . . . . . . . . . . . . . 111

8.5 Genetic Algorithm Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 114

9 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



v

Page

9.1 Experiment Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.2 Continuum STIRAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9.3 Unitary Rb BEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A Notation and Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B Evaporative Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.1 Trap loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.2 Absorption imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.3 Evaporative Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.4 Sympathetic Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C Circuit Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

D Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

D.1 Micro-controller code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

E Femtosecond lasers interacting with ultracold atoms . . . . . . . . . . . . . . . 174

E.1 Femtosecond Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

E.2 Molecular transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

E.3 Atomic transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

E.4 fs ionization probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

E.5 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



vi

ABSTRACT

Ian Stevenson Ph.D., Purdue University, May 2018. Spectroscopy of Ultracold Lithium-
Rubidium Molecules. Major Professor: Dan Elliott.

I present spectroscopic data on ultracold lithium-rubidium molecules in a dual species

magneto-optical-trap in order to find suitable intermediate states to transfer population

to the rotational, vibrational and electronic ground state via a stimulated Raman process.

First, I improved the accuracy of the energetic location of the ground state by two orders

of magnitude using photoassociation as a spectroscopic tool to measure the energy of

bound states relative to the scattering continuum. Second, we studied the d 3Π -D 1Π and

A 1Σ+ - b 3Π0+ excited electronic manifolds with a combination of resonantly-enhanced-

multi-photon-ionization and depletion spectroscopy finding suitable singlet-triplet mixed

states to use in the Raman transfer scheme. Finally, I demonstrate robust optical phase

locked loops to maintain the coherence between the two lasers required for the Raman

process.
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1. INTRODUCTION

Laser cooling of atoms has been an active area of research since it was conceived. Re-

searchers have continued in the never ending search for colder, denser atomic clouds

starting from optical molasses, then magneto-optical-traps (MOT) [1] and finally Bose-

Einstein condensates (BEC) [2]. The track for molecules has been much less smooth.

Direct laser cooling of molecules is impossible for all but a select few, like SrF [3], and

other techniques like buffer gas cooling [4] or electrostatic traps [5] struggle to reach even

fairly modest temperatures like 10 mK. For a select, but very useful class of diatomic

molecules, researchers discovered that they can cool the individual atoms that make the

molecule and then form the molecule at an ultracold temperature. These molecules are

of the form XY, where X,Y∈[Li,Na,K,Rb,Cs], called bi-alkali’s. Homo-nuclear bi-alkali’s

were first studied because it is simpler to only trap one species. There are two main tech-

niques to form these molecules: photoassociation (PA) and magneto-association (MA).

The earliest experiments in bi-alkali’s consisted of using PA to study Na2 [6], Cs2 [7]

and Rb2 [8]. Since then, researchers have discovered that MA is often superior to PA

because MA creates all molecules in one quantum state whereas PA populates a spread

of states in all degrees of freedom, including rotation, vibration and hyperfine. In the

past ten years, interest shifted to hetero-nuclear molecules like KRb [9, 10], LiCs [11],

RbCs [12,13], NaCs [14] and LiRb (studied here).

The advantage hetero-nuclear molecules offer is that they have a non-zero electric

dipole moment in their lowest electronic state. The electric dipole moment is a funda-

mental difference between hetero-nuclear bi-alkali’s and atoms, which provides a long

range interaction between trapped hetero-nuclear molecules and opens the door for new

physics [15–18]. There are strategies to induce long range interactions in trapped atomic

systems like atom-in-cavity experiments and through the use of magnetic atoms. Mag-

netic atom experiments like those in Dysprosium [19], Erbium and Chromium [20, 21]

have had success in creating dipolar BECs and realizing exotic states of matter [22].
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However, the magnetic interaction in these atoms is weak compared to the electric dipole

interaction in molecules.

Fig. 1.1. Using trapped electric dipoles as qubits, borrowed from
Ref. [23]. The blue arrows represent the dipoles, physically a diatomic
polar molecule (like LiRb) in the ground state. The black bars are the
electrodes ∼ 1 cm apart. The red trace represents the 1-D optical lattice
potential.

1.1 Quantum computing

Much of the interest in hetero-nuclear bi-alkali’s was kicked off by a proposal from

DeMille in 2002 that provided a method to use a system of trapped electric dipoles

as a quantum computer [23]. This is shown graphically in Fig. 1.1 and the simplicity of

DeMille’s scheme is to be appreciated. His idea is to trap a large number of electric dipoles

(hetero-nuclear bi-alkali’s) in a one-dimensional (1-D) optical lattice. These dipoles form

his qubits with |0〉 being dipole aligned with the DC field and |1〉 being dipole anti-

aligned. A qubit is a two-state quantum system to be used for quantum computing.

The electric field provided by his plates has a few functions. First it induces the dipole

moment, second it provides the lab frame to distinguish |0〉 and |1〉 and finally, it has a

gradient along the trap direction which DC Stark-shifts the electric dipoles so that the

transition energy E|0〉→|1〉 is unique for each position in the trap. The Hamiltonian of a

molecule at xa is

Ha = Hint − ~da · ~Ea where ~Ea = ~Eext(xa) + ~Eint(xa). (1.1)
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The two electric field components are ~Eext = [E0 + xa
∂E
∂x

]ẑ and ~Eint =
∑

b 6=a
− ~db

|xa−xb|3

(~da is the dipole moment of qubit a). Selecting E0ẑ so that ~Eext � ~Eint causes DC

Stark shifts by the field plates to dominate over shifts by nearby dipoles. This choice

protects the transition energy at each lattice site from being shifted too significantly by

neighboring dipole-dipole interactions. The array of qubits can then be set to an arbitrary

internal state by concocting a series of RF pulses. Further, the small modification of the

exact transition energy at each site by the dipole-dipole interaction with its neighbors

modifies the Rabi frequency leading to entanglement. From here a combination of long,

cNOT operation pulses and short, single bit changing pulses can turn this system into a

quantum computer. Of course, this proposal looks very good on paper, but in practice it

has been very difficult to implement. At almost every step, the difficulty is in producing

the long-lived 1-D optical lattice of polar molecules.

1.2 Quantum simulator

As demonstrated by the KRb experiment at JILA [24], dipolar molecules can be used

to simulate Hamiltonians. In this example, they simulated the spin 1/2 lattice model

with rovibronic ground state KRb molecules in a 3D optical lattice. The interaction

Hamiltonian is

H =
J⊥
2

∑
i>j

Vdd(~ri − ~rj)(S
+
i S
−
j + S−i S

+
j ) (1.2)

where Vdd(~ri − ~rj) =
(1−3cos2(Θij))

|~ri−~rj |3 is the dipole-dipole interaction energy, J⊥ = − d2
↑↓

4πε0a3 is

the tunneling energy cost, d↑↓ = 〈↓ |~d| ↑〉 is the spin-exchange dipole moment, a is the

lattice constant, and Θij is the angle between position vectors of the two dipoles. The

spin 1/2 system will interact through spin-spin interactions leading to physics like spin

exchange. In the JILA model, the dipole moment acts as the spin and the molecules

interact through the dipole-dipole interaction. This leads to dipole exchange interactions

which are very similar to spin-exchange mathematically. This is shown graphically in

Fig. 1.2. The JILA team was able to see basic exchange interactions, and as the filling

factors increase, so do the range of possible model systems [25]. Quantum simulators are

a quantum computer that only solve one class of problems and in this case, Hubbard

models. As work on more classical realizations of quantum computing involving qubits
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have stalled because of their complexity, quantum simulators have received increased

attention across the ultracold community [26].

Fig. 1.2. Polar molecules are loaded into a deep 3D lattice, borrowed
from Ref. [24]. Blue and red represent different rotational states, and J⊥
is the spin - exchange interaction energy. The JILA KRb team realized
this model in 2013 and observed spin oscillations around 50 Hz.

1.3 Coherent imaging

One final experiment that can be done with hetero-nuclear molecules is coherent

imaging of rotational wavefunctions. Specifically, if we put the molecule in a state like

|Ψ〉 = c1(t)|0〉+ c2(t)|1〉, (1.3)

we can take a time resolved picture of the wavefunction where |0〉 is some molecular state

with vibrational quantum number v, hyperfine quantum number F , projection onto the

lab axis mF and rotational quantum number J=0 while state |1〉 has the same v, F ,

and mF but J=1. c1(t) and c2(t) are the time evolving constants for this superposition

which will have angular frequency ω = E1−E0

~ . To coherently image the wavefunctions, an

intense laser pulse needs to arrive at t0+ 2πn
ω

for each repetition of the experiment and over

a large number of repetitions the probability distribution of the electronic wavefunction

at t0 can be recovered. This type of experiment could also be done for vibrational

superposition states though the experimental feasibility will be determined by ω, which

will be several orders of magnitude larger.
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Species Dipole Moment Reactive Species Dipole Moment Reactive

(Debye) (Debye)

LiNa [28] 0.6 Y NaRb [29] 3.3 N

LiK 3.6 Y NaCs 4.6 N

LiRb 4.1 Y KRb [9] 0.6 Y

LiCs 5.5 Y KCs 1.9 N

NaK [30] 2.8 N RbCs [31] 1.2 N

Table 1.1.
Summary of ultracold bi-alkali experiments following the JILA path. The
dipole moments were calculated by Ref. [32], and chemical stability was
calculated by Ref. [33].

1.4 JILA’s path to ultracold molecules

The most successful method for producing dense ultracold molecules comes out of

Jun Ye’s group at JILA [9, 27]. Their experimental sequence is as follows. First, load a

dual species magneto-optical trap. Sacrifices on each specie’s density and temperature

will be made to ensure both species can be trapped. Next, load an optical dipole from

the MOTs. In the dipole trap the atoms are evaporatively cooled until they both reach

degeneracy. To form the molecules, they use a fast ramp of the interspecies scattering

length through a Feshbach resonance which forms molecules in the least bound triplet

state. Finally, a pair of laser pulses transfers the loosely bound molecules to the ground

state through a stimulated Raman process called STIRAP.

As seen in Table 1.1, a number of bi-alkali teams have implemented the JILA approach

to ultracold molecule production. Additionally, all of these experiments seek to solve the

biggest problem with the JILA KRb experiment. As discovered in 2008 [9], the KRb

molecules only lived in the dipole trap for a fraction of a second before being consumed

by chemical reactions of the form

AB + AB → A2 +B2, (1.4)

where A and B are the two atomic species. For KRb and all bi-alkali’s containing Li, the

reaction in Eq. (1.4) is exothermic [33] and will rapidly proceed at ultracold temperatures.
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For all other bi-alkali’s, the reaction is endothermic [33] and they are said to be chemically

stable. JILA’s solution to this problem is to isolate the molecules from one-another in

a deep three dimensional optical lattice. Interestingly, reactive molecules versus non-

reactive molecules maybe a distinction without reason as evidenced by recent work in

NaRb [34] (at least for bosons).

1.5 DeMille’s approach to ultracold molecules

The latest approach to ultracold molecules comes out of David DeMille’s lab at Yale.

His idea is that, although most hetero-nuclear diatomic molecules cannot be laser cooled,

a few can be. The condition for laser cooling is that the molecule needs an excited state

that mostly decays back to the ground state, which is called a (nearly) closed transition.

A closed or cycling transition occurs when spontaneous decay from the excited state

is exclusively to the initial state. Compared to atoms, molecules have two additional

degrees of freedom, nuclear vibration and rotation, which makes finding truly closed

transitions impossible (as there are no selection rules for vibration) and finding nearly

closed transitions tricky. However, if the first excited state potential is close enough

in shape to the ground potential, nearly closed transitions can happen. DeMille has

since discovered that SrF fits into this class. However, the transition is only closed to

something like 105 scattering events [35] before the molecules are lost, and this isn’t

enough to trap the molecules starting from room temperature. To remedy this problem,

he cools the molecules with a He buffer gas first, getting the temperature down to about

3 K. The molecules are shot out of the buffer gas cell in a molecular beam. The beam

is slowed and trapped in a magneto-optical-trap. Currently, his team is able to trap

around 104 molecules at roughly 1 mK [36]. While impressive, the cost in this approach

is the fantastic complexity of this experiment. It takes 12 lasers to return population to

the main cooling transition [3]. The buffer gas cell is extraordinarily tricky. To prevent

dark state formation, large magnetic fields and laser polarizations need to oscillate at

1 MHz [3]. And his next step, to sympathetically cool molecules with atoms [37], is

untested and fraught with peril from chemical reactions. Nevertheless, DeMille’s success

has inspired a host of competitors in CaF [38,39], BaF [40], and YO [41].
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Our LiRb experiment Data exists

Dual species MOT X X

Conservative trap and cool X

Interspecies Feshbach resonance X

Transfer to ground state with STIRAP

Table 1.2.
Summary of prior work in LiRb on implementing the JILA approach
to ultracold molecule formation. Data on LiRb interspecies Feshbach
resonances can be found in Ref. [42].

1.6 Our Challenge

Our long term goal for the lithium-rubidium (LiRb) experiment is to create a dense

cloud of ultracold molecules in the ground state. The cloud could then be used to realize

exotic states of matter or be used as the qubits in a quantum computer. As seen in

Table 1.2, there exists data [42] or examples [43] for all of the steps in the JILA approach

for LiRb except for the stimulated Raman transfer. We need a measurement of the

ground state well depth and data on mixed states to provide a path for an adiabatic

transfer of weakly bound molecules into the ground state. Our spectroscopic work on

establishing the depth of the LiRb ground state can be found in Chapter 4, and our

work on finding suitable pathways for the stimulated Raman transfer can be found in

Chapter 5 and Chapter 6. Additionally, phase coherence is required between the two

lasers used in the STIRAP sequence and our work on phase locking lasers can be found

in Chapter 7
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2. DUAL SPECIES MOT

Magneto-optical-traps (MOTs) are a staple of ultracold atom experiments because they

are easy to implement and incredibly useful. They reliably trap 108 atoms at under 500

µK. In this thesis, most of the work has been done on LiRb molecules formed out of a pair

of spatially overlapped MOTs, one for each species. This chapter outlines the operating

principles of these MOTs; how we generate the laser light for each trap; and the details

of the vacuum system in which the MOTs live.

The students before me put together the original dual species MOT. I have left in

place the vacuum system (as changing that is difficult and time consuming), but I have

modified the MOT setup. The most important change is that I replaced a traveling wave

electro-optic-modulator (EOM) that produced the Li repump with a resonant EOM. The

original EOM was driven by nearly 10 W of RF power which caused thermal drifts in

the beam alignment. Additionally, I changed how we generate the RF drives for the

Rb acousto-optic-modulators (AOMs). Previously, we had a monolithic printed-circuit-

board (PCB) that produced all 8 RF drives for the experiment. Unfortunately, some of

the components failed and were impossible to replace. The smaller board I designed both

solves this issue (as replacing it only replaces one or two RF drive chains) and it helps

reduce lab clutter which is a real problem for experiments of this size.

2.1 MOTs

MOTs work off the exchange of momentum between atoms and photons. They bring

atoms from a temperature of tens of K down to around 1 mK which requires millions of

atom-photon scattering events inside a closed transition. Luckily, all alkali atoms have

closed J → J + 1 transitions on their D2 lines (where J is the total angular momenta of

the atom). We will need to add a repump laser because the trapping lasers are not perfect

and can accidentally excite into hyperfine states outside of the cycling transition. The

atoms will gain or lose momentum when interacting with the laser because the momentum
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Fig. 2.1. Conceptual model of a 1D MOT. Drift out of the center brings
the atom into resonance with the σ+ or σ− polarized light which applies
radiation pressure forcing the atom back to the MOT center, adapted
from Ref. [44].

kick from each laser photon will be in the direction of laser propagation while spontaneous

emission back to the initial state will, on average, net a zero momentum change. In

this scenario, the atoms will gain momentum in the direction of laser propagation on

average. By picking lasers red detuned from the atomic lines in a counter-propagating

geometry, the atoms will interact more strongly with the laser against which they are

moving because of the Doppler effect and always slow down. We form an optical molasses

by picking the lasers to have circular polarization, thereby driving the mF → mF + 1

transition which dodges Zeeman dark states. The molasses cools the atoms, but does not

trap them.

To get trapping it is necessary to introduce a magnetic field gradient d ~B
dz

. This creates

a position dependent Zeeman splitting in sub-levels of the atom, shown in Fig. 2.1. Now

the atoms will always be pushed back to the magnetic field zero-crossing, in addition to

being slow moving because of the molasses. Experimentally it is very easy to realize a

~B field that has a linear gradient with a pair of anti-Helmhotz coils. True atom cooling

involves a 3-D picture with six trapping beams counter propagating in each independent

direction.
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As MOTs and flourescence work on atoms scattering photons, it is very useful to be

able to estimate the photon scattering rate. Ref. [45] provides a method to calculate the

scattering rate of laser photons by an atom as

Rsc =
Γ

2

(I/Isat)

1 + 4(∆/Γ)2 + (I/Isat)
, (2.1)

where Γ is the natural linewidth of the transition, I is the laser intensity, Isat is the

saturation intensity of the atomic transition and ∆ is the detuning.

2.2 Extended Cavity Diode Laser

To create the laser light for our MOTs, we use three extended cavity diode lasers

(ECDLs). An ECDL is formed by carefully isolating a Fabry-Perot diode laser and

applying optical feedback. An ECDL schematic is shown in Fig. 2.2 (a). These semi-

conductor Fabry-Perot laser diodes are very susceptible to optical feedback and will try

to follow the frequency of any light sent to them. We exploit this fact to stabilize and

Fig. 2.2. (a) An extended cavity diode laser. Optical feedback from the
grating forces the laser into single mode operation controlled by the dis-
tance between the grating and diode. The grating is chosen for Littrow
angle close to 45o and first order diffraction of around 20%. (b) Beat-note
between an ECDL and one tooth of a frequency comb. Because the fre-
quency comb can be treated as an infinitely narrow frequency source, the
FWHM of the beat-note reveals the linewidth of the ECDL to be around
1 MHz (details on beat-note production can be found in Chapter 7).
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control their wavelength. The extended cavity is formed between the diode back face

and a grating which sends back a small amount of light, and sets the wavelength of the

laser. We mount the laser diode in a collimation tube (Thorlabs model LT230P-B) and

set the adjustable lens to form a collimated beam on the output. We diffract the colli-

mation tube output off a holographic grating (Thorlabs model GH13-18V) (The grating

needs to be chosen for the laser at hand. This grating works well for lasers near 780 nm

wavelength, as it reflects back about 20% of the light at nearly a 45◦ angle.), and send

the first order diffraction back to the laser diode. The Littrow angle for a grating can be

approximated by

2a sin(θL) = mλD, (2.2)

where a is the grating period, θL is the Littrow angle, m is the diffraction order (usually

1), and λD is the laser wavelength. Usually, the grating is set 2 - 3 cm away from the

diode and mounted with a PZT (MMech model AE0203D04) in its kinematic-adjuster

(Thorlabs model KS05) for fine cavity length adjustment. The zeroth order diffraction

is used as the ECDL output.

To maintain single mode operation, we also carefully control the diode temperature

and current. We use commercial temperature controllers (Thorlabs model TED200C

or TED8020) with a temperature sensor (AD590) mounted near the collimation tube

and a thermo-electric-cooler (CUI Inc. model CP85438 or Thorlabs TECD25) to control

the temperature of the diode to 1 mK accuracy. We use a variety of different current

controllers; the best of these are home built Libbrecht - Hall designs [46], the schematics

for which can be found in Ref. [47]. Our homebuilt controllers can source up to 200 mA

of current, they offer better than 200 nA root-mean-squared noise performance and they

have a modulation input that works up to 100 MHz. Additionally our lasers are mounted

on vibration absorbing foam and in an aluminum metal enclosure, both of which help

isolate the diode from environmental perturbations. I recommend the one piece enclosure

design in Ref. [48] for future lasers. In the end, our ECDLs produce a laser output with

a linewidth around a MHz, as shown in Fig. 2.2 (b), and can maintain single mode

operation for several hours at a time.
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2.3 Saturated Absorption

To maintain the frequency of the ECDLs near atomic lines for a long time, we lock

our lasers to atomic saturated absorption resonances. The basic setup for saturated

absorption is shown in Fig. 2.3. We send counter-propagating lasers beams, one strong

and one weak, through vapor cells. The weak beam is sent to a photodiode which

measures the absorption by the atomic vapor. Without the strong pump laser, the weak

probe laser sees the Doppler broadened background several GHz in width. With the pump

laser present though, the probe laser sees the atoms moving perpendicular to the pump

beam are already saturated and these atoms absorb less light. Thus, saturated absorption

produces sub-Doppler lineshapes, limited only by the natural linewidth of the transition.

However, there are two additional problems. First, the sub-Doppler features are much

weaker than the Doppler background. To resolve these small features, we electronically

subtract the Doppler background by measuring the absorption of a second probe beam

sent through the cell. Second, saturated absorption produces crossover resonances. These

resonances occur when the Doppler velocity of the atoms spans the frequency difference

of the two lasers and occur halfway between each possible pair of excited states. The

crossover resonances can be stronger than the true resonances, depending on the intensity

of the pump and probe lasers. This can be a useful feature instead of a bug, as it gives

us twice as many resonances to which to lock.

With saturated absorption, we use the atomic vapor cells as the frequency discrim-

inator, but to lock to these resonances we have to generate an error signal. To do this

we slowly dither the laser frequency by applying a small amplitude sinusoid at 10 kHz

to the laser current. As the laser sweeps through an atomic resonance, the photodiodes

will see a phase shift on the modulation signal. Conceptually, this phase shift occurs

because the sign of the first derivative changes around the resonance. By phase shifting

the photodiode signal and mixing with the modulation source, we can recover the phase

information, forming our error signal.
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Fig. 2.3. (a) Table setup for saturated absorption. A vapor cell has
two weak laser beams propagate through it and sent to photodiodes.
One weak beam counter-propagates with a much stronger laser. (b)
Signal seen by photodiodes as we ramp the laser frequency. Both pho-
todiodes see the Doppler broadened absorption profile several GHz in
width. However, the bottom photodiode also sees the effect of the strong
counter-propagating laser. Background-free, Doppler-free spectrum can
be recovered by taking the difference of the two signals electronically.

2.4 Loop Filter

The loop filter we used to apply feedback to the ECDL is shown in Fig. 2.4. ECDLs

have two electronic control paths. The diode current has a modulation input, which has

a frequency response out to about 10 MHz and a π phase shift near 1 MHz. Second,

the PZT in the grating mount fine-tunes the cavity length and has a frequency response

out to about a few kHz. Like other loop filter designs [49], we utilize both paths. Our

current feedback path, pictured on top in Fig. 2.4, has the standard feature: it has a

phase advance filter tuned to a few MHz (we tried a more traditional filter tuned for

slightly under a MHz, but found ours to work better), it provides a maximum gain of

12, it has a variable resistor to provide fine control over the gain, and it allows us to add

a bias voltage for fine control over the laser frequency via the current modulation. On

the bottom path in Fig. 2.4, is our PZT feedback. We have an op-amp that is either an

integrator or a high-gain low-pass filter. A switch chooses between the two functions.

This is followed by a variable resistor that sets the PZT gain and a summing op-amp

to add a bias voltage to fine tune the laser frequency via the PZT voltage. As shown

in Fig. 2.4, our two bias voltages are controlled by a pair of potentiometers. These are

tuned following the advice of Ref. [50] to allow wide mode-hop free tuning of the laser.
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Fig. 2.4. Loop filter used for both phase detectors. i Edge launch input,
impedance match and buffer op-amp with a gain of two. ii Phase-advance
filter for current feedback. Zero is set at 3 MHz and pole set at 5 MHz.
iii Current feedback amplitude control and buffer op-amp with gain of
three, to prevent stage loading effects. iv Summing op-amp, adds cur-
rent bias voltage to current error signal, provides gain of two to error
signal. v Current feedback output, impedance match and edge launch.
vi Integrator in PZT path. Provides a low-pass filter with gain of 10 and
cutoff at fc = 160 Hz when switch is closed. Integrates when switch is
open. vii PZT gain control and buffer op-amp. viii Summing op-amp,
adds PZT bias voltage to PZT error signal. ix PZT feedback output,
impedance match and edge launch connector, shield biased at -15V. x
Bias generation.

Omitted from Fig. 2.4, are an inverting om-amp and a pair of switches to control the

sign of both feedback paths.

2.5 Acousto-Optic-Modulator

An acousto-optic-modulator (AOM) adds an acoustic phonon to the laser photon, as

shown in Fig. 2.5 (a), thus allowing precise control over the laser frequency. By tuning

the AOM alignment, either the acoustic phonon is added to the laser or subtracted from

it. The AOM needs to be driven by an RF field and common AOMs require 80 MHz,

110 MHz or 200 MHz RF drives. It takes around 1 W of RF power to efficiently transfer
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power into the first order diffracted beam. For a well aligned AOM 80 % diffraction into

the first order beam is not uncommon. Additionally, AOMs can function as a fast optical

switch with turn on and off times around 25 ns.

Fig. 2.5 (b) shows our electronics to control the Rb AOMs. It consists of a voltage-

controlled-oscillator (VCO, Minicircuits ROS-100+ or ROS-300+) driving an RF switch

(HMC221B) and a voltage-controlled-attenuator (VCA, RVA-800+ or RVA-2500+). Not

shown is an off-board RF amplifier (Minicircuits ZHL-2-S+ or ZHL-1-2W-S+) to boost

the modest power out of the oscillator to around 1 W. The oscillator and attenuator are

controlled by a precision digital-to-analog-converter (DAC8812) which is programmed by

a PIC24 micro-controller. The micro-controller also controls the RF switch. Previously,

the VCOs were controlled by LabVIEW, via its analog output board. The advantage to

using the micro-controller is both in speed and lab compactness. The micro-controller

has enough memory for basically any algorithm we would want and can sit waiting for a

digital trigger to execute its code. Our AOM board has two output channels, one digital

input, one digital output and two analog inputs. We have used this circuit for a variety

of tasks, like controlling the output laser power after the AOM to better than 0.1%, and

rapidly cycling the MOT lasers. Code for all applications may be found in Appendix D

and the full circuit diagrams are in Appendix C.

Fig. 2.5. (a) Acousto-Optic-Modulator. Alignment of the AOM needs

to be fine tuned to meet the phase matching condition, either ~klaser +
~kphonon = ~k1storder or ~klaser − ~kphonon = ~k1storder. (b) AOM control circuit.
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2.6 Rb MOT

To form our Rb MOT, we have two EDCLs locked to two different atomic resonances.

As shown in Fig. 2.6 (a), we have the main cooling laser that addresses the 5S1/2 F=3

→ 5P3/2 F=4 closed transition. Because the laser is not perfect and has a broad, weak

pedestal in frequency, there is a very small probability for an atom to end up in the 5P3/2

F=3 state. The atom can then decay to the F=2 ground state falling out of the cooling

transition. To remedy this, we have a second laser tuned to the 5S1/2 F=2 → 5P3/2 F=3

transition which will return atoms to the main cycling transition. The Rb cooling laser

is a 1 W Tiger laser from Sacher LaserTechnik. The repump laser is a homemade ECDL

with a QPhotonics QLD-780-80s diode.

The preparation of these lasers is shown in Fig. 2.7. Both lasers are sent through

optical isolators, to reduce back reflections that will destabilize the lasers, and then

a small amount of light is picked off for saturated absorption locking. The saturated

absorption locking signal is shown in Fig. 2.6 (b), and the resonances that we lock to

Fig. 2.6. (a) Energy level diagram for 85Rb showing the cooling transi-
tion. Two lasers are identified by red arrows. (b) Saturated absorption
spectroscopy of 85Rb. Top trace is from the Rb cooling laser, starting
from F = 3 in the ground state, bottom trace is from the Rb re-pump
laser, starting from F = 2 in the ground state. Transitions are identified
by the excited state quantum number, with hyphened labels denoting
crossover resonances. The black-dashed lines identify the transition each
laser is locked to, and the bold, black arrows show the laser frequency
after up-shifting in the AOM.
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Fig. 2.7. Preparation of Rb trapping lasers. Both lasers are sent through
isolators and a small amount of light is sent off to the saturated absorp-
tion locking setup. Both lasers are frequency up-shifted in AOMs, and
sent through beam shaping lenses before being combined at orthogonal
polarizations on a polarizing beam splitter. The hot-cold mirror com-
bines the Rb light with Li light (not shown here) and is coupled into an
angle-cut, PM fiber which sends the light to the experiment table.

are highlighted. These don’t line up exactly with the desired atomic transitions for two

reasons. First, there needs to be a detuning of a few natural lifetimes to make a MOT

work. The temperature and size of the MOT can be loosely controlled by changing

this detuning. Second, we up-shift the frequency of both lasers in a pair of AOM’s and

the frequency of the lasers as seen by the MOT atoms is highlighted in Fig. 2.6 (b) by

the thick black arrows. Up-shifting in the AOM’s allows us fine control over the laser

frequency, and more importantly, they provide a fast optical switch to turn on and off

the MOT beams in under a µs. After the lasers are up-shifted, they are sent through a

telescope, combined at orthogonal polarizations on a beam splitter and then coupled into

an angle-cut, polarization maintaining fiber. The telescope helps mode match the fiber

to increase coupling efficiency, and the fiber allows us to transport the laser light to the

experiment on a different optical table. The fiber needs to be angle cut to reduce back-
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Fig. 2.8. Energy level diagram for 7Li showing the cooling transition. One
laser with sidebands is used for both transitions, shown as red arrows.
As we do not resolve the excited state hyperfine structure, the saturated
absorption spectrum is quite simple for the Li MOT and is omitted.
Consult Ref. [51] for an example spectra.

reflections and because the fiber is polarization maintaining, we can split the beams based

on their polarizations on the experiment table to form the Rb dark MOT. A summary

of the Rb MOT laser powers post fiber and detunings is provided in Table 2.1, and the

typical MOT size is given in Table 2.2.

2.7 Li MOT

Our Li MOT follows the same prescription as the Rb MOT, as shown in Fig. 2.8.

Again, we have the main cooling laser addressing the 2S1/2 F=2 → 2P3/2 transition and

there is a repump laser on the 2S1/2 F=1→ 2P3/2 transition. However, the astute reader

will note that the hyperfine splitting in the 2P3/2 state is on the same order as the natural

linewidth (Γ = 2π × 5.89 MHz). This prevents us from resolving the hyperfine structure

of the excited state and addressing individual excited hyperfine states. As a result, the
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Fig. 2.9. Preparation of the Li trapping laser. The ECDL output is sent
through a tapered-amplifier (TA), boosting its power from 25 mW to 250
mW. A small amount of light is picked off and double passed through
an AOM before being sent to the saturated absorption setup. The main
beam is sent through an EOM, which imposes sidebands at 815 MHz.
Finally, the beam is split between a Zeeman slower beam, which is red
shifted 80 MHz and the main beam which is combined with the Rb trap
beams on a hot-cold mirror and fiber coupled.

Li MOT behaves more like a two species MOT with nearly an equal mixture of F=2 and

F=1 and the temperature is much hotter than the Rb MOT.

The preparation of our Li trapping laser is shown in Fig. 2.9. Our Li laser is a

commercial ECDL, Toptica DL Pro, and we use it to seed a Toptica BoosTA tapered

amplifier. The tapered amplifier boosts the power from 25 mW to over 250 mW while

maintaining frequency coherence. After the tapered amplifier, we pick off a small amount

of the light for saturated absorption locking, shown in Ref. [51]. Unlike our Rb MOT,

the 200 MHz AOM is in the locking path for Li, in a double pass configuration. This

shifts the laser frequency by twice the drive frequency and we lock to the 1-2 crossover

resonance. Unfortunately, we lose the ability to turn on and off the Li laser fast but we

do not need an additional AOM for the Li system. To generate our repump light, we use

a 815 MHz resonant EOM, Qubig model EO-Li7, to shift a third of the laser power into

sidebands. After applying sidebands, we pick off a third of the laser power to use for a

Zeeman slower, as explained in the next section. The slower beam is down-shifted in an
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Fig. 2.10. Creation of the Rb darkSPOT MOT. The repump light is split
from the other two lasers by its orthogonal polarization and its main
path is shown by the solid black line. Removing the beam block allows
recirculation of the repump light, path shown in dashed-black line, for
easy switching between dark and light MOTs. In the dark MOT path,
there is a small circular beam block on a microscope slide that images
a hole onto the MOT region in the horizontal plane (formed by MOT
beams MOT2 and MOT3). There is no repump light in the vertical MOT
beam (labeled MOT1) in the dark MOT.

AOM before being coupled into a fiber. The main trapping laser is combined with the

Rb lasers on a hot-cold mirror and coupled into a joint fiber to be sent to the experiment

table. A summary of the Li MOT laser powers post fiber and detunings is provided in

Table 2.1, and the typical MOT size is given in Table 2.2.

2.8 Cohabitation

Methods have been developed for implementing MOTs and are quite reliable at this

point. More difficult are dual species MOTs. Rarely do both species need the same

magnetic field gradient. We operate at a 11 G/cm field gradient which is in between the

optimum for Rb and Li. Additionally, there are problems with interspecies collisions,

and for our pair of species, the collisions almost always result in Li atoms being ejected

from the trap because of the mass difference. To help alleviate this problem, we use a

Rb darkSPOT MOT [52]. In this trap, the repump laser is blocked in the center of the

MOTs. Fig. 2.10, shows how we accomplish this. We split the repump laser off with a

PBS, expand it, and then pass it through a pair of microscope slides with small beam
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Γ/(2π) (MHz) Isat (mW/cm2) Laser Detuning (MHz) Power (mW)

85Rb 6.06 1.7
Cool -19 100

Repump +13 12

7Li 5.89 2.5

Cool -24 38

Repump -9 7

Slower -80 25

Table 2.1.
Details of trapping lasers. More complete atomic data for Rb may be
found in Ref. [45]. The 1/e2 radius of all the MOT trapping lasers is 22
mm and the radius of the Zeeman Slower laser is similar.

blocks on them. Finally, the repump is recombined with the two horizontal trapping

beams. As a result, in the center of the MOT, there is no repump light and the atoms

are quickly pumped into the F=2 dark state. Once in the F=2 state, the atoms no longer

interact with the trapping laser and drift until they hit the repump shell. As a result,

they spend much less time in the excited 5P state and on average have much lower energy

when colliding with the Li atoms. The difference between the dark Rb MOT and the

light Rb MOT produces nearly an order of magnitude change in the size of the Li MOT.

To measure and observe the MOTs, we have two tools at our disposal. The simplest

tool is a CCD camera outside the vacuum chamber pointed at the MOTs. In the MOT,

the atoms continually fluoresce on their D2 lines. Thus, the camera can observe the

spatial shape of the MOTs and get a rough estimate of the size. However, the camera

cannot differentiate between the Rb and Li MOT. Our more sensitive detection method

uses a pair of photodiodes. A 2 inch diameter, 5 cm focal length lens in front of the

photodiodes, 13 inch from the MOTs, focuses the MOT fluorescence onto the photodiodes

and a hot-cold mirror separates the light by species. The photodiodes allow us to measure

the number of atoms in the MOTs to within a factor of two and we can combine the

photodiode measurements with the camera measurements to estimate the MOT density.

Our typical MOT sizes are listed in Table 2.2.
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Fig. 2.11. Vacuum system cross-section.

2.9 Vacuum System

Our vacuum system is shown in Fig. 2.11. We have a 8 inch Kimble octagon with two

8 inch ports on top and bottom, six 2.75 inch windows and sixteen 1.33 inch windows.

The windows are broad-band AR coated between 650-1100 nm by Abrisa technologies.

There are two Varian starcell ion pumps that pump at 40 L/s to maintain a vacuum

pressure of 10−10 Torr in the main chamber and 10−9 Torr in the Li oven.

On the main horizontal axis we have the Zeeman slower. We load the Li MOT from

an atomic beam. The beam originates from an oven loaded with 10 g Li that is heated

to over 400 C. The beam is formed by a pile of 0.8 mm diameter hypodermic needles

and a valve separates the oven from the main chamber allowing us to turn on and off

the atomic beam. We use the Zeeman slower to decelerate the atoms coming out of

the oven which are too hot to be directly captured by the MOT. The slower is a half

meter long cylinder, along which the Zeeman slower laser counter-propagates with the

Number Density (cm−3) Temperature (µK)

85Rb 106 - 108 5× 109 100

7Li 5× 107 1010 500

Table 2.2.
Typical MOT parameters.
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atoms. Powerful spatially-varying magnets Zeeman shift the atomic levels into resonance

with the laser as the atoms simultaneously propagate and slow down. The full details of

the slower may be found in Ref. [53]. The Rb MOT is loaded from background vapor,

provided by one of several Rb Getters from SAES, that boil off Rb atoms when a current

is applied.

On the vertical axis of the vacuum chamber, we have a field free region for a time-

of-flight spectrometer. As discussed in Chapter 3, our method for detecting molecules

is to ionize them and count the ions. Around the MOT in Fig. 2.11, are the electric

field plates that temporally focus the ions onto the micro-channel plate detector (MCP)

which detects them. The bottom plate is biased at 400 V, the middle plate at 340 V and

the top plate is grounded. The MCPs are at the top of the time-of-flight chamber off to

the side to allow MOT beam access. In front of the MCP is a grounded screen to block

unwanted ions. A -1900 V bias accelerates ions into the first MCP stack and then a -100

V bias accelerates the electrons off the first stack into the second stack. We record the

signal off the back screen which is grounded and connected to a fast oscilloscope. Full

details of the ion counting procedure may be found in Ref. [51].
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3. SPECTROSCOPIC METHODS

Table 3.1 summarizes the spectroscopy that has been done on LiRb before this thesis.

The work has been done primarily by two groups, ours and Tiemann’s group at the

University of Hannover. Under the direction of Dr. Tiemann, Ivanova et al. studied

LiRb with Fourier transform spectroscopy in a heat pipe [54,58]. They mapped out most

of the ground state, a few levels of the first triplet state and a small fraction of excited

states. In our group, Dutta et al. studied low rotational states of the B 1Π [55]; Altaf

et al. studied the top half of the a 3Σ+ potential and mapped out resonantly-enhanced-

multi-photon-ionization (REMPI) transitions to the f 3Π state [56]; finally, Lorenz et

Electronic Vib. levels Atomic

state observed Refs. asymptote

X 1Σ+ 0-45 [54,55] Li 2s 2S+

a 3Σ+ 2-13∗ [54, 56,57] Rb 5s 2S

b 3Π 9-19 Chapter 6

A 1Σ+ 0-29 Chapter 6 Li 2s 2S+

c 3Σ+ - - Rb 5p 2P

B 1Π 0-22 [55,58,59]

C 1Σ+ 7-13∗, 26-44 Chapter 6

D 1Π 0-15 [58–60] Li 2p 2P+

d 3Π 0-22 Chapter 5 Rb 5s 2S

f 3Π 0-10 [56] Li 2s 2S+

g 3Σ+ 0-5 [56] Rb 4d 2D

Table 3.1.
List of low-lying states of LiRb that have been observed experimentally.
Ranges of vibrational quantum numbers marked with an asterisk are not
inclusive. Weakly-bound vibrational levels of many of these potentials
used for photoassociation of ultracold LiRb molecules are not included.
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Fig. 3.1. Spectroscopy of LiRb. Curves in red (X 1Σ+, B 1Π, and D 1Π)
are studied by Refs. [54, 58]; curves in blue (a 3Σ+, f 3Π and g 3Σ+) are
studied by Ref. [56]; the curve in green (d 3Π) is studied in Chapter 5;
curves in orange (b 3Π, A 1Σ+, and C 1Σ+) are studied in Chapter 6;
finally, the curve in gray (c 3Σ+) has not been thoroughly studied.

al. discovered that we were unable to detect loosely bound singlet states with REMPI

and confirmed assignments from Ivanova [59]. Fig. 3.1 shows a molecular energy level

diagram highlighting these states.

When I inherited the LiRb experiment, we were producing LiRb molecules through

photoassociation and detecting them through REMPI. We had detected 7 PA progres-

sions below the Rb D1 and D2 atomic asymptotes and detected molecular formation

in 3 of the progressions with REMPI. We saw that the molecules were produced in

X 1Σ+ v = 2− 25 [59] and in a 3Σ+v = 7− 13 [56]. For a primer on molecular notation

and selection rules, see Appendix A. However, we had two primary problems: 1) we did

not know the precise depth of the X 1Σ+ potential and 2) we did not have a method to

detect weakly bound molecules in the X 1Σ+ potential. Additionally, as we started to

solve some of these problems, we turned our attention to finding suitable intermediate

states for STIRAP. These goals will guide our spectroscopic studies in the next couple of

chapters.
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Fig. 3.2. Photoassociation in LiRb. y-axis is not to scale for better
clarity. Blue traces are vibrational wavefunctions for the scattering state
(bottom), and the least bound vibrational state (top).

Our method for spectroscopy is as follows. First, we load Li and Rb into a dual species

MOT. Second, we make molecules with photoassociation followed by spontaneous decay.

Third, we ionize the molecules with REMPI and count the ions. Finally, use PA, REMPI

and depletion to study molecular transitions. In this chapter, I will review the steps in

our spectroscopy, talk about how they work, discuss the driving lasers, explain the value

of each method, and finally, present a quick PA experiment.

3.1 Photoassociation

PA is a purely quantum process by which the formation of a molecule is mediated by

a photon. As shown in Fig. 3.2, PA happens when the scattering nuclear wavefunction,

shown for the triplet ground potential well, has sufficient overlap with an excited state

vibrational wavefunction and then, absorption of a photon resonant with the energy

difference between the states can induce a transition to the excited state (provided this

is allowed by the electronic selection rules). The excited state has a very short lifetime,
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and will quickly decay, governed by its Franck-Condon factors (FCFs) and its overlap

with scattering states, forming a spread of ground state molecules. The strength of a PA

line is governed by a number of factors [61]:

RPA =

(
3λ2

th

2π

) 3
2 h

2
nAnBAΩ|〈Ψs|~d|ΨPA〉|2, (3.1)

where λth is the thermal deBroglie wavelength, nA and nB are the density of the two

atomic species, AΩ is the angular factors and |〈Ψs|~d|ΨPA〉|2 is the transition dipole mo-

ment between the states which can be separated into an electronic part and the FCF

like overlap of the nuclear scattering wavefunction and the nuclear bound vibrational

wavefunction. For a fixed density and excited state, the PA rate can be improved by

increasing the overlap between the scattering wavefunction and the vibrational wave-

function (usually by picking a better excited state). However, the molecule production

rate is

Rv′′ = FCF ·RPA, (3.2)

where FCF is the Franck - Condon Factors for decay to the desired state, v′′. Usually

states with better overlap with scattering wavefunctions have worse overlap with bound

states leading to a trade off between PA rate and molecular production rate.

To drive PA, we primarily used a CW Ti:Sapphire laser. This laser produces up to

300 mW at 795 nm and is tunable between 735 - 905 nm, although its power decreases

as we tune away from 795 nm. Based on Ref. [51], in which a previous student created

a beat-note between the Ti:Sapphire and the frequency comb, we estimate the linewidth

of the Ti:Sapphire to be 2-3 MHz, although it slowly drifts on the scale of a few MHz per

minute. For some of our studies, we used a 795 nm ECDL for PA. This laser produced

up to 100 mW of light and was much harder to tune compared to the Ti:Sapphire.

To use photoassociation as a spectroscopic tool is simple. PA measures excited state

binding energies relative to the scattering continuum. Additionally, this can be combined

with data linking those excited states to deeply bound ground states to measure the

absolute binding energies of the ground states with high precision.
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3.2 REMPI

To detect molecules formed by PA followed spontaneous decay to bound states, we

turn to REMPI. REMPI is driven by a Nd:YAG-pumped pulsed dye laser. It is tunable

between 550 - 583 nm (18150 - 17150 cm−1) when loaded with the R590 dye, between 660

- 715 nm (15150 - 14000 cm−1) when loaded with the LDS698, and between 710 - 750 nm

(14100 - 13333 cm−1) when loaded with the LDS750 dye. The repetition rate of this laser

is 10 Hz, and it delivers ∼3 mJ/pulse to the MOT region in a 4 mm diameter beam (the

LDS698 dye produces closer to 1 mJ/pulse and the LDS750 dye produces less). When

one photon of this laser is resonant with a transition from an initial state (populated

by spontaneous decay from the PA state) to an intermediate bound state (usually one

of the vibrational levels of the B 1Π, D 1Π, f 3Π, or g 3Σ+ electronic potentials), then

the molecule may absorb two photons and ionize. We detect and count LiRb+ ions

using a time-of-flight spectrometer and a microchannel plate detector. To observe ions

from deeply bound states or when using the redder dyes, we use a two-color variant of

REMPI called RE2PI. In RE2PI we reduced the power of the dye laser pulse, and used

the energetically higher photon from the 532 nm second-harmonic output of the Nd:YAG

as the second photon.

Our detection method for all spectroscopy presented in this thesis is some form of

REMPI. We use REMPI in large part because it is so sensitive. The number of molecules

we detect is roughly

N = τεdPionRv′′ , (3.3)

where τ = 14 (5) ms is the calculated transit time for the molecules after PA in the

REMPI beam, εd = 0.5 (0.3) is our estimate of the detector efficiency, Pion is the measured

probability of ionizing a given initial state. Pion is a weak function of the REMPI pulse

energy and gets as large as 0.5. Finally, Rv′′ is the production rate of molecules in an

initial state. For our set up, I estimate that we come close to detecting a quarter of the

molecules we produce. In addition to being sensitive, the noise in our REMPI detection

is very small. Our time-of-flight spectrometer separates LiRb+ ions from Rb+ ions by

about 1 µs which results in a very small amount of Rb+ ions in the LiRb+ window.

Additionally, I discovered that by keeping the Rb MOT small and the dye pulse energy

low, I could get the LiRb+ ions to outnumber the Rb+ ions by more than a factor of ten.
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My suspicion is that the primary cause of Rb+ production is photo-dissociation of LiRb

into Li and Rb+, under these circumstances. But the end result is that our background

ion count rate is less than 0.01 ions/shot while our on-resonance ion count can approach

10 ions/shot.

Because REMPI requires the first photon to be resonant with the transition between

two bound states, it can be used to map out bound-to-bound transitions in the molecule.

Additionally, because the pulsed dye laser is very tunable, we can quickly map out a

large number of transitions by scanning the REMPI laser frequency.

3.3 Depletion Spectroscopy

We use a form of depletion spectroscopy to augment our REMPI studies. In this

technique, we add a CW narrow-band depletion laser to the configuration. As previously

demonstrated in Refs. [62, 63], the depletion laser reduces the REMPI ion count by

resonantly transferring population from the initial state active in REMPI to other bound

states. Our depletion laser is the CW Ti:Sapphire laser while the 795 ECDL takes over

the PA role. We co-propagate the PA and depletion lasers, and then focus them to a spot

size of about 200 µm in diameter at the center of the MOTs. Depletion spectroscopy has

a high spectral resolution, limited primarily by the uncertainty of our wavemeter, 0.02

cm−1.

Fig. 3.3. Example of a depletion spectrum on the v′′ = 2 state. For this
spectrum, the REMPI laser was tuned to the B 1Π v′ = 14 ← v′′ = 2
transition, the PA laser was locked to the 4(1) v = −16 J = 1 line, and νd,
the frequency of the depletion laser, was scanned. Labeling is J ′′ → J ′.
Our observed v′′ = 2 rotational constant, Bv′′ = 6.38 GHz, matches the
previous measurement [55].
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Besides shot noise in the ion count, two sources of uncertainty in depletion peak

positions deserve mention: frequency drifts of both the PA laser and the REMPI laser.

The PA laser frequency was maintained with an electronic lock. Our primary PA laser

(for depletion) was a 795 nm ECDL locked to a low finese cavity. The cavity controlled

for laser drifts on a time scale, but the cavity drifts slowly on the minute time scale

because of thermal drifts in the lab. To compensate for this effect, we dithered the cavity

at a few Hz with LabVIEW. Thus if the cavity drifted slightly above or below the PA

frequency, LabVIEW could now see this effect in the ion count it was also monitoring,

notice the direction to tune to get back on resonance thereby counteracting the slow

drifts in the PA frequency. This homemade lock-in detection enabled us to stay on a PA

resonance for hours at a time. Drift in the REMPI laser frequency was small, slow and

nearly linear, so we were able to compensate in post-processing. Therefore, the primary

limitation to the precision of these measurements was the shot noise in the signal.

Our goals for depletion spectroscopy are to help solve the weaknesses of REMPI

spectroscopy. REMPI tends to produce dense spectra whereas depletion spectra can

produce very clean spectra, as seen in Fig. 3.3. Additionally, REMPI is limited by the

linewidth of the pulsed dye laser, which is fairly broad at 0.5 cm−1 whereas depletion

spectra is limited by the linewidth of our wavemeter, 0.02 cm−1. Because of the better

resolution, we are able to get rotationally resolved spectra aiding in our understanding

of the decay path after PA. Finally, the colors for the REMPI laser and the depletion

laser are quite different, allowing us to study a different set of excited states.

3.4 Notation

As there will be many states and lasers involved in our spectroscopy, it is worth

reviewing our state labeling scheme in this thesis. Our notation is as follows: v′′ and

J ′′ denote the vibrational and rotational levels of the X 1Σ+ and a 3Σ+ states, v and J

denote the vibrational and rotational levels of the electronically excited states driven by

PA resonances (and for these vibrational numbers, we count down from the asymptote

using negative integers), and v′ and J ′ denote vibrational and rotational labeling of other

excited electronic states. Additionally, we use Hund’s case (c) labeling for PA states and

Hund’s case (a) labeling for deeply bound states. The correspondence between the two
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Hund’s case (a) Hund’s case (c) Atomic asymptote

A 1Σ+ 2(0+)

Rb 5P1/2 + Li 2S
c 3Σ+

2(0−)

2(1)

b 3Π

3(0+)

Rb 5P3/2 + Li 2S

3(0−)

3(1)

1(2)

B 1Π 4(1)

Table 3.2.
Correspondence between Hund’s cases (a) and (c) in LiRb. We use
Hund’s case (c) labeling for our PA states and Hund’s case (a) for deeply
bound state. Note that B 1Π v′ = 20 and 4(1) v = −16 denote the same
state.

labeling schemes is shown in Table 3.2. The PA state that is central to much of this work

has two equivalent notations: 4(1) v = −16 in Hund’s case (c) notation and B 1Π v′ = 20

in Hund’s case (a) notation. We will label this state using Hund’s case (c) notation for

consistency with the usual practice for long-range PA states although the state lives

somewhere between the two Hund’s cases.

3.5 Short Range PA

Our first project in photoassociation (though, the second chronologically), was aimed

at exploring short-range photoassociation in LiRb. Normal, long-range PA works as

indicated by Fig. 3.2, where wavefunction overlap of the excited state anti-node at the

largest internuclear separation provides the transition strength. In short-range PA, the

wavefunction overlap is provided by the ground state anti-node at the classical inner-

turning point, as shown by the red arrow in Fig. 3.4. The downside to this approach is

that the PA resonances will be an order of magnitude or two weaker, but the molecule

production rate, especially in more deeply bound states can be equivalent to traditional

PA resonances. This happens because molecule formation by PA is a two step process,
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Fig. 3.4. LiRb potential energy curves for the lowest several bound states
as calculated by Ref. [64]. (a) Short-range PA from the inner turning
point of the a 3Σ+ potential to the bottom of the d 3Π potential. (b)
Decay from excited state to a 3Σ+ bound states. (c) Molecule detection
by REMPI through the f 3Π potential. inset Close up of the d 3Π-D 1Π
complex, revealing the different spin-orbit components as identified by
Ref. [64].

PA to an excited state and then spontaneous decay to a deeply bound state, and while

short-range PA pays a price in excited state formation rate, the excited states are much

more likely to decay to bound states than to free atom pairs. Additionally, it is my

operating theory that more deeply bound states are easier to detect with REMPI which

further helps detect states populated by short-range PA.

The potential energy diagram for this experiment is shown in Fig. 3.4, and a sketch

of the experiment is as follows. We fixed our REMPI laser to a known resonance, from

Ref. [56], denoted in Fig. 3.4 by arrow c at frequency νc. Then we would scan the PA

laser, denoted by arrow a at frequency νa, while recording the ion count. Shown in

Fig. 3.5, is an example of a PA scan across a short-range PA resonance. In Fig. 3.5, we

see the excitation of d 3Π0± v = 0 detected via the f 3Π v′ = 4 ← a 3Σ+ v′′ = 7 REMPI

resonance [56]. There are several things of interest. First, because our MOTs have a

minority population in Li F=1 and Rb F=3, we see an army of extra resonances, called

hyperfine echos and denoted by an asterisk, that use the same excited state but different
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Fig. 3.5. PA scan across d 3Π, v = 0, Ω = 0±, revealing rotational
structure and a strong alternation of PA line strength, as detected by
ionization. The REMPI laser was tuned to the f 3Π v′′ = 4 ← a 3Σ+ v′′ =
transition. νa is the frequency of the PA laser; ∗ denotes a hyperfine
echo, from residual population originating in either Li F = 1 or Rb
F = 3. Green solid lines and labels denote the strong PA resonances,
along with our assignments; red dashed lines and labels identify the weak
PA resonances. inset A closeup of the strongest PA resonance. ∆ is the
PA frequency relative to assigned line center; black dots are the raw data;
blue solid line is the fit to Eq. (3.4).

scattering channels. Second, we see a very obvious alternation of the strength of the PA

resonances by an order of magnitude as the excited J state changes. As can be seen in

the literature, like Ref. [8,14,65], such a strong alternation of PA strength with changing

rotational quantum number is uncommon.

After discovering that LiRb was a bit unusual, we sought to understand why. Our

first step was to determine the dominant partial scattering waves (i.e. s-wave, or p-wave,

or higher order partial waves). With help from our theory collaborator, Jesús Pérez-Ŕıos,

we were able to turn a measurement of the collisional temperature into information about

what partial waves contribute. We can measure the collisional temperature by fitting our

PA lineshape [6] to ∑
l

∫ ∞
0

e
− hν
kBT νl+

1
2LΓ(f, f0 − ν)dν, (3.4)

where LΓ(f, f0 − ν) is a Lorentzian function centered at f0 − ν and with linewidth Γ,

and l is the angular momentum in the scattering channel. A careful scan across a PA

resonance, along with the fit to Eq. (3.4), is shown in the inset to Fig. 3.5. We fit

to Eq. (3.4) assuming s-wave scattering (a similar temperature was returned assuming

p-wave scattering). The result is we extract TLiRb = 440(70) µK, and Jesús’s theory
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predicts that at this temperature s-wave collisions dominate by a factor of 10 over p-

wave collisions and even more significantly over higher-order partial waves.

At this point, we were left with a bit of a conundrum. The available theory on the

d 3Π state from Ref. [64] predicts that the Ω = 0+ state will be lower in energy than the

Ω = 0− state. Consulting Fig. 3.6, which shows the parity of a 3Π state, we see that the

parity of the excited state alternates with rotational number. This matches what we see,

except that the parities do not line up. If Ω = 0+ is the lower energy state, then for even

parity J = 0 and J = 2 to be strong, it would require an odd parity scattering state,

such as p-wave.

We are confident that our assignments of the J quantum number for these PA res-

onances are correct. Our assignment of the J quantum number allows us to extract a

rotational constant, Bv, which matches the prediction from Ref. [64]. However, our other

v Ω J = 0 J = 1 J = 2 J = 3 Bv

0 0− 404952.0 404961.0 404978.5 405006.8 4.5

0 0+ 404988.1 405005.9 4.5

0 1 – 406062.7 406080.6 406108.4 4.5

0 2 – – 407067

1 0− 407918.6 407944.9 4.4

1 0+ 407952.0

1 1 – 409037.4 409054.9 4.4

Table 3.3.
The frequencies for the observed d 3Π PA resonances in GHz. Uncer-
tainties are ±2 in the last digit recorded. Blank entries denote allowed
transitions that did not appear in our spectra; solid horizontal lines de-
note forbidden transitions. The v = 0 splitting of the spin-orbit levels are
27.7, 1074.2, and 986.4, (all ±0.3) GHz for Ω = 0−/0+, 1/0−, and 2/1,
respectively, which differ significantly from their predicted values [64].
The J-dependent inversion symmetry for Ω 6= 0 states was not resolved
since the Λ doubling for the low lying rotational states accessed is small.
The additional uncertainty for the d 3Π2 J = 2 line position is due to its
significantly lower PA strength and its more complicated structure. The
spin-orbit splittings and rotational constants are in agreement with our
measurements using depletion spectroscopy, seen in Chapter. 5.
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Fig. 3.6. Inversion parities for the partial waves of the scattering state
and final d 3ΠΩ states, adapted and modified from Ref. [66]. The solid
green and dashed red arrows correspond respectively to the alternating
strong and weak dipole-allowed PA transitions to the d 3Π0 manifold,
shown in Fig. 3.5. The parity of every state or wave is shown as a plus
or minus sign inside the circles. The transitions to Ω = 1 or 2 states and
the small energy splitting of the J states are not shown for clarity. Note
that we can resolve the energy splitting between different parities for the
Ω = 0± states, but not for Ω = 1 or 2 states.

spectroscopic data, like in Ref. [67, 68], do not support the conclusion that p-wave scat-

tering is dominant, instead, like Jesús’s theory, it supports s-wave scattering. At the end

of the day, our conclusion, illustrated in Fig. 3.6, is that the prediction from Ref. [64] on

Ω ordering is wrong: our data supports the conclusion that Ω = 0− is lower energy than

Ω = 0+.

In total, we found 15 new PA resonances, tabulated in Table 3.3, and contributed

to evidence that short-range PA is fairly common for bi-alkali molecules. Additionally,

we explored short-range PA as a method for producing ground state molecules. This

work can be found in the thesis of David Blasing [69], who helped take the PA spectra

shown here. At the start of this section we noted that PA in LiRb is a bit unique, and

it is worth briefly discussing why. The collisional temperature for LiRb is quite a bit

higher than other in other bi-alkalis, because Li MOTs are hotter than most other alkali

MOTs. However, a quick comparison between the reduced mass of LiRb compared to

other species like RbCs, quickly reveals that although LiRb is 5 times hotter, its reduced

mass is 12 times lighter. The centrifugal barrier, which sets the dominant scattering
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wave, is proportional to 1
µ
, where µ is the reduced mass of the molecule. This makes LiRb

effectively colder than its competitors. Thus, LiRb only has s-wave collisions contributing

to PA, while in other seemingly colder species like RbCs, higher partial waves contribute

to scattering.
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4. 2(1) - 4(1) PHOTOASSOCIATION

For our second PA project, I worked on studying resonantly coupled PA states. Resonant

coupling refers to the scenario where two states are mixed by an interaction internal to

the molecular Hamiltonian, usually by the spin-orbit interaction in the heavier bialkalis.

Although resonant-coupling is fairly common, mostly driven by the high density of states

in molecules, exploiting it for PA is much harder. In other bi-alkali’s, namely NaCs [14]

and KRb [10], people have found that resonant coupling can be used to create high PA

rates and to form deeply bound states after spontaneous decay. The simple picture of

Fig. 4.1. Low-lying PEC diagram for the LiRb molecule from Ref. [64].
Vertical lines show various optical transitions, including (a) photoassoci-
ation of molecules below the Rb D1 asymptote, at frequency νa; (b) spon-
taneous decay of excited state molecules leading to X 1Σ+ (and a 3Σ+);
(c) REMPI or RE2PI to ionize LiRb molecules, at frequency νc; and (d)
state-selective excitation to deplete the REMPI signal, at frequency νd.
The black and blue dashed lines respectively represents our 2(1) - 4(1)
mixed states and our depletion state. The inset shows an expanded view
of the long-range potentials near the asymptote. Table 3.2 shows the
correlation between long-range and short-range labeling.
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Fig. 4.2. Evidence of 2(1)− 4(1) mixing. (a) PA spectrum of the 2(1)−
4(1) mixed states. The REMPI laser frequency was held fixed at 17,686.8
cm−1 on the D 1Π v′ = 4 ← v′′ = 10 transition. Hyperfine echoes are
labeled by ? for Li F=1, Rb F=2; 4 for Li F=2, Rb F=3; and � for Li
F=1, Rb F=3. New 4(1) resonances as well as previously observed 2(1)
and 2(0−) are labeled [56]. Dashed lines show the expected rotational
spacing of the 4(1) lines based on previous work [55]. (b) REMPI spectra
from photoassociation through the 4(1) and 2(1) states; (blue solid) 4(1)
v = −16 J = 1, (red dot-dashed) 2(1) v = −5 J = 1. The black
dashed vertical lines represent transitions out of X 1Σ+ and the green
solid vertical lines are transitions out of a 3Σ+; labeling is (excited state)
v′ ← v′′.

how this works is as follows. There is a weakly bound excited state that is good for PA.

This state is mixed by the spin-orbit interaction with an energetically close state that

is deeply bound. The deeply bound excited state has good coupling to deeply bound

ground states. Thus, we can get the best of both worlds, strong PA rate and strong

decay to bound states all from one state, dodging the PA rate versus production rate

trade-off most PA states suffer from.

4.1 Resonant Coupling

Pictured in Fig. 4.1 is a potential energy diagram for this study. We tune our PA

laser, at frequency νa, below the Rb D1 asymptote where the 2(1) PA progression will

interact with the 4(1) progression. After decay to bound states, we fix our REMPI laser,

at frequency νc, to detect PA, or we fix the PA laser and tune the REMPI laser to study
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the decay products. Finally, our depletion laser, at frequency νd, helps probe rotational

quantum numbers and detect weak REMPI lines.

In Fig. 4.2(a) we show the PA spectrum of the 2(1) − 4(1) mixed states near 122

GHz below the D1 asymptote. For this spectrum the REMPI laser frequency, νc, was

fixed on the D 1Π v′ = 4 ← X 1Σ+ v′′ = 10 transition [59] and the PA laser frequency,

νa, was scanned. The 4(1) v = −16 J = 1 and 2(1) v = −5 J = 1 states in this

spectrum are coupled, forming mixed states that possess characteristics of each, namely,

the good photoassociation strength of a 2(1) state and the deep decay path of a 4(1)

state. Coupling and mixing between vibrational levels of different electronic states can

occur when states with the same rotational number J and angular momentum Ω lie

close energetically [10,66]. Ω is the projection of the total angular momentum (excluding

nuclear spin) onto the internuclear axis. Fig. 4.2(a) contains several hyperfine echoes,

labeled with ? for Li F=1, Rb F=2; 4 for Li F=2, Rb F=3; and � for Li F=1, Rb F=3.

These are weaker PA lines that originate from population in our MOTs not in our main

hyperfine component.

There are three features in Fig. 4.2 that provide evidence of resonant coupling of the

2(1) and 4(1) states.

(a) A 2(1) component is indicated by the large photoassociation amplitude of the

4(1) v = −16 state. We previously explored the v = −3, −4, and −5 lines of the 4(1)

state [59], and found that the photoassociation amplitude for any vibrational levels more

deeply bound than v = −6 had vanished. The enhanced photoassociation amplitude for

4(1) v = −16, with no visible photoassociation at v = −15 and v = −17, is an indication

of mixing with a 2(1) state.

(b) The frequency spacing between the J = 1 and J = 2 lines of the 4(1) v = −16

state in Fig. 4.2(a) is increased by ∼1 GHz from the spacing expected based on earlier

spectroscopy of LiRb [55] that studied highly excited rotational states of the 4(1) v = −16

manifold. We have marked the expected spacing between the J = 1 and 2 lines with

vertical dashed red lines using Bv = 2.503 (0.001) GHz [55]. We expect the J = 2 state

to be relatively unperturbed because it is much farther from the perturbing 2(1) state.

(c) Further evidence of 2(1) − 4(1) mixing is given in the REMPI spectra shown

in Fig. 4.2(b). These provide an indirect measure of the relative spontaneous decay

paths after photoassociation. We recorded these spectra by tuning the PA laser to the
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4(1) v = −16 J = 1 line (blue solid spectrum) or the 2(1) v = −5 J = 1 (red dot-

dashed spectrum). We have identified and labeled the lines in these spectra, and found

population in vibrational levels of the X 1Σ+ and a 3Σ+ electronic potentials. Previously

we observed that other 2(1) states decay only to a 3Σ+ states, while other 4(1) states

decay solely to X 1Σ+ states [56, 59]. However, the 4(1) v = −16 J = 1 and the

2(1) v = −5 J = 1 states decay to both X 1Σ+ and a 3Σ+, providing further evidence of

their coupling.

Our current and previous spectroscopy on 4(1) v = −16 state allows us to analyze

two interesting spectroscopic quantities of LiRb. First, this leads us to a new, higher

precision determination of the dissociation energy, De, of the X 1Σ+ potential. We use

the transition frequency of the B 1Π v′ = 20← X 1Σ+ v′′ = 0 transition from Ref. [55],

the PA frequency of the 4(1) v = −16 J = 2 peak in Fig. 4.2(a), measured to be 12575.21

(0.02) cm−1, the rotational constant of the B 1Π v′ = 20 state also from Ref. [55], and

the ground state molecular constants from Ref. [54]. This allows us to report a X 1Σ+

dissociation energy of 5928.08 (0.03) cm−1 relative to the 85Rb 5s 2S1/2 F=2 + 7Li 2s

2S1/2 F=1 asymptote. This determination agrees with, but is of much greater precision

than, the previous value of 5927.9 (4.0) cm−1 [54].

We can also use this PA spectrum to estimate the admixture coefficients of the 2(1)−

4(1) J = 1 states. We write the mixed states |Ψ−〉 (primarily 4(1) J = 1) and |Ψ+〉

(primarily 2(1) J = 1) as

|Ψ−〉 = c|Ψ4(1)〉 − d|Ψ2(1)〉, with energy E−, (4.1)

and

|Ψ+〉 = d|Ψ4(1)〉+ c|Ψ2(1)〉, with energy E+, (4.2)

where |Ψ4(1)〉 and |Ψ2(1)〉 are the bare (unmixed) states with energies E4(1) and E2(1),

respectively. We refer the reader to the treatment of resonantly coupled rotational states

in Ref. [66]. We measure the frequency difference of the perturbed states to be (E+ −

E−)/h = 3.5 (0.1) GHz, as shown in the PA spectra of Fig. 4.2(a). As discussed earlier,

we know the size of the perturbation on the 4(1) state based on the deviation from the

rotational constant for this state measured by Ref. [55]. Assuming an equal but opposite

shift in the 2(1) energy, we find the energy difference of the unperturbed states to be

δ = (E2(1) − E4(1))/h = 1.5 (0.2) GHz. Following the treatment of Ref. [66], we can
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Fig. 4.3. Trap loss spectroscopy of 4(1) v = −16 J = 1 (left) and 2(1) v =
−5 J = 1 (right) PA resonances. Detuning is relative to the assigned PA
line center. Notice the relative strength favoring the 2(1) resonance, in
contrast to the REMPI data in Fig. 4.2(a). More details on our trap loss
experiments can be found in Ref. [70]. The structure in these spectra is
caused by the hyperfine structure of the 4(1) and 2(1) states.

use the perturbed and unperturbed energy spacings to derive the coupling between the

states, Vint, by diagonalizing a simple 2x2 matrix,∣∣∣∣∣∣E2(1) − E Vint

Vint E4(1) − E

∣∣∣∣∣∣ = 0.

This will have solutions

E± =
1

2
(E2(1) + E4(1))±

1

2

√
4|Vint|2 + δ2. (4.3)

Re-solving this for the state coupling yields Vint = 1
2

√
(E+ − E−)2 − δ2 = 1.6 (0.2) GHz.

Additionally we can find the eigenstates of our diagonalized matrix to find the admixture

coefficients |c| = 0.84 (0.09) and |d| = 0.53 (0.05), consistent with our earlier assertion

of strong mixing between the states.

4.2 Relative Decay Paths

To supplement the PA spectra discussed above, we have also observed the 4(1) −

2(1) J = 1 mixed resonance through trap loss measurements. We show these spectra

in Fig. 4.3. In contrast to the REMPI signal, which indicates formation of a stable

molecule in a specific vibrational level of the X1Σ+ or a3Σ+ state, a dip in the trap

fluorescence signal results when the PA laser associates a molecule, regardless of whether
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R−CM
R+
CM

B+(v′′)
B−(v′′)

c2 R2(v′′) 2cdR(v′′) B+(v′′) −2cdR(v′′) B−(v′′)

X 1Σ+

2.5 4.6 -0.12 0.29 0.18 0.12 0.83
v′′ = 2

a 3Σ+

1.5 2.8 -0.02 0.29 0.27 0.02 0.73
v′′ = 7

X 1Σ+

2.2 4.0 -0.09 0.29 0.20 0.09 0.80
v′′ = 43

Table 4.1.
Enhancement of decay of |Ψ−〉 across several vibrational levels. Note that
d2R(v′′) is always negligible.

that molecule decays to a stable state or to a pair of free atoms. An interesting feature

of these spectra is that the |ψ+〉 PA resonance, whose primary constituent is the bare

2(1) v = −5 J = 1 state, is stronger in trap loss (22% trap loss) than the |ψ−〉 line (12%

trap loss), while the |ψ−〉 resonance is stronger than |ψ+〉 in the REMPI spectra. In the

following, we apply a simple model to characterize this.

Using the fractional losses of 22%, 12% and the lead of Ref. [70], we calculate that the

PA rate to the 2(1) v = −5 J = 1 state, |Ψ+〉, is R+
PA = 1.9 (0.8)× 106 molecules/second

and the PA rate to the 4(1) v = −16 J = 1 state, |Ψ−〉, is R−PA = 1.1 (0.5) × 106

molecules/second. The ratio of PA strengths, R+
PA/R

−
PA, is 1.83 (0.15). (Most of the error

in the individual PA rates is correlated, so the uncertainty in this relative measurement

is much less than the quadrature sum of the individual uncertainties.)

We can calculate the PA rate using a quantum perturbative framework [61]

RPA =

(
3λ2

th

2π

) 3
2 h

2
nLinRbAΩ|〈ΨS|~d|ΨPA〉|2. (4.4)

In Eq. (4.4), |ΨS〉 is the scattering wavefunction, λth is the thermal de Broglie wavelength,

nLi and nRb are the atom densities and AΩ are the radial factors for the two states and

laser polarization. |ΨPA〉 is either |Ψ−〉 or |Ψ+〉, as given by Eqs. (4.1) or (4.2). Since

none of the other nearby 4(1) vibrational levels have been observed in PA spectra, we

assert that the cross section for PA to the deeply bound unperturbed |Ψ4(1)〉 state is very
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small. The other various factors in Eq. (4.4) are the same for |Ψ+〉 and |Ψ−〉, so the

relative PA rates are related approximately through

R+
PA

R−PA
=
|〈ΨS|~d|Ψ+〉|2

|〈ΨS|~d|Ψ−〉|2
'
c2|〈ΨS|~d|Ψ2(1)〉|2

d2|〈ΨS|~d|Ψ2(1)〉|2
' c2

d2
(4.5)

Using |c| = 0.84 and |d| = 0.53 that we determined in Sec. 4.1, we estimate that the ratio

of the trap loss peaks should be c2

d2 = 2.5 (0.6), which is indeed consistent with our trap

loss data.

We next examine the decay of excited state molecules to stable molecules, whose

wavefunctions we designate |Ψv′′〉. We write the decay strength as

B+(v′′) = |〈Ψv′′ |~d|Ψ+〉|2 = c2|〈Ψv′′|~d|Ψ2(1)〉|2

+ 2cd|〈Ψ2(1)|~d|Ψv′′〉〈Ψv′′ |~d|Ψ4(1)〉|+ d2|〈Ψv′′ |~d|Ψ4(1)〉|2, (4.6)

and

B−(v′′) = |〈Ψv′′ |~d|Ψ−〉|2 = d2|〈Ψv′′|~d|Ψ2(1)〉|2

− 2cd|〈Ψ2(1)|~d|Ψv′′〉〈Ψv′′|~d|Ψ4(1)〉|+ c2|〈Ψv′′ |~d|Ψ4(1)〉|2, (4.7)

where 〈Ψv′′ |~d|Ψ2(1)〉 and 〈Ψv′′ |~d|Ψ4(1)〉 are the dipole transition matrix elements connect-

ing the v′′ vibrational state of X 1Σ+ or a 3Σ+ to the bare 2(1) v = −5 and 4(1) v = −16

states. Not shown in these equations are (1) an overall normalization factor, or (2)

Hönl-London factors. The Hönl-London factors are based on the angular momenta of

the excited and final states which are identical for the decay from the 2(1) state and the

4(1) state and will cancel in the ratio. The ratio of these decay strengths becomes

B+(v′′)

B−(v′′)
' c2 R2(v′′) + 2cdR(v′′) + d2

d2 R2(v′′)− 2cdR(v′′) + c2
, (4.8)

where R(v′′) = 〈Ψv′′|~d|Ψ2(1)〉/〈Ψv′′ |~d|Ψ4(1)〉 is the ratio of the dipole transition matrix

elements.

We determine this ratio B+(v′′)/B−(v′′) for individual final states from the REMPI

and trap loss spectra, and give three examples in Table 4.1. R−CM and R+
CM (column 2)

are the cold molecule formation rates observed in REMPI in Fig. 4.2(a) when the PA

laser is tuned to the |Ψ−〉 or |Ψ+〉 peak. There we observed that approximately twice

as many molecules were formed in deeply bound singlet states when photoassociating
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to |Ψ−〉 compared to |Ψ+〉 (this is difficult to see in Fig. 4.2(a) because of saturation

effects). The cold molecule formation rate RCM is related to the PA rate RPA through

RCM = RPA × B(v′′). Using R+
PA/R

−
PA = 1.83, as discussed above, we determined the

relative decay strength B+(v′′)/B−(v′′) for spontaneous decay to one of the vibrational

states of X 1Σ+ or a 3Σ+ (column 3 in this table). We solve Eq. (4.8) for the ratio of

transition moments R(v′′), using |c/d|2 = 2.5, and list these values in Table 4.1 as well.

We show here only one of the solutions for R(v′′). The other root is a value of order 2,

which seems unreasonable since other unmixed 2(1) resonances lead to relatively small

numbers of stable molecules.

Finally, we examine the decay strength B+(v′′) and B−(v′′), as computed using

Eqs. (4.6) and (4.7). We show each of the terms within these equations individually

in Table 4.1. Recall that we have omitted an overall normalization in these terms, as we

are only examining their relative sizes. There are some notable features to these results.

First, in any of the examples shown, for either of the PA resonances, the |〈Ψv′′ |~d|Ψ4(1)〉|2

contribution is the most significant, while the |〈Ψv′′ |~d|Ψ2(1)〉|2 contribution is insignifi-

cantly small. Second, the cross term 2cdR(v′′) makes a strong (secondary) contribution

to each term. This cross term contribution is of opposite sign for the two PA reso-

nances. That is, if it adds to the decay strength of the Ψ− resonance, it diminishes the

decay strength of the Ψ+ resonance. Finally, observing the relative magnitudes of these

terms, we note that the cross term is approximately half the magnitude of the strong

|〈Ψv′′ |~d|Ψ4(1)〉|2 contribution for the Ψ+ resonance, strongly reducing this decay path.

This is consistent with our observations, in which we note very low generation of X 1Σ+

or a 3Σ+ molecules when tuned to the |Ψ+〉 PA peak.

A simple conceptual model that summarizes this analysis is thus. There is a fixed

relative phase between the 4(1) and 2(1) vibrational wavefunctions that leads to construc-

tive interference in the |Ψ−〉 decay path and destructive interference in the |Ψ+〉 decay

path. A similar scenario was observed in NaK in coupled (3) 3Π and (3) 1Π states [71].

4.3 Decay from 4(1) PA resonance

At this point, we had accomplished one of our two large scale spectroscopic goals, by

fixing the well depth of the X 1Σ+ potential to about 1 GHz uncertainty. Reviewing other
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bi-alkali experiments that have observed 2(1) - 4(1) mixing in PA [10, 14], we discover

that they were able to populate the ro-vibronic ground state directly via PA. We will

make a brief diversion in the rest of this chapter to see if we populate and can detect

ground state molecules as well.

We show in Fig. 4.4 the calculated Franck Condon factors for the spontaneous decay

of the 4(1) v = −16 state to the various v′′ levels of the X1Σ+ state. We calculated these

FCFs using PECs from Ref. [54] and LEVEL 8.0 [72]. This plot suggests that the v′′ = 43

level is the most highly populated, with a FCF of 0.35, and shows a secondary but still

significant FCF of 0.13 for the v′′ = 42 level. A broad pedestal of vibrational levels down

to v′′ = 2 is also populated to a lesser degree. Our observations here are in agreement

with the calculated FCFs. We used a second dye, LDS 698 which lases from 14050−15050

cm−1, to study population in v′′ = 38−45. We observed very strong population of v′′ = 43

and to a lesser extent v′′ = 42. Our RE2PI data on v′′ = 42 and 43 will be presented in

Chapter 6. Unfortunately, direct comparison of that data to the REMPI data presented

in this chapter on deeply bound vibrational levels is difficult. The two different dyes

have different powers and modeling RE2PI is very difficult (modeling REMPI isn’t any

easier). At this point in time, our best estimate for the production rate of v′′ = 43 is

Rv′′=43 = R−PAFCF43(1.15c2) = 3× 105 molecules/second. The factor 1.15 represents the

enhancement factor for bound state decay discussed in Sec. 4.2. This production rate is

Fig. 4.4. Calculated Franck - Condon factors using PECs from Ref. [54]
with assistance from LEVEL 8.0 [72] for the decay path from the PA
state, 4(1) v = −16, to X 1Σ+ v′′. Notice the maximum, v′′ = 43.
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Fig. 4.5. REMPI (blue solid) and RE2PI (red dashed) scan, the PA laser
was locked to the 4(1) v = −16 J = 1 line. Black numbers and dot-
dashed lines label B 1Π v′ ← v′′ = 2 transitions while green numbers
and solid lines label B 1Π v′ ← v′′ = 0 transitions. No transitions from
v′′ = 43 show up in our REMPI (or RE2PI) data taken with the R590
dye. All transitions observed can be assigned to X 1Σ+ v′′ = 0 - 20 and
a 3Σ+ v′′ = 6 - 13. The RE2PI data is necessary because for deeply
bound initial states ionization by REMPI is out of range energetically.
For example, v′ = 1, 2, 3 ← v′′ = 0 and v′ = 5 ← v′′ = 2 on this plot
would not be observable without RE2PI (even though there are nearby
visible peaks in REMPI).

quite large and we expect that it could be increased further by increasing the PA power

or MOT sizes.

To explore the deeply bound vibrational levels populated after PA through the 2(1)

- 4(1) mixed states, we used REMPI and RE2PI with the R590 dye which lases from

17050 − 18150 cm−1. We show a typical REMPI scan in Fig. 4.5. In this spectrum, we

scan νc, the REMPI or RE2PI laser frequency, with the PA laser locked to the 4(1) v =

−16 J = 1 line. We have observed most of these REMPI lines previously in our studies

of photoassociation through other vibrational lines of the 2(1) and 4(1) series [56, 59].

Our current focus is finding population of low-lying vibrational levels. For example, we

have marked the series B 1Π v′ ← v′′ = 2 transitions with black dashed vertical lines in

Fig. 4.5. The global maximum occurs at v′ = 14← v′′ = 2 (not shown). The progression

provides strong evidence of population of the v′′ = 2 vibrational state.

In contrast, population of the v′′ = 0 vibrational state is difficult to observe in the

RE2PI spectra of Fig. 4.5. The 4(1) v = −16 J = 1 state decays weakly to the ground

vibrational state, predicted to be around 100 molecules/second, compared to other vibra-

tion levels such as v′′ = 2, predicted to be around 2×104 molecules/second. Furthermore,

the candidate lines in Fig. 4.5 that might originate from the v′′ = 0 vibrational state,
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Fig. 4.6. Evidence of X 1Σ+ v′′ = 0 J ′′ = 0 population. Depletion spectra
of the A 1Σ+ v′ = 10 J ′ = 1 ← v′′ = 0 J ′′ = 0 transition. The PA laser
is locked to the 4(1) v = −16 J = 1 peak, the RE2PI laser was tuned to
the B 1Π v′ = 3← v′′ = 0 transition shown in Fig. 4.5. Here we extract
a depletion of 0.19 (0.04) ions/shot.

labeled by green solid lines, are obscured by nearby stronger lines. For example, the

B 1Π v′ = 2 ← v′′ = 0 transition is much weaker than it looks on Fig. 4.5 because it is

right next to a much stronger v′′ = 4 RE2PI transition.

In order to identify these weak lines we have employed a form of depletion spec-

troscopy [63], in which we introduce a CW laser beam tuned to a A 1Σ+ v′ ← X 1Σ+ v′′

transition [73]. For these measurements, we use the 150 mW ECDL to photoassociate

the molecules, and the more tunable Ti:Sapphire laser to drive the depletion transition.

The PA and depletion beams copropagate, and are focused to a 200 µm diameter spot

size in the MOT region. In Fig. 4.6, we show depletion of a v′′ = 0 line. For this depletion

spectrum, we tuned the RE2PI laser to the B 1Π v′ = 3← v′′ = 0 transition, and varied

νd, the depletion laser frequency, through the A 1Σ+ v′ = 10, J ′ = 1 ← v′′ = 0, J ′′ = 0

transition. Each data point is the average of 10 measurements of the total ion count

accumulated over 100 laser pulses, and error bars show the 1σ standard deviation. We

fitted our depletion data to a Lorentzian line shape with a commercial fitting program,

extracting the height of the Lorenztian to be -0.19 (0.04) ions/shot. The data in Fig. 4.6

clearly shows population in the ground state v′′ = 0 vibrational level.

We have two ways to estimate the v′′ = 0, J ′′ = 0 production rate. First, we measured

the PA rate and calculated the branching ratio. This gives us a v′′ = 0, J ′′ = 0 production

rate of 70 (50) molecules/second. Second, we measured the cold ion production rate in

REMPI. To get the cold molecule production rate: RCM = N
τεdPion

, we estimate τ , the
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transit time in the REMPI beam, to be 14 (5) ms, εd, the detector efficiency, to be

about 50 (20) % and Pion, the ionization probability, to be about 5+45
−4 % which gives

us a generation rate of 600 molecules/second. Due to the large uncertainties in τ , εd,

and Pion, the uncertainty of RCM is comparable to its magnitude. While none of the

quantities in this estimate are very exact, the uncertainty in Pion dominates and could

fall anywhere between 1 % and 50 %. Within the uncertainties, these two estimates of

the production rate agree and we report the average, rounded to the nearest digit, 300

molecules/second.
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5. SPECTROSCOPY OF THE D 3Π STATE

Now we will turn our attention to our second spectroscopy goal, to find suitable inter-

mediate states for a stimulated Raman transfer (STIRAP) to X 1Σ+ v = 0, J = 0 from

a 3Σ+ v = 14, K = 0 (the least bound triplet state). For efficient STIRAP, we need an

excited state with three properties. First, it needs both singlet and triplet spin character.

Second, the state needs to have a reasonable FC overlap with weakly bound triplet states

and third, it needs reasonable overlap with deeply bound singlet states.

Before delving into our experiments, let us review how other teams have executed

STIRAP in their bi-alkali experiments, as shown in Table 5.1. By far the most common

singlet-triplet mixed state pair is B 1Π - c 3Σ+, which is the Hund’s (a) labeling of the

2(1) - 4(1) interaction. However, as also seen in Table 5.1, this state pair would have a

second photon around 550 nm. We would like to use two diode lasers for STIRAP and

there are no diode lasers around 550 nm. Looking at the other possibilities, we have the

d 3Π - D 1Π and A 1Σ+ - b 3Π0+ state pairs. We will investigate the d 3Π - D 1Π state

pair in this chapter and the A 1Σ+ - b 3Π0+ state pair in Chapter 6.

State Pair Previous Uses Laser 1 (Diode?) Laser 2 (Diode?)

B 1Π− c 3Σ+
KRb [9], LiNa [28],

543 - 585 nm (N) 795 - 850 nm (Y)
NaRb [29], NaK [30]

A 1Σ+ − b 3Π RbCs [31] 750 - 860 nm (Y) 1330 - 1720 nm (Y)

d 3Π−D 1Π 500 - 520 nm (Y) 700 - 740 nm (Y)

Table 5.1.
Summary of STIRAP pathways used in other molecules, along with the
laser wavelength ranges required in LiRb and availability of laser diodes.
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5.1 Spectroscopy details

We used two techniques, RE2PI and depletion spectroscopy, to measure the d 3Π

bound states relative to a 3Σ+ v = 13 or v = 11. Ultimately, we combined the depletion

data in this chapter, with the PA data from Chapter 3 to reference all of the states

measured in this chapter to the scattering continuum. In RE2PI spectroscopy, we tune

the PA laser to either the v = −11 or v = −8 lines of the 2(0−) long range state, from

which spontaneous decay leads primarily to the vibrational levels of the a 3Σ+ state [56].

We count the number of ions detected over the course of 100 laser pulses, and tune the

laser frequency νc of the PDL in 0.35 cm−1 increments. We record the number of ions

detected, normalized by the number of laser pulses, as a function of the PDL frequency

νc.

In order to reach the full range of vibrational levels of the d 3Π states, we used two

different laser dyes in the PDL. An LDS 698 dye covered the 13950 - 14950 cm−1 range,

and an LDS 750 dye covered from 13300 to 13950 cm−1. These dyes are difficult to work

with because of short lifetimes and low power output. The LDS 750 dye in particular

was very troublesome: it has a lifetime ≤8 hours, produces low power (≤0.5 mJ/pulse for

much of its range) and because it has a very broad pulse width (i.e. lots of spontaneous

emission) the baseline noise of our RE2PI spectra is enhanced over what we have observed

with other dyes.

The 2(0−) v = −11 PA line at νa = 12516.89 cm−1 is relatively weak, but it decays

almost exclusively to a single vibrational level (v′′ = 11) of the a 3Σ+ state. This facil-

itates straight-forward identification of the vibrational levels of the intermediate state.

Unfortunately, several vibrational levels of the d 3Π state do not appear in this spectrum,

presumably due to poor Franck-Condon overlap with the v′′ = 11 state. This problem was

even more evident when using the LDS 750 dye in the PDL. For this reason, we collected

several RE2PI spectra using the stronger 2(0−) v = −8 PA resonance νa = 12557.60

cm−1. This line decays to a wider spread of vibrational levels, giving more complete

coverage of the vibrational lines of the d 3Π states, but also making our analysis more

difficult, due to the increased congestion of the spectra and frequent overlap between

individual lines.
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To explore the deeply-bound levels of the d 3Π states, we used a depletion spectroscopy

technique. In these measurements, we used the 150 mW ECDL tuned to the 2(0−) v = −5

PA resonance at νa = 12575.05 cm−1 [56]. Spontaneous decay of this state populates the

a 3Σ+ v′′ = 13 state. We tune the PDL laser frequency to the (3) 3Π0 v′ = 6 ←

a 3Σ+ v′′ = 13 one-color resonantly-enhanced two-photon ionization (REMPI) transition

at 17736.6 cm−1 [56]. We then tune the frequency of the Ti:Sapphire laser into resonance

with bound-to-bound transitions from the a 3Σ+ v′′ = 13 state to ro-vibrational levels in

the d 3Π state. Exciting these transitions depletes the population of the a 3Σ+ v′′ = 13

state, causing the REMPI signal to decrease.

5.2 RE2PI Measurements

We show an example of a RE2PI spectrum in Fig. 5.1. Transitions observed in this

spectrum are d 3ΠΩ v′ ← a 3Σ+ v′′ = 11. We have marked the transitions to the Ω = 2

progression with black solid lines, Ω = 1 with blue dashed lines, and Ω = 0 with green dot-

dashed lines. Ω is the total electronic angular momentum, orbital L + spin S, projected

onto the internuclear axis. The numerical label for each peak is the vibrational number

v′ of the d 3ΠΩ state. We have also marked three lines in this spectrum corresponding to

transitions to the D 1Π state with red dotted lines.

From the spectrum of these d 3Π states, we observe the typical hierarchy of line

spacings: the vibrational splitting is large (on the order of 100 cm−1 for low vibrational

Fig. 5.1. Subsection of the RE2PI spectra. The PA laser is tuned to the
2(0−) v = −11 resonance, from which spontaneous decay is primarily to
the a 3Σ+ v′′ = 11 state. Most of these lines are d 3ΠΩ v

′ ← a 3Σ+ v′′ = 11
transitions, where v′ is labeled on individual lines. From top to bottom:
black solid lines label transitions to Ω = 2, blue dashed lines label tran-
sitions to Ω = 1, green dot-dashed lines label transitions to Ω = 0. Also
shown (red dotted lines) are three D 1Π v′ ← a 3Σ+ v′′ = 11 transitions.
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quantum number v′, and decreasing with increasing v′), and the spin-orbit splitting

between different Ω states is smaller (on the order of 30 cm−1). The rotational splitting

for low J ′ (on the order of 0.1 cm−1) is too small to be resolved in these RE2PI spectra

since the spectral resolution of the PDL is ∼0.5 cm−1.

The appearance of transitions belonging to vibrational levels of the D 1Π electronic

state in Fig. 5.1 is evidence of mixing between the D 1Π and the d 3Π1 potentials near

an avoided crossing between the two states. The energy of these D 1Π states is known

from Refs. [51, 54]. State mixing gives these states partial character of each electronic

state, which in this case manifests itself through strong transitions from a triplet state

(i.e. a 3Σ+ v′′ = 11) to singlet states (D 1Π v′ = 6, 7, and 8). This state mixing also adds

D1Π character to the d 3Π1 states, so one should expect the nearby d 3Π1 states to appear

in the singlet spectra. This expectation is borne out in the spectrum shown in Fig. 5.2.

This spectrum is a REMPI scan generated in our system after photoassociating ultracold

LiRb molecules through a 2(1) - 4(1) mixed state at νa = 12574.85 cm−1 [68], which

spontaneously decays to vibrational levels of the X 1Σ+ ground electronic state. The

spectrum in Fig. 5.2 primarily shows transitions to low-lying D 1Π vibrational levels from

X 1Σ+ v′′ = 10. We also observe in this spectrum d 3Π1 v
′ = 4, 5, and 6← X 1Σ+ v′′ = 10

transitions. We chose X 1Σ+ v′′ = 10 because it is strongly populated by spontaneous

decay of the 2(1) - 4(1) PA resonance and transitions to deeply bound D 1Π vibrational

levels are clearly identified. We can estimate the degree of mixing based on the relative

strength of the different REMPI peaks. The D 1Π v′ = 7← X 1Σ+ v′′ = 10 transition is

twice as strong as the d 3Π1 v
′ = 5← X 1Σ+ v′′ = 10 transition so there is twice as much

singlet character to D 1Π v′ = 7 as d 3Π1 v
′ = 5. Following the same procedure that we

have used in the past [68], we can estimate the interaction strength to be about 7 cm−1.

Interestingly, this rough estimate is consistent with the following simple perturbative

argument. The spin-orbit interaction responsible for the state mixing can be estimated

as about one half the spin orbit mixing in atomic rubidium [74], or about 120 cm−1. The

Franck - Condon factor (FCF) between D 1Π v′ = 7 and d 3Π1 v
′ = 5, as calculated

by LEVEL 8.0 [72] using the PEC from [64], is about 0.08 and thus the strength of

interaction between these states should be approximately 10 cm−1. We have applied this

perturbative analysis to each of the vibrational levels of the d 3Π1 state (not including

v′ = 5), and find that each contains some small component of D 1Π perturber state, on
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Fig. 5.2. Subsection of REMPI data with the PA laser tuned to the
4(1) v = −16 J = 1 resonance [68], while scanning the REMPI laser
frequency, νc. Transitions are labeled as d 3Π1 v

′ ← X 1Σ+ v′′ = 10
(blue dashed) and D 1Π v′ ← X 1Σ+ v′′ = 10 (red dotted). The inset
shows confirmation of the assignments with depletion spectroscopy. The
orange curve in the inset is the REMPI data retaken in the presence of a
depletion laser tuned to the A 1Σ+ v′ = 25 J ′ = 1← X 1Σ+ v′′ = 10 J ′′ =
0 [73] transition; the reduction in peak height confirms the assignments.
Because the depletion laser reduces the population available for REMPI in
both peaks, they must have the same initial state, from which we conclude
that we can access triplet REMPI resonances from singlet states.

the order of 10% or smaller. This is too small to be seen in the spectra of Fig. 5.1, but

could be sufficient to be useful in a Raman or STIRAP transfer of population to low

lying levels of the electronic ground state in the future.

Many of the RE2PI spectra that we collected are less clear than that shown in Fig. 5.1.

In particular, the peaks in the RE2PI spectra near the Rb 5S + Li 2P asymptote are

strong, but line congestion becomes significant, and clear identification of the lines in this

region becomes difficult. These assignments could probably be improved using a spec-

troscopic technique that is capable of higher spectral resolution, such as photoassociative

spectroscopy, but this was beyond the scope of the present work. Assigning peaks in the

RE2PI spectra was equally difficult for deeply bound vibrational states (i.e. v′ ≤ 4). In

fact we were unable to observe a clear cutoff in our RE2PI data corresponding to v′ = 0.

We attribute this to difficulties with the LDS 750 dye, specifically the large spontaneous

emission content in the pulse. To rectify this problem, we turned to a second set of

measurements, based upon depletion spectroscopy.
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5.3 Finding d 3Π v = 0

We used depletion spectroscopy to identify the lowest two vibrational levels of the

d 3Π state. We show depletion spectra for v′ = 0 in Fig. 5.3. To assign these data, care

must be taken with selection rules for radiative transitions in molecules. The two that

apply here are: ∆J = 0, ±1 and − ↔ +, that is positive symmetry states (with respect

Fig. 5.3. Depletion spectra of an a 3Σ+ v′′ = 13 REMPI line using the
d 3Π v′ = 0 state. The PA laser is locked to the 2(0−) v = −5 line, the
REMPI laser is tuned to the (3) 3Π0 v

′ = 6 ← v′′ = 13 transition at
νc = 17736.6 cm−1. Panel (a) shows a global view of our depletion data.
Panels (b) - (d) show the rotational structure of the depletion lines. All
repeatable transitions are labeled J ′ ← J ′′. For this J ′′ = 1 ground state,
we assign it to the K ′′ = 0, even parity manifold. The abscissa of (b) -
(d) is the depletion laser frequency offset by Edepletion = T0, Ω−T13 where
T0, Ω is the rotationless energy of the d 3ΠΩ v′ = 0 state, T13 and is the
binding energy of the a 3Σ+ v′′ = 13 state, assuming K ′′ = 0 is the correct
assignment.
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d 3Π0− d 3Π0+ d 3Π1 d 3Π2

v′ Tv Bv Tv Bv Tv Bv Tv Bv

0 13507.9 0.148 13508.8 13544.7 0.153 13577.6

1 13606.8 0.146 13607.6

Table 5.2.
Experimental assignments for Tv, the rotationless energy, and Bv, the
rotational constant, of the vibrational levels of the d 3Π state based on
our depletion data for v′ = 0 and 1. All numbers are in cm−1. Uncertainty
for all Tv is 0.5 cm−1, and uncertainty in Bv is 0.005 cm−1. Blank entries
denote rotational constants or energies that we were not able to measure
because of either the tuning range of our Ti:Sapphire laser or because of
bound to bound selection rules limited by our PA state.

to coordinate inversion) must transition to negative symmetry states and vise versa. The

initial state in this depletion transition is a 3Σ+ state, which is a strict Hund’s case

(b) state. As such, its rotational energy is determined by quantum number K, which

designates the total angular momentum of the molecule apart from spin, rather than the

total angular momentum (including spin) quantum number J . For this a3Σ+state, the

electronic spin is S=1, and levels with J = K + 1, K and K − 1, are nearly degenerate

for K ≥ 1. Additionally K determines the symmetry of the state. This is summarized

in Fig. 5.4, adapted and modified from Ref. [66].

The logic that leads to our assignments in Fig. 5.3 goes as follows. We start with the

depletion data on transitions to Ω = 1 shown in Fig. 4(c), which is extensive enough

to show that (1) the spectrum contains only these two peaks; (2) these two peaks are

the J ′ = 1 and 2 rotational states of Ω = 1 (we return to this identification later in this

paragraph); and (3) there is no peak corresponding to a transition to J ′ = 3. Since we

do see transitions to J ′ = 1 and 2, we know that we populate some mix of J ′′ = 0 and

1 belonging to either K ′′ = 0, 1, or 2. The presence of only two peaks suggests that

only one of these K ′′ levels is populated. We assign K ′′ = 0, based on (1) the expected

dominance of the s-wave scattering state, (2) the clear population in even-symmetry

ground states through two-photon couplings from the scattering state in other unrelated

measurements in our laboratory [67, 68], and (3) the absence of any peaks for J ′ > 2.
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Fig. 5.4. Rotational structure and parity of 3Σ+ and 3Π vibrational states,
the two states in red and green highlight the ground states we populate
at the beginning of the depletion process. Transitions from the populated
ground states to 3Π0+ and 3Π0− are shown by arrows. Transitions to the
positive symmetry levels of 3Π1 and 3Π2 do occur, but are omitted for
clarity. The rotational splitting in 3Σ+ is determined by E = BvK

′′(K ′′+
1) (which makes the J manifold within each K ′′ state degenerate) and in
3Π by E = Bv[J(J + 1)− Ω2]. Adapted and modified from Ref. [66]

The spacing between the two peaks in this spectrum should be 4B0, where B0 is the

rotational constant of the d 3Π v′ = 0 state, allowing us to determine B0 = 4.59 GHz.

This rotational constant agrees with the prediction from LEVEL 8.0 with PECs from

Ref. [64], which confirms our assignments of the d 3Π state and guides our interpretation

of the Ω = 0 data shown in Fig. 5.3(d), in which we see three transitions. The first two

are spaced by 6B0 (27.5 GHz), implying that these peaks are transitions to the negative

symmetry levels of the Ω = 0− electronic state, J ′ = 0 ← J ′′ = 1 and J ′ = 2 ← J ′′ = 1.

The absence of a peak for J ′ = 1 is consistent with the selection rule + 6↔ +. The

remaining transition in Ω = 0 must be the only allowed transition to Ω = 0+, that is

J ′ = 1 ← J ′′ = 1. There is only one transition in Ω = 2, which is trivial to identify as

J ′ = 2← J ′′ = 1.

This assignment suggests that the previous assignment of rotational quantum num-

ber of the different vibrational levels of the 2(0−) through which we photoassociate the
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molecules is incorrect. In Ref. [56,70], we had tentatively identified these states as J = 1,

which is an even parity state. In those works, however, we could observe only one ro-

tational state, so that rotational assignment was weak. It now appears that odd parity

J = 0 is a better assignment because we observe an even parity ground state, decay to

which can only come from an odd parity PA state. The symmetry of the J = 2 rotational

state is also odd, but we would expect J = 2 to lead to additional rotational structure

in the present measurements.

While this interpretation of the depletion data presented here is consistent with other

experimental data, it is not consistent with the available theory of the d 3Π state. The

theory from Ref. [64] predicts Ω = 0+ should be lower in energy than Ω = 0−, while our

interpretation of the data implies the opposite. One possible resolution to this problem is

that we have incorrectly identified the ground state rotational level. If our ground state is

K ′′ = 1 instead of K ′′ = 0, this would flip our Ω = 0+, 0− ordering. However, this would

require that p-wave is the dominant scattering partial wave, a scenario unsupported by

Refs. [67, 68] or the best available potential energy curves [54]. It is worth noting that

in the d 3Π state in RbCs, a close analog, Ω = 0− is lower in energy than Ω = 0+ [13].

Nevertheless, we find the poor agreement with theory unsettling.

We used these data to determine the spin-orbit splitting between the different Ω

progressions deep in the d 3Π well, and followed these progressions back to the asymptote

in our RE2PI data.

5.4 Discussion

We determine the vibrational binding energies and rotational constants of the states

seen in depletion spectroscopy, which we tabulate in Table. 5.2. We list in Table 5.3

the assignments and energy of each of the d 3Π states that we observe through RE2PI

and depletion spectroscopy. We also include in this table the energy difference between

adjacent states, which aids in the assignment of the lines.

The theoretical vibrational levels and spin-orbit splittings that we used to guide our

work and for comparison of results come from ab initio calculations by Korek et al. [64]

with aid from LEVEL 8.0 [72]. We found good overall agreement with these ab initio

results. The spin-orbit splittings for Ω = 0 to Ω = 1, predicted to be 21 cm−1, are
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d 3Π0 d 3Π1 d 3Π2

v′ Tv (cm−1) ∆E (cm−1) Tv (cm−1) ∆E (cm−1) Tv (cm−1) ∆E (cm−1)

0 13508.2 98.8 13545.2 99.1 13578.1 99.3

1 13607.0 94.9 13644.3 95.4 13677.4 92.0

2 13701.9 94.8 13739.7 92.0 13769.4 96.0

3 13796.7 87.3 13831.7 89.6 13865.4 88.1

4 13883.9 83.8 13921.3 83.5 13953.5 86.1

5 13967.7 80.5 14004.8 81.2 14039.6 80.9

6 14048.2 79.0 14086.0 78.1 14120.5 77.5

7 14127.2 74.8 14164.1 75.1 14198.0 75.2

8 14202.0 71.2 14239.2 71.6 14273.2 71.5

9 14273.2 71.5 14310.8 68.7 14344.7 68.0

10 14344.7 66.3 14379.5 64.8 14412.5 64.1

11 14411.0 64.2 14444.3 65.2 14476.6 63.0

12 14475.2 62.1 14509.5 59.4 14539.6 58.8

13 14537.3 59.4 14568.9 56.9 14598.4 55.8

14 14596.7 55.1 14625.8 54.7 14654.2 51.4

15 14651.8 51.4 14680.5 51.4 14705.6 46.2

16 14703.2 47.6 14731.9 44.3 14751.4 43.4

17 14750.8 47.0 14776.2 40.1 14795.2 37.9

18 14797.8 45.9 14816.3 35.5 14833.1 32.5

19 14843.7 25.2 14851.8 24.4 14865.6 23.9

20 14868.9 21.3 14876.2 16.6 14889.5 8.7

21 14890.2 10.7 14892.8 6.9 14898.2

22 14900.9 14899.7

Table 5.3.
Experimental assignments for the rotationless energy of the vibrational
levels of the d 3Π state based on our RE2PI data, aided by our depletion
data for v′ = 0 and 1. Uncertainty for all assignments is 0.5 cm−1. We
have referenced the term energies, Tv, to the Rb 5S + Li 2S asymptote.
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measured here to be 37 cm−1; for Ω = 1 to Ω = 2, they are predicted to be 38 cm−1, and

we found them to be 33 cm−1. For the spin-orbit splitting between the Ω = 0+ to Ω = 0−

states, however, we observe -0.9 cm−1, significantly less than the predicted 36 cm−1. Our

depletion data is unambiguous in establishing the Ω = 0+ to Ω = 0− splitting, and a

small Ω = 0+ to Ω = 0− splitting is consistent with observations of similar states like the

(3) 3Π state in LiRb [56] and in KRb [75].

We show the vibrational spacing, ∆E = Ev+1 − Ev vs v, of the different series in

Fig. 5.5. These data are in reasonable agreement with the predicted vibrational splittings

although there appears to be a nearly uniform difference of a few cm−1. We found that the

depth of the d 3Π potential (exp. value) is less than that predicted (th. value). We looked

extensively for another vibrational level below our assigned v′ = 0 level. We covered ±

10 cm−1 around the expected vibrational location with our depletion spectra, but found

no indication of a depletion resonance. The calculated FCF for the d 3Π v′ = 0 ←

a 3Σ+ v′′ = 13 transition is comparable to the FCF for the d 3Π v′ = 1← a 3Σ+ v′′ = 13

transition, which implies that if another vibrational level exists, we would have found it.

Fig. 5.5. Comparison of our extracted vibrational splitting to predicted
vibrational splitting. The circles represent our data, while the triangles
are predicted by ab initio curves [64]. Green markers label Ω = 0 (com-
pared to ab initio Ω = 0+) spacings. Blue markers are shifted by +20
cm−1 and label Ω = 1 spacings. Black markers are shifted by +40 cm−1

and label Ω = 2 spacings. We have shifted the Ω = 1 and Ω = 2 progres-
sions (+20 cm−1 and +40 cm−1) to make the different progressions more
visible.
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d 3Π0 d 3Π1 d 3Π2

Exp. Th. Exp. Th. Exp. Th.

Te (cm−1) 13459.2 (1.5) 13300.7 13497.5 (2.0) 13359.9 13528.0 (1.4) 13398.2

ωe (cm−1) 101.4 (0.7) 103.6 100.4 (0.9) 102.8 101.7 (0.6) 102.4

xe (10−3) 16.7 (0.8) 13.1 15.0 (1.0) 12.7 15.8 (0.7) 12.5

ye (10−3) 0.068 (0.028) -0.06 -0.038 (0.033) -0.10 -0.036 (0.026) -0.12

Be (cm−1) 0.148 (6) 0.159 0.153 (8) 0.159 0.159

Table 5.4.
Molecular vibrational constants fitted to our data, T (v) = Te + ωe(v +
1/2)−ωexe(v+1/2)2+ωeye(v+1/2)3 where T (v) is the rotationless energy
of the vth vibrational level. Additionally, Bv = Be − αe(v + 1/2), where
Bv is the rotational constant of the vth vibrational level. We set the αe
term to 0 because we had so few measurements of Bv and it is usually
much smaller than Bv; the uncertainty has been increased to account
for this. The uncertainty is given in parentheses. The theory values are
from fitting the bound states calculated by LEVEL 8.0 using PECs from
Ref. [64]. When fitting the experimental data, we used only the v′=0-19
to increase the accuracy.

Our extracted molecular constants are listed in Tab. 5.4. These provide an easy es-

timation of the spectral structure of the d 3Π states as well as a quick comparison to

theoretical predictions. As borne out in Fig. 5.5, there is good agreement between our

fitted harmonic constant, ωe, and the predictions. Additionally, there is good agree-

ment between the rotational constants, Be, extracted from the depletion spectra and

the predictions. However, there is considerably less agreement between our extracted

term energy, Te, and the predictions for reasons discussed previously. Additionally, it

is important to note that when we fitted the experimental data to determine Te, ωe, xe

and ye we used only v′=0-19. This increased the accuracy of the fit so that for these

vibrational levels our molecular constants reproduce our data with a standard deviation

of 2 cm−1. We believe most of the deviations are caused by experimental uncertainties on

determining the frequencies of the peaks, as well as small perturbations to state locations

caused by spin-orbit mixing.
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6. SPECTROSCOPY OF THE C 1Σ+, STATE AND A−B
COMPLEX

Continuing with our plan of mapping out possible diode-laser accessible STIRAP path-

ways, we study the A 1Σ+ and b 3Π0+ states in this chapter. However, we will first revisit

our RE2PI data on X 1Σ+ v′′ = 43. For a potential energy diagram of this experiment,

please consult Fig. 4.1.

6.1 C 1Σ+ State Spectroscopy

We make use of the population in the v′′ = 42 and 43 levels of the X 1Σ+ state,

formed by spontaneous decay after the PA step, to record the positions of the v′ = 26−45

vibrational lines of the C 1Σ+ state. To detect these molecules we use RE2PI with the

LDS 698 dye in the dye laser, which ionizes the molecules through the loosely bound

vibrational levels of the C 1Σ+ electronic state. Thus we are able to measure the energies

of the vibrational levels of the C 1Σ+ state relative to v′′ = 42 and 43.

As part of our work here, we measured the binding energies of v′′ = 42 and v′′ = 43

with the highest precision to date. In this project we measured the frequency of the

depletion transition B 1Π v′ = 20← X 1Σ+ v′′ = 43 to be 12711.71 (0.02) cm−1 [4(1) v =

−16 is the Hund’s case (c) labeling of the B 1Π v′ = 20 state]. In Ref. [68], the binding

Fig. 6.1. RE2PI spectra from v′′ = 42 and 43 to the C 1Σ+ electronic
state. Green solid lines and numbers label transitions C 1Σ+ v′ ← v′′ =
43; black dashed lines and numbers label transitions C 1Σ+ v′ ← v′′ = 42.
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Fig. 6.2. Depletion spectroscopy of RE2PI data on transitions from v′′ =
42 and 43 to the C 1Σ+ and D 1Π electronic states. For these data, the
blue solid trace is the original data from Fig. 6.1, while the red dashed
trace is the RE2PI data retaken in the presence of a depletion laser driving
the B 1Π v′ = 20 ← v′′ = 43 transition. Reduction of a peak height
in the presence of the depletion laser indicates that the initial state is
v′′ = 43. Assignments of these lines are labeled as follows: green, solid
lines, C 1Σ+ ← v′′ = 43; black, dashed lines, C 1Σ+ ← v′′ = 42; black,
dotted lines, D 1Π← v′′ = 42; green, dot-dashed lines, D 1Π← v′′ = 43.

energy of 4(1) v = −16 J = 1 was measured to be 12574.85 (0.02) cm−1; the difference

between these two frequencies gives us the binding energy, ν43 = −136.86 (0.02) cm−1.

This is in good agreement with, but of higher precision than, the prior measurements

by Ref. [54, 55] which measured a binding energy of ν43 = −137 (4) cm−1. Additionally

using our RE2PI spectra in Fig. 6.1, we extracted the energy difference between v′′ = 42

and v′′ = 43 to be 44.1 (0.1) cm−1, which compares favorably to the more accurate energy

difference from Ref. [54,55], 44.04 cm−1.

We show the RE2PI spectrum of v′ = 26 - 42 of the C 1Σ+ state in Fig. 6.1. Two

progressions dominate, one from v′′ = 42 and the other from v′′ = 43. They are spaced by

44.1 cm−1, precisely the energy difference between v′′ = 42 and 43 [55]. We have marked

these series in Fig. 6.1 with black dashed lines and green solid lines, respectively. The

integers indicate our assignments of the intermediate RE2PI state, which is a vibrational

level v′ of the C 1Σ+ state. The weak, unlabeled RE2PI lines in this spectrum originate

from v′′ = 38 − 41, which are also populated by the PA resonance we used. These

qualitative features are consistent with the calculation of the FCF for the spontaneous

decay from the PA state to X 1Σ+, which yields values for v′′ = 43 and 42 (0.35 and

0.13, respectively) much greater than for any other vibrational level [68]. For frequencies

significantly below the Rb 5S + Li 2P asymptote, the line density of the spectrum in
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Fig. 6.1 is very low allowing us to measure the energies of v′ = 26 − 40 twice, thus

resulting in 0.5/
√

2 = 0.3 cm−1 precision of the mean.

As the v′′ = 43 series converges on the Rb 5S + Li 2P asymptote, line congestion

increases. This occurs near νc = νD1 +|ν43| ' 15050 cm−1, where νD1 = 14904 cm−1 is the

frequency of the atomic Li D1 line. To assign these peaks we used depletion spectroscopy

to identify sets of RE2PI peaks that share a common initial state, as shown in Fig. 6.2.

For these data, the blue solid trace is the original data from Fig. 6.1, while the red

dashed trace is the RE2PI data retaken in the presence of a depletion laser driving the

B 1Π v′ = 20 ← v′′ = 43 transition. The peaks originating from v′′ = 43 (marked by

the green solid and green dot-dashed lines in Fig. 6.2) largely vanish upon introduction

of the depletion laser. Careful inspection of Fig. 6.2 shows that all the strong peaks

disappear after we introduce the depletion laser; this is consistent with the picture told

by FCFs, that is there is three times more population in v′′ = 43 than in v′′ = 42. The

peak for the C 1Σ+ v′ = 45 ← v′′ = 43 is tentative, since the energy of this peak is

above the asymptote. Still, we note that the peak is strongly depleted by the depletion

laser, the spacing is about right for this progression, and the long range-potential for

the C 1Σ+ PEC is expected to be repulsive [64], that is C6 > 0, which could lead to

a quasi-bound state above the asymptote. The D 1Π potential from Ref. [58] provides

a good guide in this region, with an average uncertainty of 2.5 cm−1, which allows us

to identify candidate lines for transitions to the C 1Σ+ state. The unassigned lines in

Fig. 6.2 most likely result from transitions D 1Π v′ = 18 − 20 ← v′′ = 38 − 41; these

initial states are weakly populated by the PA resonance, and the calculated FCFs for

these lines are strong.

For v′ < 13, we used the R590 dye in the pulsed dye laser, and excited from the

v′′ = 2 or 3 level of the ground state. Otherwise, the measurements were similar to

those described above. The density of lines in these spectra was great enough to require

depletion spectroscopy to make line assignments with confidence. Table 6.1 contains a

summary of our observed energies of the v′ = 7, 9, 12, 13 and 26− 45 vibrational levels

of the C 1Σ+ state.

There have been no previous direct observations of the C 1Σ+ v′ states. In Ref. [58],

the authors observed perturbations to the rotational lines of the B 1Π ← X 1Σ+ spec-

trum, from which they extracted the binding energies of C 1Σ+ v′ ' 0−13, and calculated
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v′ Tv (cm−1) ∆E (cm−1) v′ Tv (cm−1) ∆E (cm−1)

7 12131.2 33 14420.6 60.0

9 12344.2 34 14480.6 57.3

12 12655.8 102.4 35 14537.9 55.5

13 12758.2 36 14593.4 52.6

37 14646.0 50.0

26 13931.3 77.6 38 14696.0 49.9

27 14008.9 74.4 39 14745.9 44.9

28 14083.2 72.5 40 14784.9 38.9

29 14155.7 69.5 41 14820.1 32.0

30 14225.3 68.3 42 14852.1 27.8

31 14293.6 64.8 43 14879.9 20.2

32 14358.4 62.3 44 14900.1 15.4

45 14915.5

Table 6.1.
Measured vibrational energies of the C 1Σ+ electronic state. The uncer-
tainty in Tv is 0.5 cm−1 for v′ = 7 − 13 and 40 − 45 and is 0.3 cm−1 for
v′ = 26−40. The vibrational numbering was chosen to smoothly connect
to the deeply bound vibrational levels measured in Ref. [58]. Energies
are referenced to the Rb 5S + Li 2S atomic asymptote.

a C 1Σ+ PEC. We see good agreement with the PEC of Ref. [58] for v′ < 13. We fitted

the C 1Σ+ v′ = 7− 40 line positions listed in Table 6.1 to

T (v) = Te + ωe(v + 1/2) (6.1)

−ωexe(v + 1/2)2 + ωeye(v + 1/2)3,

and extracted both the term energy Te and the vibrational constants, and made a smooth

connection across the gap from v′ = 13 − 26, which lead to the vibrational numbering

we report. The energies of states v′ = 41− 45 do not fit Eq. (6.1) well and were omitted

from the fit. We present the term energy and molecular constants in Table 6.2.

Recalling from our list of unknowns and goals at the start of Chapter 3, we notice

that this is the first observation of any weakly bound X 1Σ+ v′′ levels with REMPI.
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Further, this observation demonstrates why earlier efforts failed: FCFs. The FCFs for

the C 1Σ+ ← X 1Σ+ transition get large starting around v′′ = 45 and for other states

that could be accessed by the R590 dye, like (4) 1Σ+, the FCFs are orders of magnitude

worse.

6.2 A 1Σ+ - b 3Π0+ Spectroscopy

In this section, we discuss a set of measurements in which we use depletion spectra

to identify new excited states. This is in contrast to the previous section where we used

depletion spectra only to identify common initial states. In total we deplete two REMPI

transitions exciting deeply bound X 1Σ+ ground states to the A 1Σ+ v′ = 0− 29 and the

b 3Π0+ v′ = 8 − 18 levels. For A 1Σ+ v′ = 19 − 29 states, we used v′′ = 10 as the initial

state for depletion, and tuned the REMPI laser to the D 1Π v′ = 4← v′′ = 10 transition.

For A 1Σ+ v′ = 0− 18 and b 3Π0+ v′ = 8− 18 states, we used v′′ = 2 as the initial state,

and tuned the REMPI laser to the B 1Π v′ = 14← v′′ = 2 transition. We were unable to

C 1Σ+

Exp. Exp. [58] Th. [64]

ωe (cm−1) 115.4 (0.9) 113.8 (0.2) 113.4

xe × 103 3.1 (0.4) 2.3

ye × 106 -78 (5) -87

Te (cm−1) 11288 (13) 11302 (4) 11237.4

Table 6.2.
Molecular constants fitted to our data, compared to fits of other exper-
iments [58] or to theoretical predictions from ab initio calculations from
Refs. [76] and [64]. The state energies are given by Eq. (6.1). For fitting
C 1Σ+ we omitted v′ = 41 − 45 because the energies of these states fall
outside the range over which Eq. (6.1) is valid. When fitting b 3Π0+ , the
vibrational numbering is uncertain since we have not observed v′ < 8. We
chose vibrational numbering to force a well depth between the two ab ini-
tio predictions. Additionally, we omitted v′ = 10, 12, 14 and 16 from the
fit because these levels are strongly perturbed, as shown in Fig. 6.3(b).
For these data, a value of ye is not significant and not included in the
table.
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search for v′ < 8 of the b3Π0+ , which fall outside the tuning range of our Ti:Sapphire laser.

The A1Σ+ and b3Π0+ series are readily distinguishable since the A1Σ+ lines are extremely

power broadened. (For example, the linewidth of A 1Σ+ v′ = 2 ← v′′ = 2 transition

was well in excess of 30 GHz for a depletion laser power of ∼ 100 mW.) In fact, their

width greatly facilitated their search, with guidance from the ab initio calculations of

Ref. [64]. Such broad linewidths of the peaks allowed us to increment the depletion laser

frequency in 10 GHz steps when searching for resonances. Then, we made low intensity

measurements of the line positions to remove any line shifts caused by saturation effects.

We tabulate the energies of the A 1Σ+ v′ J ′ = 1 states in Table 6.3, and the energies of

the b3Π0+ v′ J ′ = 1 states in Table 6.4.

The population distribution of the initial states limits excited states accessible with

the depletion laser. Since the ground state molecules are mostly in the J ′′ = 0 rotational

state [68], selection rules allow optical transitions to J ′ = 1 rotational states. Transitions

from J ′′ = 2 → J ′ =1 or 3 are barely detectable above the shot noise level, so we are

unable to determine the rotational constants of the excited state. Additionally we are

limited by the spin of our molecules starting in the X 1Σ+ state. For transitions to

b 3ΠΩ, where Ω = 0+, 0−, 1, and 2, only Ω = 0+ peaks appear in the spectra, borrowing

strength from the nearby A 1Σ+ vibrational levels. Ω is the projection of the total

electronic angular momentum (orbital plus spin) onto the internuclear axis. Transitions

to Ω = 0− or 2 are not allowed. Transitions to Ω = 1 are possible due to second-order

spin-orbit mixing with mixed A 1Σ+ − b 3Π0+ states, but they are too weak to observe.

In Fig. 6.3, we show the experimental and theoretical [64] energy spacing between

the vibrational lines of (a) the A 1Σ+ series and (b) the b 3Π0+ series. In this figure,

red triangles are the experimental data, blue circles are the theoretical data, vertical

black dashed lines guide the eye between the two datasets and dashed red lines are the

prediction from the molecular constants presented in Table 6.6. In order to determine

these points, we first converted the potential energy curves of Ref. [64] from adiabatic to

diabatic, and then used LEVEL 8.0 [72] to calculate the positions of the J ′ = 1 eigenstate

of the different vibrational levels. The vibrational line spacings of the A 1Σ+ state that

we observe show a smooth, gradual decrease for high vibrational states (v′ > 20), as

expected. For lower vibrational numbers, however, there are large shifts in several of the

lines, and moderate shifts in others. For example, the energy of v′ = 2 line is shifted
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up by ∼10 cm−1 above the general trend; in Fig. 6.3(a) this appears as Tv′=2 − Tv′=1

is too large by nearly 10 cm−1 while Tv′=3 − Tv′=2 is too small by 10 cm−1. Shifts of

nearby vibrational lines, v′ = 10 and 12, of the b 3Π0+ state in the opposite direction

suggest strong mixing between the A 1Σ+ and b3Π0+ state through spin-orbit interactions.

These perturbations recur over a rather large range of levels due to near coincidence

between three times the vibrational spacing of the A 1Σ+ state with two times the

vibrational spacing of the b 3Π0+ state. We will discuss these perturbations in more

detail in the next section. If we remove the most strongly perturbed vibrational states,

the predicted vibrational spacings from the ab initio calculations are in good agreement

with the remaining observed spacings. This is similar to our experience with other states

v′ Tv + 2 Bv (cm−1) ∆E (cm−1) v′ Tv + 2 Bv (cm−1) ∆E (cm−1)

0 5808.10 122.52 15 7492.70 108.41

1 5930.62 127.55 16 7601.10 104.31

2 6058.17 104.47 17 7705.41 107.04

3 6162.64 117.18 18 7812.45 105.84

4 6279.82 106.67 19 7918.29 104.34

5 6386.50 118.75 20 8022.63 104.44

6 6505.25 111.78 21 8127.07 103.83

7 6617.02 110.61 22 8230.90 103.14

8 6727.63 111.01 23 8334.04 102.90

9 6838.64 110.88 24 8436.95 102.84

10 6949.52 106.71 25 8539.78 100.67

11 7056.23 111.41 26 8640.45 101.80

12 7167.64 110.58 27 8742.26 101.80

13 7278.21 104.49 28 8844.06 97.97

14 7382.65 110.04 29 8942.03

Table 6.3.
Experimental assignments for the location of A 1Σ+ v′ J ′ = 1 based on
our depletion data. The uncertainty for all assignments is 0.02 cm−1.
Energies are referenced to the Rb 5S + Li 2S atomic asymptote.
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Fig. 6.3. Comparison of theoretical vibrational spacings (blue circles) to
our measurements (red triangles) for (a) A 1Σ+ and (b) b 3Π0+ . Black
dashed vertical lines connect datasets to guide the eye. The dashed red
line is the fit using Eq. (6.1) and the molecular constants shown in Ta-
ble 6.6. Large deviations in experiment from the theory are driven by
perturbations. The unevenness of the theory predictions in the v′ = 0−4
region for A 1Σ+ and v′ = 7−12 region for b 3Π0+ is an artifact caused by
imperfect conversion from adiabatic to diabatic PECs. Finally, we note
that (b) suggests that our extracted constants, ωe and xe, for the b 3Π0+

state are too large. Our data for this state is limited, and it appears that
if both were smaller, the fit would better match the theory (blue circles).

in previous studies, such as the d 3Π state [60], in which we found good general agreement

between measured and calculated energy spacings between vibrational levels, but not with

the well depth. This disagreement manifests itself through two fewer vibrational levels

v′ Tv + 2 Bv (cm−1) ∆E (cm−1) v′ Tv + 2 Bv (cm−1) ∆E (cm−1)

8 5682.01 179.41 14 6738.87 169.28

9 5861.42 170.83 15 6908.16 170.78

10 6032.25 185.39 16 7078.94 162.65

11 6217.65 180.22 17 7241.59 167.68

12 6397.87 168.08 18 7409.27

13 6565.95 172.92

Table 6.4.
Experimental assignments for the location of b 3Π0+ v′ J ′ = 1 based on
our depletion data. Uncertainty for assignments is 0.02 cm−1, vibrational
designation is approximate. Energies are referenced to the Rb 5S + Li
2S atomic asymptote.



69

A 1Σ+ v′ b 3Π0+ v′ ~δ (cm−1) (E+ − E−) (cm−1) Vint (cm−1) FCF Vint

FCF

2 10 7.7 25.8 12.3 0.06 205

5 12 0.7 11.3 5.6 0.03 187

Table 6.5.
Parameters of the mixed states. δ is the unshifted (bare) energy differ-
ence of the states, while E+ − E− is the energy difference between the
perturbed states. Vint/FCF as determined through this analysis is in rea-
sonable agreement with ARb/2 = 125 cm−1, where ARb is the spin-orbit
interaction strength in atomic rubidium.

than predicted for the A 1Σ+ v′ series. In Table 6.6, we present a direct comparison of the

derived molecular constants from theory and our data, confirming our earlier assertion

of excellent agreement.

In this section, we analyze state mixing between several vibrational levels of the A 1Σ+

and the b 3Π0+ states. The two largest perturbations seen in Fig. 6.3(a) are due to mixing

Fig. 6.4. Calculated Vint = ARb|〈Ψb 3Π|ΨA 1Σ+〉|2/2, divided by the state
energy difference, for A 1Σ+ (a) v′ = 2, (b) v′ = 5, (c) v′ = 8 and (d)
v′ = 11 interacting with the vibrational levels of the b 3Π0+ state. The
PECs are from Ref. [64], and we calculated the vibrational wavefunctions
and FCFs using LEVEL 8.0 [72]. ARb = 250 cm−1 is the atomic rubidium
spin-orbit constant.
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between the A 1Σ+ v′ = 2 level with b 3Π0+ v′ = 10, and between the A 1Σ+ v′ = 5 level

with b 3Π0+ v′ = 12. The mixing between states is proportional to [66]

|〈Ψb 3Π|HSO|ΨA 1Σ+〉|2

~δ
, (6.2)

where HSO is the Hamiltonian for the spin-orbit interaction, and ~δ is the energy differ-

ence between the unperturbed states. The vibrational factor of the wavefunctions |Ψ〉 in

this expression implies that strong state mixing requires a large Franck Condon overlap

between two states, while the energy denominator requires a small energy difference. In

Fig. 6.4, we show a rough estimate for the interaction strength caused by the spin-orbit

effect divided by the state energy difference between the A 1Σ+ v′ = 2, 5, 8 and 11 states

with the various vibrational levels v′ of the b 3Π0+ state. We estimate the interaction

strength with [74] Vint = ARb|〈Ψb 3Π|ΨA 1Σ+〉|2/2 where ARb is the spin-orbit interaction

in atomic rubidium, 250 cm−1; we have found that this approximation roughly holds in

the past [60]. For A 1Σ+ v′ = 2 and 5, mixing with one state is much stronger than any of

the rest, justifying a two-state mixing model. The A 1Σ+ v′ = 8 state is hardly perturbed

because it has a very small Franck Condon overlap with b 3Π0+ v′ = 14 despite having

nearly identical energies. This is consistent with the story told by Fig. 6.3, as neither

A 1Σ+ v′ = 8 nor b 3Π0+ v′ = 14 appear significantly perturbed. Finally, Fig. 6.3(b)

shows that b 3Π0+ v′ = 16 is slightly perturbed, by A 1Σ+ v′ = 10 and 11, which matches

the small interaction strength shown in Fig. 6.4(d).

For the A 1Σ+ v′ = 2 and 5, which we approximate as a simple two-state mixing

model, we calculated the admixture coefficients. Using the treatment of mixed states in

Ref. [66], we write the mixed states as

|Ψ−〉 = c|ΨA 1Σ+〉 − d|Ψb 3Π〉 (6.3)

and

|Ψ+〉 = d|ΨA 1Σ+〉+ c|Ψb 3Π〉, (6.4)

where |ΨA 1Σ+〉 and |Ψb 3Π〉 are the bare states. The energies of states |Ψ−〉 and |Ψ+〉

are E− and E+, respectively. As we have done in the past [68], we can use the expected

energy and observed energy of mixed states to estimate their mixing; we use the molecular
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constants of Table 6.6 to predict where the unperturbed state should lie. After we have a

prediction for the unperturbed state location we can solve for the admixture coefficients

c2 =
1

2

[
1− ~δ

E+ − E−

]
(6.5)

and

d2 =
1

2

[
1 +

~δ
E+ − E−

]
. (6.6)

Additionally, we calculate the interaction strength, Vint, using Vint = 1
2

√
(E+ − E−)2 − (~δ)2

from Ref. [68]. All of the relevant parameters for the strongest mixed A 1Σ+ − b 3Π0+

states that we observe and the derived admixture coefficients and interaction strengths

are presented in Table 6.5. For both of these states, Vint/FCF is within a factor of two

of ARb/2, showing approximate agreement with the model of Ref. [74].

A 1Σ+ b 3Π0+

Exp. Th. [64] Exp. Th. [64] Th. [76]

ωe (cm−1) 117.3 (0.6) 117.9 195.1 (1.0) 190.6 188.3

xe × 103 3.1 (0.4) 3.3 4.3 (0.2) 2.9 3.4

ye × 106 15 (9) 23 -18.4 -29.7

Te (cm−1) 5756.6 (2.2) 5537.7 4083 (7) 3962.3 4180.4

Table 6.6.
Molecular constants fitted to our data, compared to fits of other exper-
iments [58] or to theoretical predictions from ab initio calculations from
Refs. [76] and [64]. The state energies are given by Eq. (6.1). For fitting
C 1Σ+ we omitted v′ = 41 − 45 because the energies of these states fall
outside the range over which Eq. (6.1) is valid. When fitting b 3Π0+ , the
vibrational numbering is uncertain since we have not observed v′ < 8. We
chose vibrational numbering to force a well depth between the two ab ini-
tio predictions. Additionally, we omitted v′ = 10, 12, 14 and 16 from the
fit because these levels are strongly perturbed, as shown in Fig. 6.3(b).
For these data, a value of ye is not significant and not included in the
table.
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6.3 Spectroscopy Conclusion

When we started doing extra spectroscopy on LiRb molecules, we had three goals.

First, we needed a better measurement on the ground state well depth which our PA

work provided. Second, we wanted to detect weakly bound singlet molecules made via

PA and spontaneous decay with REMPI. We discovered that for some X 1Σ+ v = 42

and v = 43 we could ionize the molecules using the C 1Σ+ state as the intermediate

state. Unfortunately, this intermediate state will not work for more loosely bound initial

states. And finally, we wanted to find suitable intermediate states for a JILA style

STIRAP population transfer from weakly bound triplet states to the ground state. Our

spectroscopy reveals that states near d 3Π1 v = 4 or A 1Σ+ v = 5 would work for

STIRAP. Additionally, Ref. [77], suggests a second STIRAP strategy that caught our

eye. They transfered population to the ground state, but instead started from a weakly

bound singlet state populated by PA. We expect that we could transfer population from

X 1Σ+ v = 43 to v = 0 through C 1Σ+ v = 23. Additionally, we were excited to discover

that the colors are nearly the same for a transfer through C 1Σ+ v = 23 and d 3Π1 v = 4

suggesting that maybe the same set of lasers could work. We will start here in Chapter 7.



73

7. OPTICAL PHASE LOCKED LOOPS

This chapter details work on phase stabilizing ECDLs; our ultimate application is STI-

RAP in the dual species MOT to produce large numbers of ground state LiRb molecules.

As demonstrated by Ref. [77], STIRAP to transfer population from weakly bound sin-

glet states populated by PA to the ro-vibronic ground state is possible, even in a dual

species MOT. Our plan was to use one of the C 1Σ+ vibrational levels as the intermediate

state (|e〉) (which has the benefit that some of the same lasers can drive more traditional

STIRAP through d 3Π - D 1Π mixed states) to transfer population from X 1Σ+ v = 43

Fig. 7.1. Energy level diagram for STIRAP transfer from X 1Σ+ v = 43
to X 1Σ+ v = 0 through C 1Σ+ v = 22. The ‘up’ laser has frequency
ω1 and Rabi frequency Ω1 while the ‘down’ laser has frequency ω2 and
Rabi frequency Ω2. The lasers are chosen so that ω2−ω1 = ∆E43 to 0 +δ,
with a mutual detuning from the intermediate state of ∆. The excited,
intermediate state will rapidly decay with rate γ2.
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Fig. 7.2. Calculated STIRAP strengths from v′′ = 43 to v′′ = 0 through
C 1Σ+ v′ as a function of the vibrational level v′. We estimate the STI-
RAP strength as Irel =

√
FCFdownFCFup in the absence of any informa-

tion on the transition dipole moments. The wider, shaded green region
represents the states accessible with commercially available green diode
lasers while the enclosed, shaded red region represents the states acces-
sible with 730 nm diode lasers (the green laser also covers this range).
From this C 1Σ+ v′ = 22 stands out as the best available intermediate
state using these lasers, while being the 3rd best intermediate state overall

(|i〉), populated by spontaneous decay after photoassociation, to X 1Σ+ v = 0 (|f〉) as

shown in Fig. 7.1. We chose the intermediate state for STIRAP based on our REMPI

data and calculated FCFs. Transition dipole moments in molecules are hard to di-

rectly access (and require a bit of work to calculate), but seeing the REMPI transitions

C 1Σ+ v′ = 26 ← X 1Σ+ v′′ = 43 and C 1Σ+ v′ = 12 ← X 1Σ+ v′′ = 2, inform

us that the transition dipole moments for C 1Σ+ v′ = 22 ← X 1Σ+ v′′ = 43 and

C 1Σ+ v′ = 22 ← X 1Σ+ v′′ = 0 will also be strong. We picked C 1Σ+ v = 22 via the

FCFs, as shown in Fig. 7.2.

The proposed STIRAP implementation will require two lasers, one at 730 nm with

frequency ω2 and Rabi frequency Ω2 and another at 520 nm with frequency ω1 and Rabi

frequency Ω1. The difference between the two laser frequencies will need to exactly match

the energy difference between the initial and final states, with a small mutual detuning,

∆, from the intermediate state. ∆ needs to be large relative to the decay rate from

the intermediate state, γ2, as to not accidentally populate it. The detuning from the
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two-photon resonance, δ, needs to be small for this experiment to work. It is fairly easy

to set up a three state Hamiltonian to model this system,

H =


−iγ1/2 Ω1(t)/2 0

Ω1(t)/2 ∆− iγ2/2 Ω2(t)/2

0 Ω2(t)/2 δ − iγ3/2

 (7.1)

which can be solved numerically, as shown in Fig. 7.3. Here, we pick relatively modest

values for the Rabi frequencies at 2π(10MHz), estimated γ2 = 2π(10MHz), set ∆ =

2π(50MHz), and γ1, γ3 are insignificantly small. In panel (b) of Fig.7.3, we show the

counter-intuitive pulse sequence that is typical of STIRAP, along with normal pulse times

of around 20 µs. The state occupation for |i〉, |e〉, and |f〉 is shown as a function of time

in panel (a) of Fig. 7.3, with δ = γ2/100. Finally, panel (c) of Fig. 7.3, shows the

transfer efficiency as a function of δ. What is clear is that δ needs to be very small for

an efficient transfer, and the efficiency drops below 90 % as δ becomes larger than 100

kHz. This imposes two harsh conditions on the two STIRAP lasers. First, the frequency

of the each laser needs to be controllable to better than 100 kHz. And second, the phase

coherence between the two lasers needs to be a lot better than 100 kHz. Additionally,

the frequency difference between the two STIRAP lasers provides a third condition, as

our phase stabilization needs to bridge the 5700 cm−1 energy difference between the two

X 1Σ+ states.

Our plan to phase stabilize the two STIRAP lasers was to lock them to a Menlo

frequency comb, shared with Dr. Weiner next door. Locking the ECDLs to the frequency

comb solves all three problems in theory. As shown in Fig. 7.4, the mode-locked comb

laser produces a series of femtosecond pulses which looks like an array of teeth in the

frequency domain. The teeth of a frequency comb are at f = nfr + fceo, where fr is

the repetition rate of the comb, fceo is the carrier offset phase, and n is a large integer.

Both fr and fceo are radio frequency signals, with common commercial combs having

repetition rates between 100 and 250 MHz. Additionally, both fr and fceo are stabilized

to an atomic clock in the Menlo frequency comb, implying that each individual tooth

shares a similar 10−12 fractional instability. Phase locking our ECDLs to the frequency

comb passes the phase stability of the comb onto the ECDLs. Additionally, the offset

frequency between the ECDL and comb tooth provides a robust method for tuning the
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Fig. 7.3. Simulation of Eq. (7.1). (a) State occupation of initial state
|i〉, excited state |e〉 and final state |f〉 as a function of time. (b) STI-
RAP counter-intuitive laser pulse sequence used in the simulation. (c)
Efficiency of transfer as a function of δ.

frequency of the ECDLs with nearly 1 Hz level precision. Thus the frequency comb meets

our first two STIRAP conditions, laser tunability and phase stability.

To meet our third criteria, that is spanning at least 5700 cm−1, we will turn to super-

continuum generation. Super-continuum generation occurs when frequency comb light

pumps a highly-non-linear fiber in which internal non-linear processes generate light at

nearly every possible sum or difference frequency. The result is an output that spans 500

- 1100 nm and shares the comb structure and stability. This more than spans the energy

difference between our states, but at a steep cost. Because the spectrum of the laser is

widened by a factor of 25, the power per tooth of the laser drops by a similar amount.

This makes signal-to-noise a nightmare for our ECDL - comb beat-notes as we are left

trying to dig out a signal formed with a fraction of a nW in the frequency comb tooth.
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Fig. 7.4. Femtosecond laser pulse. (a) Time domain. (b) Frequency domain.

Reference Phase Detector Type Lasers

Prevedelli et. al. (1995) Digital, homemade counters ECDL to comb

Cacciapuoti et. al. (2005) Mixed, based on PLC 2 ECDLs

Ni (2008) Analog mixer, no details ECDL to comb

Appel et. al. (2009) Digital, ADF4107 internal counters 2 ECDLs

Xu et. al. (2012) Digital, MAX9382 w/ FPGA 2 ECDLs

Our first step in phase locking the exotic colored ECDLs to the frequency comb was to

compare previous implementations of optical phase locked loops using one of our 780 nm

trapping lasers and find a design that would work at very low signal-to-noise ratios.

7.1 Optical phased locked loop history

Construction of optical phase locked loops with extended cavity diode lasers have been

an active field of research basically since the invention of the grating tuned, extended-

cavity-diode-laser (ECDL) [78]. Past examples of optical-phase-locked-loops (OPLLs)

from the literature deal mostly with systems [49, 79] where the OPLL is constructed

between two CW lasers and there are no signal-to-noise ratio (SNR) concerns (although

wide frequency operation of the loop can present its own set of problems). One example

in the literature similar to our scenario, where the OPLL was formed between a CW laser

and a frequency comb, is found in Ref. [80]. However, Ref. [80] used a comb without super-

continuum generation leading to a relatively high SNR. In this chapter, we demonstrate

OPLL operation between a frequency comb after super-continuum generation and a CW
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Fig. 7.5. High level block diagram of our OPLL.

ECDL down to an estimated 200 pW per tooth and illustrate the important differences

between digital phase detectors and analog phase detectors.

Shown in Fig. 7.5, is a high level block diagram of our experiment. We have two

lasers, an ECDL and a frequency comb, combined and sent to a photodetector. This

forms the beat-note that we will use to stabilize the ECDL to the comb. Following

the photodetector we sample the beat-note with a spectrum analyzer, while sending the

majority of the power to the phase detector. The phase detector lives on its own printed-

circuit-board (PCB), as does the loop filter it feeds. The loop filter takes in the error

signal provided by the phase detector, provides some filtering and then sends two DC

coupled outputs to the ECDL; one output feeds the laser injection current and the other

controls a PZT to modulate the cavity length.

7.2 Noise considerations

Sources of noise must be carefully considered to extract very low amplitude signals.

In any optical-electrical system, the two dominant noise sources are Johnson-Nyquist

noise and shot noise. The Johnson-Nyquist noise comes from thermal noise in resistors

and its mean-square current noise is

īn
2

= (4kBT/R)B, (7.2)
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where kB is Boltzmann’s constant, T is the temperature of the resistor, R is the resistance

of the resistor andB is the bandwidth of the electrical system. Shot noise is from quantum

fluctuations driven by the discreteness of electrons, and its mean-square current noise is

īn
2

= 2|e|η(ICW + Icomb)B, (7.3)

where e is the charge of the electron, η is the photo-sensitivity of the photodiode, ICW is

the CW laser intensity incident on the photodiode, and Icomb is the comb laser intensity.

Meanwhile, the signal current in the photodiode is

i = η(Icomb + ICW + 2
√
ICWItooth cos[ωt]), (7.4)

where Itooth is the power in the comb tooth forming the beat-note, and 2
√
ICWItooth cos[ωt]

is the beat-note term. From examining our equations, several things become immediately

apparent. First, we need to filter out as many comb teeth as possible; the extra comb

teeth will add to shot noise, but not contribute to the signal level. Second, we want to

minimize the circuit bandwidth. However, this is at odds with detecting the beat-note.

To detect the beat-note we need at least fr/2 bandwidth for our photodiode system.

Third, by increasing the power in the CW laser, we eventually reach the regime where our

signal-to-noise ratio is fixed, as shot noise dominates and our power signal-to-noise ratio

is 2ηItooth/(|e|B). Unfortunately, to reach this regime requires at lot of CW laser power.

At 1 mW of CW laser power shot noise and Johnson-Nyquist noise (for a 50 Ω system)

are equal, meaning we would like around 10 mW of CW power. This is not practical

for most ECDL lasers, and as such we use a transimpedance amplified photodiode. The

transimpedance photodiode uses a big resistor, making the Johnson-Nyquist noise small,

without sacrificing bandwidth, because of the op-amp.

There are a few ways to optimize the beat-note signal as well. The beat-note detected

is ∫
d2r ~Etooth(r)ei(ωtootht−~ktooth·~r) · ~E∗CW(r)e−i(ωCWt−~kCW·~r) (7.5)

where
∫
d2r is an integration over the photodiode surface, ECW(r) is the spatial profile of

the CW laser, ωCW is the frequency of the CW laser and kCW is the propagation vector

of the CW laser (quantities with the tooth subscripts are the corresponding quantities of

the tooth of the comb laser). This formula warns of three problems. First, both lasers

need to match polarization. Second, both lasers must propagate in the same direction as
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well as possible. Finally, the spatial profiles of the two lasers need to be matched as well

as possible. Careful experiment design will optimize the beat-note signal by optimizing

all three quantities.

7.3 Method Details

Our experiment studies locking an ECDL to a frequency comb. For the ECDL, we

use a homebuilt cavity following the design of Ref. [50]. It uses a 780 nm, 80 mW

diode (QPhotonics QLD-780-80s). Optical feedback is provided by a 1800 groves/mm

grating (Thorlabs GH13-18V) and the injection current is controlled by a homebuilt

implementation of the Libbrecht-Hall design, detailed in Ref. [47]. The laser is sent

through a 35 dB optical isolator before being combined with the frequency comb source

on an optical beam splitter. The frequency comb is a commercially available Menlo

systems FC1500-250-WG laser, which has a 250 MHz repetition rate and produces 130

mW of power after super-continuum generation spanning 510 - 1000 nm. We chose to

conduct this study at 780 nm because the non-linear super-continuum generating fiber is

pumped by a 780 nm source. As such, the comb has more power near 780 nm allowing

us to demonstrate OPLL performance across many orders of signal magnitude.

Fig. 7.6 shows the optical table setup for our OPLL. We combine our ECDL with the

frequency comb on a non-polarizing 90-10 beam splitter (like Thorlabs BSF10-B beam

sampler), sending 10% of the laser power (or less) and 90% of the comb power through

a polarizer followed by a short length of fiber. The output of the fiber is focused onto

a transimpedance amplified photodiode. Before combining the two beams we match

their polarizations with a pair of λ/2 waveplates and filter out most of the comb power

with a 10 nm optical bandwidth interference filter (like Thorlabs FBH780-10). We run

the combined laser beams through a short section of fiber to simultaneously match the

direction of the laser beams and the size/focusing. Even with modest fiber coupling

around 20% efficiency, we found the fiber to improve SNR compared to the free space

approach. We believe the fiber helps because diode mode profiles are rarely circular

and often exhibit significant astigmatism; both effects reduce the mode and k-vector

overlap between the two beams on the photodiode. The fiber is not critical for high

SNR systems, like with two CW lasers, but often will help with SNR and is an easy
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Fig. 7.6. Optical table setup to maximize beat-note signal amplitude.
Zero-order half-wave plates match the polarizations of both lasers to a
common polarizer. They are combined with a beam sampler, sending
90% of the comb power and 10% of laser power to a fiber coupler. After
a short length of fiber matches laser propagation and beam profile, the
output is focused onto a fast transimpedance amplified photodiode. After
photodiode, a low-pass filter removes the comb self-beat and beat-notes
with higher order comb teeth. We pick off 1% of the signal in a directional
coupler for analysis and then apply a variable gain before sending to the
phase detector.

algorithm to guarantee co-propagation (note: fiber needs to be angle cut on both ends to

reduce Fabry-Perot effects in the transmitted beam). Finally, we detect the beat-note on

a transimpedance amplified photodiode (Thorlabs PDA10A) which feeds a 50 Ω system.

In the 50 Ω system, we have a low-pass filter at 105 MHz (Minicircuits ZX75LP-105-S+)

followed by a 20 dB directional coupler and RF amplifiers. The two phase detectors

require slightly different gains in the RF amplifiers: the analog detector needs 10 dB of

gain, while the digital detector needs 30 dB of gain (provided by Minicircuits ZKL-2+

amplifiers and discrete attenuators).

7.4 Phase Detectors

Most of the available literature on optical phase locking [49, 79–81] relies on digital

phase detectors for OPLLs (and ironically, recent advances in digital circuits have ren-

dered most of these references totally obsolete). We feel that the best implementation

of a digital OPLL is given in Ref. [49], that uses the ADF4XXX family of digital phase

locked loop chips. These chips are all pin compatible allowing the same circuit board to
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Fig. 7.7. Simplified digital phase detector schematic. i Reference RF
oscillator input, impedance matching and DC bias isolation. ii Beat-note
edge launch connector input, impedance matching for 50 Ω RF amplifiers
and DC bias isolation. iii Digital phase detector, programmed by a PIC24
micro-controller, omitted for clarity. iv Charge pump filter, turns current
output from chip into a voltage for op-amps. Filter integrates below
fc = 36 kHz and provides a gain of one above fc. v Op-amp buffer to
prevent stage loading effects. vi Amplification and level shifting. vii
Output impedance matching and edge launch connector.

work across a wide range of frequencies. Fundamentally, the digital phase detector turns

the analog beat-note into a digital signal (with the same frequency) and then counts the

rate of rising edges, compared to some digital reference signal. If the frequencies are far

apart, it functions as a frequency detector and will saturate its output at one of its rails.

When the frequencies are close, it tries to force simultaneous rising edges. One of the

big advantages of a digital phase detector is that it is very easy to frequency divide a

digital signal with some simple logic components. The different chips in the ADF4XXX

family feature different front end division stages, allowing the same core circuitry to work

between 1MHz and 10 GHz.

We used the ADF4001 chip which does not have the first division stage and functions

between a few MHz and 250 MHz. Our implementation is shown in Fig. 7.7. Although

the simplicity and robustness of this phase detector has to be praised, we offer the reader

a few words of caution. First, it is absolutely critical to run the analog and digital

sections of the ADF4XXX chip off different supplies and to carefully isolate the analog

and digital grounds on the PCB. Second, the charge pump output needs to be integrated

by an RC filter with a time constant set to ≈ 30 kHz. The charge pump can be thought

of as an ideal current source that turns on when the beat-signal and the reference signal

are out of phase. A passive filter is required to turn the current pulses into voltages

for processing in the loop filter. We found any additional filtering will break this phase
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detector, resulting in either oscillation or terrible phase noise performance. The choice of

1/(2πRC) ≈ 30 kHz is a bit arbitrary but works well (and does not limit the total loop

bandwidth to 30 kHz). Third, there is an internal division stage for both the beat-note

input and reference input to the ADF4001 chip. We set the chip to divide both signals

down to fcompare = 25 MHz. It is very important for fcompare >> f3dB, where f3dB is the

bandwidth of the whole electronic system (or nothing works). We found that the phase

detector works better for higher fcompare and recommend the highest fcompare possible.

Additionally, it is important to have filtering in the loop filter to attenuate signals at

fcompare to reduce noise caused by the charge pump firing.

In many ways, digital phase detectors are great tools. They are fairly easy to get

working, work across a huge frequency range and hold the phase lock almost indefinitely

(ours was limited by polarization drifts in the fiber delivering the frequency comb to

our lab which is not polarization maintaining). However, they require an input signal

with a large SNR to function and an even larger SNR to work well. This can be easily

understood. Because the digital circuit examines the beatnote frequency without first

down-shifting, the noise sources are integrated over the full circuit bandwidth, between

1 MHz and 105 MHz. For strong signals this is not a problem, but the integrated noise

can easily overwhelm weak signals.

There is almost no literature available on analog phase detectors in OPLLs. Perhaps

because on the simplest level, an analog phase detector is a mixer followed by a low-

Fig. 7.8. Simplified analog phase detector schematic. i Reference oscil-
lator edge launch input and impedance match. ii Beat-note edge launch
input and impedance match. iii Analog phase detector from Minicircuits.
iv DC current return for phase detector. v Low-pass filter to remove flo,
2flo and extra noise. vi Op-amp integrator to turn phase detector output
into an error signal. Below fc = 1.6 kHz, it integrates and above fc it
provides a gain of one. vii Output impedance matching and edge launch
connector.
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pass filter, but treating it as a simple system is a recipe for poor performance at best.

The function of an analog phase detector is best understood with some math. The

beat-note signal will look like sin[ωbnt + δφ(t)] and the reference signal will look like

sin[ωreft], where ωbn and ωref are the two frequencies and δφ(t) is the time varying phase

difference between them. Mixing the two signals results in an output signal of the form

sin[(ωbn − ωref)t + δφ(t)] + sin[(ωbn + ωref)t + δφ(t)], and the second term is filtered out

electronically. When (ωbn − ωref) is small, the output of the mixer is proportional to

sin[δφ(t)] ≈ δφ(t), provided the phase difference is also small. Thus, the analog phase

locked loop will try to minimize δφ(t) which occurs when ωbn = ωref and δφ(t) = 0 (the

other stable point for the analog loop is when ωbn and ωref are very different and the

low-pass filter following the mixer filters out everything).

Fig. 7.8 shows our implementation of an analog phase detector. We use a MPD-1

chip from Minicircuits, which is a more specialized mixer, designed to be used as a phase

detector. Ultimately this means it is designed to have a very low offset voltage (well

below 1 mV), is very quiet (less than 1 nV/
√
Hz) and has a high output impedance

of 500 Ω. On its output, we have a 500 Ω resistor to ground which provides a path to

ground for its output current; an RC filter tuned to ωref to absorb residual power at ωref

and 2ωref ; and an op-amp integrator with a transfer function that levels off to a gain

of 1 at ≈ 1 kHz. The RC corner of the integrator has been optimized for long lock

times and we have observed operation in excess of an hour (again limited by polarization

drifts in the fiber delivering the frequency comb). Additionally, care must be taken

to prevent RF pickup of the reference. We found that edge launch coax connectors

paired with a matched 50 Ω transmission line on the PC board were necessary to limit

reference oscillator feed-through. The advantage offered by the analog phase detector is

that bandwidth over which the noise is integrated is much less than the digital phase

detectors. Ours integrates the noise in its ≈ 700 kHz loop bandwidth, resulting in two

orders of magnitude less noise than the digital phase detector.

We should stop here and mention the phase range of the phase detectors. Other

authors have championed digital phase detectors because they can work across a wider

range of phase errors (we implemented a N2π = 6π phase detector, where N is the

digital division of the beat-note), while analog phase detectors only work between −π/2

and π/2 (after which the sign of sin[δφ(t)] reverses). This sounds like a big advantage for
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the digital detectors on paper, but we have not found this to be an important distinction

in practice. Both phase detectors require tuning to get into lock and then once in lock,

the digital phase detector is only marginally more stable. The digital detector could be

made more stable by increasing N, but this carries other consequences and we found it

results in worse phase noise performance.

7.5 Loop Filter

The circuit for our loop filter is given in Chapter 2, along with an explanation of its

function. In this chapter, we will discuss how to use it with the phase detectors.

Our steps to tune the loop filter, and achieve locking performance for the first time

are as follows. First, we would zero out both current and PZT gains, turn off the PZT

integrator and maximize the beat signal, something like 35 dB of signal-to-noise is usually

necessary (in a 1 MHz spectrum analyzer bandwidth). Next, while observing the beatnote

on a spectrum analyzer, we would increase the current gain until it significantly perturbed

the beat-note as the laser is swept through the lock point. It would either avoid the lock

point or jump into lock for a short time. The digital phase detector is simpler at this

point, because by simply flipping the sign of the current feedback (if it avoids the lock) is

enough to get locking behavior; meanwhile the sign does not matter for the analog phase

detector, but it will always avoid the lock. Often to get the analog detector into lock, we

had to drop the signal level; recall that for the analog phase detector, the error signal is

proportional to sin[δφ(t)], so for large phase errors, the sign of the error signal reverses.

At this point, increasing the current gain too much will cause the sideband peaks, visible

in Fig. 7.9 (b), to increase in magnitude. For the digital detector, increasing the gain

will eventually cause oscillation, while for the analog detector, it will simply bounce out

of lock. We operated a hair above this minimum gain-to-lock point. To tune the PZT

gain, PZT sign, and integrator switch we follow a similar procedure; the PZT feedback is

not necessary for locking, but it does help achieve long lock times. Finally, we note that

both phase detectors were quite sensitive to the DC output level of the phase detector.

For the digital detector, it could be tuned from oscillation to narrow-band locking by

tuning the bias voltage (all while in lock) and the analog detector had similar problems

on a smaller scale. We suspect that this issue is caused by a mismatching between the
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Fig. 7.9. Comparison of analog and digital phase detector performance.
a Phase error as measured by Eq. (7.6) for the analog phase detector,
plotted in blue, and the digital phase detector, plotted in red, as a func-
tion of the signal-to-noise ratio, measured in a 1 MHz bandwidth. The
signal level was kept fairly constant to avoid dropping out of the working
range of the phase detectors (except for the analog phase detector below
20 dB SNR). b Raw data as measured by spectrum analyzer for the best
performance phase error for the analog detector, blue and centered at
80 MHz, and digital detector, red and centered at 75 MHz. Spectrum
analyzer bandwidth was set to 30 kHz for these measurements. c Raw
data as measured by spectrum analyzer for the analog detector at 18 dB
SNR, blue and centered at 80 MHz, and digital detector at 19 dB SNR,
red and centered at 75 MHz. Spectrum analyzer bandwidth was set to
30 kHz for these measurements.

relative tuning of the two paths and the relative feedback levels, but carefully matching

them results in oscillation (i.e. 1 V of DC offset results in a 1 GHz change in frequency

for the PZT, and a 10 GHz change in frequency for the current, but 10 times more PZT

feedback than current feedback results in oscillation). We found that nearly identical

settings for the loop filter worked for both phase detectors, and the only difference was

that the analog phase detector worked better with the PZT integrator turned off, while

the digital phase detector benefited from it being on.

7.6 Loop Performance

Our comparison between the performance of the two phase detectors is shown in

Fig. 7.9. In these measurements, we fixed the signal level of the beat-note and varied

the noise level. Our rationale for this approach is that there is a range of absolute signal

levels for which the digital detector works, the chip manufacturer specifies the signal

needs to be between -10 and 0 dBm (we have found it works better with more signal
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than specified and commonly send it +10 dBm). Our method for varying the noise level

was to misalign one of the two lasers until we reached the desired signal-to-noise level,

and then use discrete RF attenuators and amplifiers to return to the fixed signal level.

To measure the performance at a given signal-to-noise ratio, we measure the locked

beat-note with a spectrum analyzer and then calculate the phase noise according to

Phase Error = − ln

(
Pcarrier∫∞

−∞ P (ν)dν

)
, (7.6)

where Pcarrier is the power at the beat-note carrier frequency,
∫∞
−∞ P (ν)dν measures the

total power, and P (ν) the power spectrum as a function of frequency. In our measure-

ments, the carrier power is approximated by the data point at fcarrier, and a few points

on either side are discarded (because we used a spectrum analyzer bandwidth of 30 kHz

which is much greater than the carrier bandwidth, which could not be resolved even

in a 1 Hz bandwidth). As is common, we report phase error for a 1 Hz bandwidth by

dividing the spectrum analyzer reading (outside of the carrier peak) by the spectrum

analyzer bandwidth, 30 kHz. To determine the signal-to-noise ratio, we measured the

amplitude of the beat-note in lock and compared it to the noise power density, both in

a 1 MHz bandwidth. The error-bars in Fig. 7.9 (a) are statistical, from repeating the

measurements, and show one standard deviation of the mean.

Although the individual data points in Fig. 7.9(a) bounce around some, the trend

for both detectors is quite clear. The digital detector works great, even outperforming

the analog detector, for large signal-to-noise ratios and then catastrophically fails some-

where around 28 dB of signal-to-noise. Meanwhile, the analog detector works fine for

signal-to-noise ratios greater than 20 dB and then slowly degrades after that with our

measurements likely understating its performance. The limit for the analog detector is

two-fold: the local-oscillator feeds through to the laser at a small level and is comparable

to the beat signal below our lowest signal-to-noise ratio measurements. Additionally,

increasing the gain in RF amplifiers eventually leads to oscillation. Because of the os-

cillation problem, we were unable to keep the signal level fixed for the last three steps

downward in signal-to-noise for the analog phase detector dataset. Though the locking

performance was weak at 10 dB (our last functioning data point is 13 dB), we speculate

that through careful redesign of our circuit board (and with a wizarding degree in RF
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electronics), both issues could be fixed, and the analog detector could function at 10 dB

signal-to-noise with an acceptable phase error.

To demonstrate the power of the analog phase detector to dig out small signals, we

calculated the minimum power in the comb tooth required for lock functioning. Our

application is a stimulated-population transfer, which commonly requires coherence on

a 10 µs timescale. To estimate the phase coherence time between the two lasers, we use

the average cycle slip time [82], which is

ts =
π2ρI2

0 (ρ)

2B
, (7.7)

where ρ = 1/Phase Error, and I0 is the modified Bessel function of the first kind. For

our goal of a cycle slip time greater than 10 µs, we find that 18 dB signal-to-noise ratio

is the minimum for the analog detector and 29 dB signal-to-noise is the minimum for

the digital detector. The carrier power for the median 18 dB data point is -64.5 dBm as

measured by the spectrum analyzer. Because the spectrum analyzer only sees 1% of the

power, this implies the transimpedance amplifier outputs -44.5 dBm of signal, or about

280 nA of photodiode current. The photodiode current is i = 2η
√
ItoothICW and thus

for about 1 mW of CW laser power, we estimate that the comb laser power in the tooth

we were using before the 10 nm filter in Fig. 7.6 to be about 200 pW. For the digital

phase detector, we estimate 4500 pW is the minimum functioning comb tooth power, as

a comparison.

7.7 STIRAP Conclusion

At this point it is useful to stop and review the status of the LiRb experiment. Our

goal was to use the data in Chapter 6 to choose a pathway to transfer population in

X 1Σ+ v′′ = 43 to X 1Σ+ v′′ = 0. However, despite our success with the 780 nm ECDL,

we never got the 520 nm ECDL to lock to the frequency comb. Our best signal-to-noise

ratio for the 520 nm beat note is about 20 dB, which this chapter shows is marginal at

best. Further, the 520 nm ECDL had a free running linewidth of about 5 MHz, compared

to 600 kHz for the 780 nm ECDL we used in this chapter. I suspect this is a symptom

of whatever issue stopped it from locking.
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Instead, I recommend a different path forward for the reader. First, consult Chapter 9

on how to produce weakly bound triplet molecules in an optical dipole trap. Then use

A 1Σ+ v = 5 or b 3Π v = 12 from Chapter 6 for the STIRAP transfer to X 1Σ+ v′′ = 0.

The logic is as follows. The wavelengths for this transfer are around 810 nm and 1563

nm, both of which are established diode wavelengths, so finding good diodes should not

be a problem (whereas 520 nm is an emerging laser diode wavelength). To stabilize the

lasers, double the 1563 nm laser and lock both to the comb (we even have a 1550 nm

doubling crystal and a 1550 nm fiber amp in the lab for frequency doubling the 1563 nm

laser). The frequency comb will have lots of power at 781 nm and 810 nm as both are

close to 780 nm (for readers in other labs, I recommend using a high finesse cavity for

laser stabilization like Ref. [30] instead of a frequency comb). Hopefully, higher frequency

comb power, combined with better diodes will lead to success.
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8. FITTING

Armed with piles of spectroscopic data from Chapter 4 through Chapter 6, we turn our

energy to inverting the experimental data into potential energy curves (PECs). PECs

are commonly reported in the literature as they are compact and offer additional utility

in the form of FCFs. In this chapter, I detail a joint effort with Jesús Pérez-Rı́os, to

bring machine learning techniques to AMO physics and use genetic algorithms to derive

potentials that reproduce the experimental data.

8.1 Introduction

The cornerstone of modern chemistry is the study of molecular interactions and how

these lead to all chemical reactions governing the evolution of the universe. However, the

available experimental tools, such as spectroscopy and scattering observables, do not gen-

erate direct measurements of these interactions, and therefore mapping techniques that

translate collisional and spectroscopic data into the underlying interactions are necessary

for the chemistry and physics community. First studied in the 1930’s, molecular spec-

tral line broadening revealed the long range interactions between the molecules [83–85].

From there, better techniques have resulted in more accurate data. Modern spectro-

scopic techniques, such as Fourier-transform spectroscopy [86], photoassociation of ul-

tracold atoms [87], and measurement of Feshbach resonances [88], have led to the most

accurate atom-atom interaction potentials to date. In the same vein, thanks to the

development of molecular beam technology, similar techniques transform scattering in-

formation of atom-molecule and molecule-molecule collisions into realistic atom-molecule

and molecule-molecule potential energy surfaces [89–95].

Several fitting or inversion techniques to transform vibrational, rotational and hyper-

fine spectroscopic data into molecular interactions have been developed; semi-classical

techniques lead to the celebrated LeRoy-Bernstein formula [96] and the RKR method
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(Rydberg, Klein and Rees) [97]. For more accurate results, the inverted perturbation

approach (IPA) [98,99] modifies the RKR result by solving the Schrödinger equation and

adjusting the potential to better reproduce the experimental data. Many of the older

techniques, share something in common: the potential can be found if a functional form

is assumed. A functional form limits the search space of the optimization routine and

prevents it converging to a true solution if nature escapes description by a simple analytic

function. However, more modern techniques such as some variants of the IPA method [54]

and machine learning techniques, and in particular genetic algorithms (GA), use non-

functional based methods and the machine learning techniques present an alternative

to standard fitting procedures with higher accuracy and a more general mathematically

fundamental basis.

In the past 15 years, genetic algorithms have slowly crept into chemistry and physics.

There are a few fields were the genetic strategy makes a lot of sense. For example, ge-

netic algorithms have been successfully solving atomic or molecular cluster problems for

years [100]. Researchers have tried out genetic algorithms in protein folding [101] and

assigning absorption spectra [102, 103]. We are not even the first team to use genetic

algorithms to fit diatomic potentials. Ref. [104] is the first example we know about, al-

though their algorithm struggled to reproduce the data to better than 1 cm−1. Ref. [105],

advanced the technique and was able to reproduce NaLi bound states with better than

0.5 cm−1 accuracy using an extended-Rydberg potential [106]. And finally, Ref. [107] was

able to directly fit experimental data for RbCs with an updated version of the algorithm

from Ref. [105].

Our goal is to develop a real-valued genetic algorithm to directly fit point-wise poten-

tials to experimental data. We explicitly chose a point-wise representation for most of

our potentials because it frees us from the confines of potentials describable by analytic

functions. Additionally, genetic algorithms tend not to be the most efficient algorithms in

terms of number of function calls. We will be using a Numerov solver to calculate bound

states in the potentials, and although it runs quickly at 10 ms per call, this adds up fast.

Inefficient genetic algorithms can easily take 106 function calls to converge which would

take nearly 3 hours to converge. While this would be acceptable as a final run time, it

is nowhere near acceptable when developing a method and there are likely things not

working quite right. Much of our work will be on reducing the number of functions calls
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Fig. 8.1. Graphical potential representation corresponding to Eq. 8.1.
For r < rin we use extrapolate inward with an inverse power law. This
short range region has almost no impact on the observables (i.e. bound
state locations). In the middle, between rin and rout, we use a point-wise
representation, between which we interpolate with cubic splines. For r >
rout, we use a C6 potential to most accurately capture the physics. The
section highlighted in red illustrates that the local slope of the potential
determines ∆E, the difference in binding energy of adjacent vibrational
states.

the genetic algorithm takes via tricks, careful algorithm design and tedious optimization

of algorithm parameters. Our final algorithm takes around 5× 104 function calls which

results in much more reasonable 8 minute run times.

8.2 Potential Representation

We use a potential representation pioneered by Tiemann and coworkers [108], shown

graphically in Fig. 8.1. In it, we represent the potential as

V (r) =


A+ B

rN
r < rin

point− wise rin < r < rout

−C6

r6 − C8

r8 − C10

r10 + Vex rout < r

. (8.1)

Inside the point-wise region, we interpolate between the points with cubic splines. We

directly include the C6 coefficient in our fit while A, B, N and C8 are fitted for a smooth

connection between the different regions.

We chose this potential representation for a few reasons. First, we like potentials that

do not rely on a functional form. Although as humans, we all like nice compact functions,
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Fig. 8.2. Flow chart illustrating the main loop of the genetic algorithm.

Nature does not share our view and normally real systems escape easy description with

functions. Diatomic potential energy curves are no different and using a point-wise

potential, between which we interpolate with cubic splines allows us to represent a much

larger space than any function-based potential could. Second, the long range form of this

potential does a very good job of capturing the physics. As indicated by the success of the

LeRoy-Bernstein formula [96], which uses C6 to predict bound states, the C6 coefficient

almost captures the entirety of the long range physics and directly fitting C6 is desirable.

8.3 Genetic Algorithm

A flow chart for our algorithm is shown in Fig. 8.2 and each step will be discussed in

the following sections. Our first step is to create an initial population to span the possible
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solution space as best as possible. Here, we turn to a basic function-based potential. We

use a Morse potential [109] which represents the potential as

V (r) = De[e
−2 r−re

∆r − 2e−
r−re
∆r ], (8.2)

to generate a spread of potentials around the ‘true’ potential at the beginning of our

fitting routine. The three parameters in the Morse potential, De which is the potential

dissociation energy, re which is the equilibrium internuclear separation, and ∆r which

sets the width of the potential, are commonly reported in literature. We use this function-

based potential because the point-wise potentials are unstable to large perturbations to

their points (i.e they pick up extra minima and crash our Numerov solver), whereas the

function-based potential will always be solvable under perturbations to its parameters.

In an attempt to span the possible solution space, we generate N Morse potentials with

each of the three parameters multiplied by 0.9 + 0.2x, where x is a uniformly distributed

random variable between zero and one, and N is the number of genes in the population.

We evaluate our random Morse potentials along the non-uniform r-space grid which all

the genes in the population share. These N Morse potentials turned into point-wise

potentials form the first generation in our algorithm.

8.3.1 Fitness Evaluation

To evaluate the fitness of each of the N genes in the populations, we calculate the

bound states and rotational constants of the gene’s potential using a Numerov solver [110]

based on Ref. [72] (after discarding any potentials that have too many minima). The

simplest way to compare the calculated constants to experiment is via

χ̄2 =
1

Nv

∑
v

(Ev, exp. − Ev, pot.)
2

σ2
E, exp.

+
1

Nv

∑
v

(Bv, exp. −Bv, pot.)
2

σ2
Bv , exp.

, (8.3)

where Nv is the total number of vibrational states with experimental data, Ev, exp. is

the experimental binding energy of the vth vibrational level, Ev, pot. is the corresponding

calculated binding energy, and σE, exp. is the experimental uncertainty of the vth vibra-

tional level. The second term in Eq. 8.3 compares experimental and calculated rotational

constants following the same logic as for vibrational binding energies.

The approach of Eq. 8.3 has several problems that we will explain here and illus-

trate later. First, the energies of the vibrational bound states and their corresponding
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rotational constants depend on different parts of the potential. For example, the 0th

vibrational level has a binding energy of approximately De + 1
2
ωe, where ωe measures

the curvature of the bottom of the potential well and De simply measures its depth. For

comparison, the rotational constant, Bv ∝ 1
µr̄2 [66], looks at the reduced mass µ while r̄2

measures the average internuclear separation of this state. Second, there is no guarantee

that the sum over the vibrational binding energy terms, resulting in

χ̄2
vibration =

1

Nv

∑
v

(Ev, exp. − Ev, pot.)
2

σ2
E, exp.

, (8.4)

is even remotely close in magnitude to the sum over the rotation terms, resulting in

χ̄2
rotation =

1

Nv

∑
v

1

Nv

∑
v

(Bv, exp. −Bv, pot.)
2

σ2
Bv , exp.

. (8.5)

Any time χ̄2
vibration is several orders of magnitude different from χ̄2

rotation, the fitting routine

can accidentally trap itself. Finally, there is a hidden problem in that Ev, pot. depends

on both getting a correct value for Ev−1, pot. and the local slope. This sets a series of

sharp cliffs in the solution space where the fitting routine can correctly match the binding

energies for a subset of the vibrational levels but not the levels below them. For example,

the algorithm can correctly match v = 5 - 20 while having incorrect values for v = 0 -

4. In this scenario fixing v = 0 - 4 requires messing up v = 5 - 20 which can often be

prohibitively expensive for the fitting algorithm. It is a bit unusual to not compare to

E(v, J) directly, but we do it this way to separate rotational information from vibrational

information, whereas comparing to E(v, J) convolves the two making the problem harder.

The problems with using Eq. 8.3 as the fitness function can be solved with a little bit

of trickery. For example, we will compare the calculated vibrational binding energies to

the experimental data via

χ̄2
vibration =

1

Nv

∑
v

0.1
(Ev, exp. − Ev, pot.)

2

σ2
E, exp.

+

0.9
[(Ev, exp. − Ev−1, exp.)− (Ev, pot. − Ev−1, pot.)]

2

σ2
E, exp.

. (8.6)

On the surface Eq. 8.6 looks functionally identical to the first term in Eq. 8.3, as any

potential that matches the difference in binding energies between neighboring states will

also correctly match their absolute binding energies. However, when the potential is

partially correct, the difference in binding energies only depends on the local slope of the
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potential. Returning to our scenario from above, now the fitting routine can modify the

points around v = 0 - 4 which will push around v = 5 - 20, but this time the cost is

small. Although v = 5 - 20 will bounce around energetically as the fitting routine works

on improving the binding energy of v = 0 - 4, they will do so as a group and the difference

between their binding energies will be fairly constant. We add in a 10 % contribution

to our χ̄2
vibration calculation that pays attention to the absolute binding energy of the

vibrational states to prevent drifts from accumulating in deep potential wells.

To solve the problems with Eq. 8.3 that result from mismatches between the rota-

tional information and vibrational information, we can consider χ̄2
vibration and χ̄2

rotation

independently and on equal footing. For the time being, when we calculate χ̄2, we will

do so as the two-vector

〈χ̄2
vibration, χ̄

2
rotation〉. (8.7)

Additionally, our calculation of χ̄2
rotation will mirror the calculation of χ̄2

vibration:

χ̄2
rotation =

1

Nv

∑
v

0.1
(Bv, exp. −Bv, pot.)

2

σ2
B, exp.

+

0.9
[(Bv, exp. −Bv−1, exp.)− (Bv, pot. −Bv−1, pot.)]

2

σ2
Bv , exp.

. (8.8)

8.3.2 Weighting

There are two parts to selection in our genetic algorithm. The first, which we will

talk about in this section is that the different genes in the population get a weighted

chance to be picked for reproduction based on their fitness relative to other members of

the population. We calculate the weight for each gene as

wi =

∑
j

(
~nj
χ̄2
i,j

) 1
x

∑
i,j

(
~nj
χ̄2
i,j

) 1
x

, (8.9)

where x = 2, i indexes the gene in the population, j indexes the two-vector χ̄2 from

Eq. 8.7, ~n is a two-vector holding the median value of χ̄2 for the population, and the

sum on the bottom normalizes the weights so their sum is one. The goal here is to speed

up convergence by creating more children from successful genes. We choose to use the

median value of χ̄2
j for ~nj because χ̄2

j can easily vary across several orders of magnitude
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making the arithmetic mean inaccurate. Additionally, we take the x-th root of
~nj
χ̄2
i,j

in an

attempt to reduce the effect of extreme solutions which will have a very large χ̄2
vibration

and a very small χ̄2
rotation (or vice-versa).

8.3.3 Adaptive Recombination Methods

Adaptive recombination methods are essential to real-valued genetic algorithms. The

original genetic algorithms were binary coded, which means that they represent their

genes as a long string of 0s and 1s internally [111]. This creates a very natural mutation

operator that randomly flips bits with some probability and an equally natural crossover

operator that exchanges information above and below a cut point in the string. Defining

a good mutation operator and crossover operator for real-valued algorithms is much

harder. A natural mutation operator adds a normally distributed, zero-mean random

variable to each entry in its gene with some probability. As the algorithm descends

to a solution it will need to perturb each entry in its gene less and less, which can

be done by simultaneously decreasing the variance of the random variable. However,

this leads to problem specific and inefficient solutions. Adaptive methods decrease the

perturbation applied to the gene as the algorithm descends to a solution by a variety of

widely applicable heuristics. All of these heuristics somehow depend on the euclidean

distance between genes in the population decreasing as the algorithm descends. We

evaluated three adaptive recombination methods from the literature, before constructing

our own tailored to our problem.

For our test problem we will be using a modified version of our full problem, solving

for a high accuracy lithium-rubidium (LiRb) X 1Σ+ potential. The full details of this

problem are found in section 8.4, and we will only note how we modified it here. To

reduce the complexity of this problem for quick testing, we increased the uncertainties

we input to the solver and then limited the solver to only ten thousand calls of its

Numerov solver (it is possible to have more χ̄2 calls because the χ̄2 function will not

call the Numerov solver if the potential has too many minima). Specifically, we dropped

the uncertainty of the vibrational binding energies from 0.02 cm−1 to 0.2 cm−1 and we

removed the calculation of rotational coefficient errors. Removing the calculation of

rotational errors allows us to test the solver capabilities without having to deal with the
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complexity of a multi-objective problem, detailed in section 8.3.5. Additionally, the error

bars in this section result from repeating each group of settings ten times, to account for

the stochastic nature of genetic algorithms. Finally, we will be testing each parameter of

the algorithm while holding the others constant (the implicit assumption in this approach

is that the mutual correlation between the parameters is small).

Differential Evolution

One of the most successful adaptive recombination methods for real-valued genetic

algorithms is called Differential Evolution (DE) [112]. Differential evolution works as

follows.

1) For each gene in the population, labeled ~xi, select 3 other genes at random from

the population (we weight this by Eq. 8.9 which is unusual, but helps with convergence).

These will be M dimensional vectors, where M is one plus the number of points in the

point-wise potential (+1 for C6), labeled ~x1, ~x2, and ~x3.

2) Create a new vector ~u according to

~u = ~x1 + F (~x2 − ~x3), (8.10)

where F is a global parameter.

3) Recombine the new vector, ~u, with ~xi according to

~vj =

~uj If a < CR

~xi,j If a > CR

, (8.11)

where CR is the second global parameter, a is a uniformly distributed random variable

between zero and one (generated for each j) and the index j runs between zero and M.

4) If ~v scores better than ~xi, ~v is added to the next generation, otherwise ~xi is added.

Shown in Fig. 8.3, is our work to optimize the different parameters for the test prob-

lem. From panel (a) we see that either a large or a small crossover rate (CR) work best.

This corresponds to swapping only a small number of genes between ~u and ~xi. Second

from panel (b), it looks like larger F is better, although this is deceiving. In reality, the

higher F runs ‘cheated’ and created a large number of solutions that had extra minima

which were not evaluated by the Numerov solver. The result is that F = 0.7 had nearly
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Fig. 8.3. Optimization of Differential Evolution. All subplots have a log
scale on the y-axis. (a) Optimization of CR. The other two parameters
were set to F = 0.5 and N = 25. (b) Optimization of F while holding
CR = 0.1 and N = 25. (c) Optimization of N . We fixed F = 0.5 and
CR = 0.1.

twice the number of generations as F = 0.1 which helps explain its better success. This

pattern continued for as large as we were willing to make F. However, our ultimate goal

is a program that runs quickly, and although the Numerov solver is the slowest piece,

eventually the raw number of generations for large F values added up resulting in much

longer solver run times than for smaller F values. As a compromise we will be using

F = 0.5 to compare to the other recombination methods. Finally in panel (c), we see

that increasing N, the number of genes in the population, helps until around N = 100.

Additionally, increasing N makes the different runs more consistent, reducing the stan-

dard error of the mean. We concluded that CR = 0.1, F = 0.5, N = 100 were the

optimal settings for differential evolution for fitting point-wise potentials to experimental

data.

Simulated-Binary Crossover

The second recombination operator we investigated is simulated-binary crossover

(sbx). Simulated-binary crossover works on a weighted average of the two parent genes
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and was originally developed by Ref. [113]. It appears in this chapter because simulated-

binary crossover was found to be very successful on a similar problem in Refs. [105,107,

114]. However, it also needs an independent mutation operator. Ref. [105] suggests using

a normal random variable which runs back into all the issues we were trying to avoid. We

hybridized the simulated-binary crossover with steps 1 and 2 of the differential evolution

algorithm for an adaptive mutation operation.

Our version of simulated binary crossover works as follows.

1) For each gene in the population, labeled ~xi, select 3 other genes at random from

the population, labeled ~x1, ~x2, and ~x3.

2) Create a new vector ~u according to Eq. 8.11.

3) Perform simulated-binary crossover between ~u and ~xi.

a) Calculate a random variable µ ∈ [0, 1].

b) Calculate

β =

(2µ)
1
η+1 if µ ≤ 0.5

[1
2
(1− µ)]

1
η+1 if µ > 0.5

, (8.12)

where η is a global parameter.

c) Calculate the children vectors

~v1 =
1

2
[(1 + β)~u+ (1− β)~xi] (8.13)

~v2 =
1

2
[(1− β)~u+ (1 + β)~xi], (8.14)

where ~v1 and ~v2 are the resultant children and ~u are ~xi the parent vectors.

4) Randomly pick one of ~v1 and ~v2, called ~v. If ~v scores better than ~xi, ~v is added to

the next generation, otherwise ~xi is added.

Fig. 8.4 shows our work on optimizing simulated-binary crossover for our test problem.

Again, we have three parameters to optimize, η, F , and N . We started with η, which

Ref. [105] recommends to set at 3. Our understanding of how simulated-binary crossover

works, is that it is a weighted average of the two parents and η controls how close the

children will be to the parents. Larger η results in β closer to one and ~v1 becomes

approximately ~u while ~v2 starts to approximate the other parent ~xi. As seen in Fig. 8.4

panel (a), the value of η doesn’t effect things much, with larger values doing ever so

slightly better. However, Fig. 8.4 panels (b) and (c) show that the other two parameters
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Fig. 8.4. Optimization of simulated-binary crossover. All subplots have
a log scale on the y-axis. (a) Optimization of η. We set F = 0.5 and
N = 25. For this plot the x-axis also uses a log scale. (b) Optimization
of F with η = 100 and N = 25. (c) Optimization of N with η = 100 and
F = 1.1.

F and N are much more important. We found that F = 1.1 and N = 40 worked best

by a large margin, which we will be using, along with η = 100 to compare to the other

recombination operators.

In light of how well of how well simulated-binary crossover works in Ref. [105], which

is solving a similar problem, and how poorly it works in our example, a valid question is

why. Ref. [115] suggests a possible explanation. Simulated-binary crossover preferentially

searches along the coordinate axes which is terribly suited for our problem. Because we

use a point-wise potential with cubic spline interpolation, moving individual points, like

simulated-binary crossover is likely to do, without also moving the neighboring points

is just not very effective. This type of operation is likely to result in extra minima and

non-physical potential with many changes in the sign of the first derivative.

Parent-Centric Crossover

Parent-centric crossover (pcx) is the third operator we tried, from Ref. [116]. In many

ways, parent-centric crossover is an update to simulated-binary crossover and was even

developed by the same research team. We investigated its performance on our test prob-
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Fig. 8.5. Optimization of the PCX operator. All subplots have a log scale
on their y-axis and we set two of the parent-centric crossover parameters,
µ = 3 and λ = 2, to values recommended by Ref. [116] and did not
try to optimize them. (a) Search for an optimal σ with N = 100. (b)
Optimization of N with σ = 0.01.

lem because it does not require an external mutation operator and claims to outperform

differential evolution. It also carries the rare distinction of being an evolutionary algo-

rithm that can outperform gradient based search methods on unimodal problems (i.e.

no local minima) [116]. Parent-centric crossover works as follows.

1) Pick µ parents, with vectors ~xi, from the population of N genes. µ is a fixed global

parameter and is set to 3 as recommended by Ref. [116].

2) Compute the mean vector ~g from the ~xi parent vectors. For each of λ children,

select one of the parents denoted ~xp and compute ~dp = ~xp − ~g. Ref. [116] recommends

setting λ = 2. Additionally, calculate the perpendicular distance Di to the line ~dp for

each of the other parents and compute the average D̄.

3) Create each child by

~v = ~xp + w0
~dp +

µ−1∑
i=1

wiD̄~ei, (8.15)

where ~ei span the subspace perpendicular to ~dp, and wi are normally distributed, zero-

mean random variables with variance σ2.

4) The best µ of the children and the parents are returned to the population for the

next generation.
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Fig. 8.6. Graphical one point crossover. (a) Encoding of potential onto
a gene. (b) Illustration of one point crossover, where the genes exchange
information on inner and outer walls of the potential. Entries in red
correspond to highlighted section of the potential in Fig. 8.1.

Because there is an overhead cost associated with each new generation (mostly from

sorting the population according to fitness) we modified parent-centric crossover to create

N children every generation, by picking N/λ groups of parents. Fig. 8.5 shows our work

on optimizing parent-centric crossover. We left µ = 3 and λ = 2 upon recommendation

of Ref. [116] and focused on optimizing N and σ. Like Ref. [116], we found that N = 100

works best (which also gives us confidence in µ and λ being close to optimum). However,

we had to do quite a bit of searching to find a value for σ that works well. Ultimately,

we decided that σ = 0.01 was the best value.

We should also take a minute and talk about the performance of parent-centric

crossover. Genetic algorithms are inherently stochastic, and all of our recombination

methods have a spread of results for any given settings of their global parameters across

the ten trials we did, but parent-centric crossover had the widest spread by quite a mar-

gin. When parent-centric crossover worked, it was the only recombination method to

reach the termination threshold for our test problem. However, it also had (compara-

tively) spectacular failures where it would get stuck on a local minima quickly and never

recover. This pattern re-emerges in later sections.

One Point Crossover

After working with the different crossover operators, we liked the relative simplicity of

differential evolution, but we were not impressed with its performance. However, we had
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Fig. 8.7. Optimization of one point crossover. All subplots have a log scale
on their y-axis. (a) Optimization of F with N = 25. (b) Optimization
of N , with F = 0.5.

a theory that its crossover operator was the problem, not the mutation operator. Because

we use a point-wise potential and interpolate between the points with cubic splines for

most of the potential, adjacent points are strongly correlated. The differential evolution

crossover operator will break up these correlations because it exchanges points at random.

Instead we propose a modified version of differential evolution for our problem that we

call one point crossover and works as follows.

1) Select 4 genes at random from the population, labeled ~x1, ~x2, ~x3, and ~x4.

2) Create a new vector ~u according to Eq. 8.10.

3) Recombine the new vector, ~u, with ~x4 according to

~vj =

~uj If j < P

~x4,j If j > P

, (8.16)

where P is a uniformly distributed random variable between 1 and M - 1, and j indexes

the vectors from zero to M.

4) If ~v scores better than ~x4, ~v is added to the next generation, otherwise ~x4 is added.

Our one point crossover operator has two global parameters to optimize, N and F.

Fig. 8.7 shows our work to optimize one point crossover, from which we conclude that

N = 100 and F = 0.4 are about optimum.
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χ̄2 Method DE SBX One Pt. PCX

Eq. 8.3 1070 (310) 4600 (600) 130 (25) 480 (280)

Eq. 8.6 420 (120) 2660 (270) 80 (13) 270 (90)

Table 8.1.
Performance of the different recombination operators on the test problem.
The average χ̄2 error is reported, with the standard error of the mean in
parentheses. For this test, the second term in Eq. 8.3 was ignored. The
error of the mean is from repeating each test problem ten times to account
for the stochastic nature of genetic algorithms.

Table 8.1 shows the performance of the different recombination operators with op-

timum settings of their individual parameters. First, it is clear that all the algorithms

perform better when using Eq. 8.6 to calculate χ̄2 opposed to Eq. 8.3 (recall, for this test,

we neglected the rotational terms in Eq. 8.3). To do our best to make this a fair compar-

ison when using Eq. 8.3, we let the solver descend while using Eq. 8.3 to calculate χ̄2, but

after the algorithm reached its ten thousand Numerov call limit, we recalculated χ̄2 with

Eq. 8.6. Eq. 8.6 and Eq. 8.3 will give different numbers of χ̄2 for the same potential, but

these differences are largest when the potential is inaccurate and become small when the

potential is close to converged. Second, Table 8.1 demonstrates that one point crossover

performs quite well on the test problem with parent-centric crossover coming in second

place. As mentioned earlier, we think parent-centric crossover is worth a second look as

about half the time it did fantastic.

8.3.4 Local Optimization

As is common with evolutionary algorithms, we hybridize our algorithm with a local,

gradient based solver [105,117]. Although genetic algorithms are good at handling prob-

lems with lots of local minima, they are slow and take a huge number of function calls

to descend to the bottom of the global minima. Conversely, gradient based solvers are

very efficient at descending inside a local area, but are terrible at finding global minima,

provided the solution landscape has a critical mass of local minima. In a perfect world,

the genetic algorithm will find the global minima, and then hand-off the problem to the

gradient solver which will quickly descend to the bottom of the global minima. A more
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common scenario is for the genetic algorithm to hand-off the problem to the gradient

solver which will hit a local minimum and then it is up to the genetic algorithm to

‘jump’ out of the local minima and continue in its search for the global minimum. Still,

hybridizing genetic algorithms with local gradient based solvers can be hugely beneficial.

In our algorithm, we call a limited-memory Broyden-Fletcher-Goldfarb-Shanno bounded

solver (L-BFGS-B) [118], which is a quasi-Newton method that is designed to work well

with a large number of variables, under one of two conditions. First, we will call the

gradient based solver if the genetic solver is stuck, which we consider to be 20 genera-

tions without any improvement. Second, when the solver is close to converging, which

we consider to be when χ̄2 < 10 χ̄2
target, we will call the gradient based solver. When we

were testing the performance of the different recombination operators in section 8.3.3,

this feature was disabled.

8.3.5 Multi-objective genetic algorithms

As mentioned in section 8.3.1, there are a several pitfalls involved in comparing vi-

brational and rotational information. There we mentioned that our solution will be

to consider vibrational errors and rotational errors independently of each and on equal

footing by storing χ̄2 as a two-vector illustrated in Eq. 8.7. Of course, optimizing a two-

vector presents its own set of unique challenges. In the literature, this is considered a

multi-objective problem, and lucky for us, multi-objective genetic algorithms have been

an active area of research [119–121].

To understand how multi-objective optimization algorithms work, we will need to

introduce a few concepts. First, there is domination and one vector ~u is said to dominate

another vector ~v if

~ui < ~vi ∀ i, (8.17)

where i indexes the vectors. Second, multi-objective algorithms seek to derive a so called

pareto-optimum front, shown in Fig. 8.8. A pareto front is a set of vectors in which no

vector dominates another vector.

As can be seen in Fig. 8.8, this enables the algorithm to make the trade-off where it

makes one coordinate much worse in exchange for slightly improving the other coordinate.

Ultimately, we don’t care about spanning an optimal front, but it is the trade off property
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Fig. 8.8. Pareto-fronts for a sets of two-vectors, where x1 and x2 are the
two objectives the algorithm is trying to minimize. No two vectors in the
set of red or blue points are such that one dominates the other, although
for each red point, there is at least one blue point that dominates it.

we are after. If we look at the straight sum of χ̄2
vibration + χ̄2

rotation, this trade-off looks

really bad, but the multi-object algorithm acknowledges that sometimes this trade off

is beneficial in the long run. Functionally what happens is that early in the algorithm

descent, it will improve χ̄2
rotation at a huge cost in χ̄2

vibration. This move is prohibited

by looking at the sum, but allowed by the multi-objective algorithm. As the algorithm

continues its descent, it will improve χ̄2
vibration at very little cost to χ̄2

rotation. Then, looking

at the descent path of the two strategies, a straight sum versus the multi-objective

algorithm, the sum method will get stuck eventually with a somewhat optimal χ̄2
vibration

but a terrible χ̄2
rotation and no method for making the necessary sacrifices to χ̄2

vibration.

From a physics perspective, the binding energies can be mostly matched by distorting

the potential while sitting at the wrong equilibrium inter-nuclear separation, re and this

will happen with the straight sum method fairly often.

For the multi-objective algorithm, selection takes a different form. For the recombi-

nation methods we explored, most would compare the fitness of the children to one or

multiple parents and then keep the best of these. For a multi-objective algorithm, the

goal is to sort the solutions into different pareto fronts and then keep the best fronts. To

maintain elitism (which is a fancy way of saying that you always keep the best solutions),
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Fig. 8.9. Convergence of the genetic algorithm for LiRb X 1Σ+ potential
problem working with the one point crossover operator. Solid blue trace
uses a single-objective algorithm calculating χ̄2 = Eq. 8.6 + Eq. 8.8.
Dashed red trace uses a multi-objective algorithm calculating χ̄2 with
Eq. 8.3. Dash-dotted green trace uses a multi-objective algorithm calcu-
lating χ̄2 with Eq. 8.6 and Eq. 8.8. The sharp drops in the green trace
correspond to calls to the gradient based solver.

the parents and children are usually combined before sorting. We will be using the fast

non-dominated sorting algorithm from NSGA-II [119] to sort into pareto-fronts and the

improved crowding sort algorithm from Ref. [122] to decide how to break ties when only

a fraction of a front gets to be added to the next generation.

As a simple demonstration of the power of the multi-objective approach, we present

Fig. 8.9. In Fig. 8.9, we plot the descent of the genetic algorithm using the optimized

one point crossover method as a function of generation number (which is a loose ap-

proximation of number of Numerov calls). The three different traces compare how the

algorithm performs when using the multi-objective implementation (with two different

χ̄2 calculation methods) to the single-objective implementation. Without any doubt,

Fig. 8.9, shows that the multi-objective implementations outperform the single-objective

implementation.
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v Eexp. (cm−1) Epot. (cm−1) Bv Exp. (cm−1) Bv Pot. (cm−1)

0 -5830.84 (0.02) -5830.84 0.2158 (3e-05) 0.2159

1 -5637.86 (0.02) -5637.86 0.2140 (3e-05) 0.2141

2 -5447.13 (0.02) -5447.14 0.2130 (3e-05) 0.2129

3 -5258.67 (0.02) -5258.67 0.2110 (3e-05) 0.2110

4 -5072.49 (0.02) -5072.49 0.2094 (3e-05) 0.2093

5 -4888.61 (0.02) -4888.60 0.2077 (3e-05) 0.2079

6 -4707.05 (0.02) -4707.10 0.2064 (3e-05) 0.2064

7 -4527.84 (0.02) -4527.83 0.2049 (3e-05) 0.2047

8 -4351.00 (0.02) -4350.97 0.2031 (3e-05) 0.2031

9 -4176.56 (0.02) -4176.53 0.2013 (3e-05) 0.2013

10 -4004.54 (0.02) -4004.55 0.1994 (3e-05) 0.1996

11 -3834.99 (0.02) -3835.01 0.1977 (3e-05) 0.1978

12 -3667.94 (0.02) -3667.96 0.1959 (3e-05) 0.1959

13 -3503.42 (0.02) -3503.43 0.1940 (3e-05) 0.1940

14 -3341.47 (0.02) -3341.48 0.1921 (3e-05) 0.1920

15 -3182.15 (0.02) -3182.14 0.1903 (3e-05) 0.1901

16 -3025.50 (0.02) -3025.48 0.1880 (3e-05) 0.1881

17 -2871.57 (0.02) -2871.55 0.1860 (3e-05) 0.1860

18 -2720.41 (0.02) -2720.41 0.1840 (3e-05) 0.1840

19 -2572.10 (0.02) -2572.11 0.1817 (3e-05) 0.1819

20 -2426.69 (0.02) -2426.67 0.1797 (3e-05) 0.1797

21 -2284.25 (0.02) -2284.22 0.1772 (3e-05) 0.1774

22 -2144.86 (0.02) -2144.88 0.1748 (3e-05) 0.1749

23 -2008.61 (0.02) -2008.69 0.1724 (3e-05) 0.1725

24 -1875.58 (0.02) -1875.64 0.1701 (3e-05) 0.1699

25 -1745.87 (0.02) -1745.83 0.1674 (3e-05) 0.1672

Table 8.2.
Bound states and errors in the first half of the LiRb X 1Σ+ potential.
Blank entries denote states for which there is no experimental data.
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v Eexp. (cm−1) Epot. (cm−1) Bv Exp. (cm−1) Bv Pot. (cm−1)

26 -1619.57 (0.02) -1619.52 0.1643 (3e-05) 0.1643

27 -1496.80 (0.02) -1496.83 0.1613 (3e-05) 0.1613

28 -1377.68 (0.02) -1377.72 0.1585 (3e-05) 0.1584

29 -1262.33 (0.02) -1262.27 0.1553 (3e-05) 0.1552

30 -1150.88 (0.02) -1150.86 0.1518 (3e-05) 0.1519

31 -1043.49 (0.02) -1043.49 0.1485 (3e-05) 0.1485

32 -940.30 (0.02) -940.27 0.1447 (3e-05) 0.1449

33 -841.48 (0.02) -841.48 0.1409 (3e-05) 0.1410

34 -747.21 (0.02) -747.25 0.1368 (3e-05) 0.1369

35 -657.67 (0.02) -657.71 0.1328 (3e-05) 0.1326

36 -573.07 (0.02) -573.02 0.1280 (3e-05) 0.1280

37 -493.60 (0.02) -493.57 0.1229 (3e-05) 0.1229

38 -419.48 (0.02) -419.56 0.1176 (3e-05) 0.1176

39 -350.94 (0.02) -351.00 0.1124 (3e-05) 0.1122

40 -288.20 (0.02) -288.16 0.1061 (3e-05) 0.1058

41 -231.49 (0.02) -231.45 0.0996 (0.005) 0.0999

42 -181.02 (0.02) -181.00 0.0930 (0.005) 0.0920

43 -136.98 (0.02) -136.97 0.0854 (0.005) 0.0861

44 -99.51 (0.02) -99.5 0.0777 (0.005) 0.0741

45 -76.94 0.0557

46 -63.18 0.0460

47 -48.97 0.0530

48 -32.19 0.0517

49 -15.24 0.0503

50 -1.82 (0.02) -1.81 0.0274

51 -0.41 (0.02) -0.39 0.0133 (0.01) 0.0159

Table 8.3.
Bound states and errors in the second half of the LiRb X 1Σ+ potential.
Blank entries denote states for which there is no experimental data.
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8.4 Lithium-rubidium X 1Σ+ potential

Throughout this chapter, we have been fitting the X 1Σ+ potential of LiRb to test

our genetic algorithm. Table 8.2 and Table 8.3 provide a full list of the bound states of

this potential along with the rotational constants and the expected experimental error.

We chose this molecule/potential pair for two reasons. First, both Jesús and I have

worked on LiRb spectroscopy and have familiarity with the details of the experimental

data. Second, there is high precision experimental data available making it a good

testing ground. This potential was first studied by Refs. [54, 55] with Fourier transform

spectroscopy and laser induced fluorescence in a thermal sample. These studies measured

the rotational constants and relative binding energies of v = 0 to 45 with high precision,

but were unable to determine the well depth accurately. Ref. [68] was able to fix the well

depth of this potential which provides the absolute uncertainty in the binding energies of

states in this potential. Additionally, Ref. [67] performed two-color photoassociation in

LiRb and was able to measure the binding energies of v = 50 and 51. A sample potential

derived by our algorithm that reproduces the experimental data is listed in Table. 8.5.

To derive the potential presented in Table 8.5, we used the one point crossover method

that seemed to be the best according to Table. 8.1. However, recall that we had mentioned

One Pt. PCX Hybrid

χ̄2 Converge Numerov Converge Numerov Converge Numerov

Method Rate Calls Rate Calls Rate Calls

S-Obj. Eqs. 8.6 & 8.8 0/10 2/10 76 (6) 5/10 39 (8)

M-Obj. Eq. 8.3 5/10 64 (12) 0/10 9/10 52 (5)

M-Obj. Eqs. 8.6 & 8.8 9/10 65 (7) 6/10 32 (3) 10/10 48 (9)

Table 8.4.
Performance of the different recombination operators on solving for a full
LiRb X 1Σ+ potential. S-Obj. stands for single-objective formulation
and M-Obj. stands for multi-objective formulation. Numerov calls are
all in thousands of functions calls, rounded to nearest thousand. Error
is the standard error of the mean from the 10 repetitions of each setup.
Blank entries for Numerov calls occur when the solver never converged.
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r (Å) E (cm−1) r (Å) E (cm−1) r (Å) E (cm−1)

2.48 270.5397 4.1 -4922.9598 5.8 -1084.5637

2.52 -544.3594 4.2 -4658.2617 5.9 -966.4383

2.58 -1257.7633 4.3 -4384.1144 6.0 -861.4090

2.62 -1754.1211 4.4 -4105.4199 6.1 -765.4188

2.74 -3031.2257 4.5 -3825.9972 6.2 -681.6994

2.82 -3730.9864 4.6 -3549.3351 6.3 -603.2336

2.9 -4311.4380 4.7 -3278.2943 6.4 -539.1264

3.1 -5320.3889 4.8 -3015.1001 6.5 -478.3379

3.2 -5627.2147 4.9 -2761.7635 6.7 -378.4213

3.3 -5815.1641 5.0 -2518.7458 6.9 -300.0248

3.4 -5914.1939 5.1 -2289.6694 7.1 -237.5067

3.5 -5922.9711 5.2 -2074.6983 7.3 -193.5237

3.6 -5865.6330 5.3 -1872.3884 7.7 -119.4375

3.7 -5755.1548 5.4 -1687.4591 8.1 -94.9608

3.8 -5592.8416 5.5 -1515.6367 8.7 -74.7338

3.9 -5395.1269 5.6 -1358.2086 9.5 -64.8157

4.0 -5170.9475 5.7 -1214.9095 10.3 -11.9104

10.7 -3.4758

C6 11484745.0

Table 8.5.
Points for LiRb X 1Σ+ potential derived by the genetic algorithm. This
is the same potential used in Table 8.2 and Table 8.3.

that the parent-centric crossover operator, while sporadic, was at times impressive, and

we thought worthy of one last look. Table 8.4 lists how the one point crossover operator

and the parent-centric crossover operator, along with a hybrid crossover operator (to

be detailed in a second) perform on the full LiRb X 1Σ+ potential problem. Perhaps

surprisingly, the parent-centric crossover operator converged to a final answer faster than

the one point crossover operator, but the cost paid is it only did it about half the time

when using the multi-objective approach with the specialized χ̄2 calculation method.
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Upon close inspection the real problem is that the parent-centric crossover operator

hates the local gradient based solver (and that both are prone to getting stuck in local

minima). After returning for the gradient based solver call, parent-centric crossover just

stops functioning all together. Sometimes from here the gradient based solver can pull it

into the final solution, other times it can’t.

This leads us to propose our hybrid algorithm: it starts with the parent-centric

crossover until the first gradient based solver call. Here it switches to the one point

crossover, which has no problem recovering after the gradient solver. Despite the added

complexity, the hybrid crossover solver is faster than the one point solver and is more con-

sistent that either individual solver. Additionally, the hybrid solver has enough power to

reach a solution consistently even when using the simple χ̄2 calculation method in Eq. 8.3

and can occasionally find a solution when not using the multi-objective formulation.

Additionally, based on Table 8.4, we conclude that the one point crossover operator

paired with the χ̄2 calculation method in Eq. 8.6 and Eq. 8.8 and the multi-objective

formulation is a gross over-engineering. Parent-centric crossover retains much of its

functionality when working without either the modified χ̄2 method or the multi-objective

formulation while one point crossover does not. Note that the failure of the parent-centric

crossover operator when using Eq. 8.3 and the multi-objective formulation has more to do

with the failures of the gradient based solver, than parent-centric crossover. This suggests

that there is some synergy at play between the combination of one point crossover, the

modified χ̄2 method and the multi-objective formulation that enables the combination to

work much better together than any of the three alone. In all likely-hood this synergy is

driven by some problem specific detail, likely our decision to use a point-wise potential to

represent the molecular interaction, and will not work for other classes of problems (i.e.

solving potentials that don’t use a point-wise representation). Conversely, we expect that

parent-centric crossover is a powerful, general operator. Better hybridizing parent-centric

crossover with the gradient solver will likely result in it far outperforming the one point

crossover (or even the hybrid crossover strategy) and is something we are working on.



114

8.5 Genetic Algorithm Conclusion

We have demonstrated that genetic algorithms can directly fit diatomic point-wise

potentials to high-accuracy experimental data. On its own, this is a bit of an accomplish-

ment. Directly fitting these point-wise potential are likely one of the hardest computa-

tional optimization problems around. Not only is the solution landscape filled with local

minima, but the individual parameters (the different points) are very highly correlated

and even small perturbations can quickly result in extra minima in the potential which

crash the Numerov solver.

Although our algorithm works well for the test problem we worked on, there are many

open questions that can form the basis for the next couple of studies. On the technical side

of the computation, we noticed that the parent-centric crossover operator can outperform

all its competitors, nearly by an order of magnitude, but it is sporadic in doing so. It

seems worth looking to see if it can be stabilized at little cost in run time and better

hybridized with the local gradient based solver. Additionally, the evolutionary algorithm

techniques we used are all 15 years old, and in the meantime, newer methods like Mean-

Variance Mapping Optimization (MVMO) [117] and adaptive differential evolution [123]

have risen displacing the older genetic algorithms. Certainly it is worth looking into the

newer evolutionary methods to see if they can perform well on our problem as well.

On the physics side of this project, there are two open questions. First, we studied

exactly one potential here, and we want to know if this method can be applied to other

systems. Certainly the answer is yes, but we would also like to test our fitting method

on notoriously difficult problems like potentials with multiple minima [124]. Second, we

were fitting the vibrational binding energies and rotational constants directly, instead of

fitting to the term energies E(v, J). We did this to separate rotational information, which

is sensitive to the equilibrium inter-nuclear separation of the states, from vibrational

information, which is sensitive to the local slope of the potential and the potential depth.

Centrifugal distortion coefficients enter nowhere in this equation, but these coefficients

are very important for predicting rotational states with J > 10, like would be observed

in a thermal sample. Thus an open question is can we directly fit E(v, J). It is not

obvious that this will be possible with our technique. We have seen that when we

considered fitting as a single-objective problem, which convolves rotation and vibration
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information, our current algorithm struggled. Part of the problem is that at the start

of the fitting routine, the vibrational errors are several orders of magnitude larger than

the rotational errors. It is possible that fitting E(v, J) will partially solve this problem

because, for thermal states, the J(J + 1) pre-factor for the rotational information will

be quite large and could bring rotational information and vibrational information onto a

more level playing field.

Finally, we would like to see how our algorithm compares to the semi-quantum ap-

proaches to fitting potentials to experimental data. These methods like the RKR and

the inverted perturbation approach use problem specific knowledge (based on the molec-

ular Hamiltonian and classical quantization of energy levels) and are well established

techniques in the field. Because the semi-quantum techniques can use problem specific

information, we expect that they will be faster than the genetic based techniques. But

if our genetic based technique can produce a similar quality potential while not running

that much slower (i.e. only one order of magnitude slower), we would consider that a huge

success. In conclusion, we expect genetic based fitting methods to be a very productive

avenue of research in the near future.



116

9. FUTURE WORK

In this chapter, I will layout immediate improvements to the LiRb experiment machine

and a few future experiments. Finally, I will lay out two experiments in this chapter,

one in LiRb and one in a Rb BEC. Both experiments require loading two species into

a dipole trap and cooling them close to the degeneracy point. Both experiments also

require a pair of coherent Raman lasers red detuned from the Rb D1 line.

9.1 Experiment Improvements

There are three immediate improvements that can be made to the LiRb experiment

to make it more user-friendly. The biggest improvement would be to replace the Zeeman

slower. The slower, as designed by Sourav Dutta, consists of coils of wire with copper

tubing wrapped around them, and the cooling water flows through the copper tubing.

These get extraordinarily hot after continuous operation for an hour and limit operation

to 45 minute duty cycles with 20 minute breaks in between. A better form for slower

coils is to use hollow copper refrigerator tubing. The current flows in the copper and

the cooling water in the center. This design will require a higher current source, but will

result in continuous experiment operation. However to make this change would require a

total disassembly of the vacuum system and should not be done until vacuum is broken

for other reasons. I also recommend moving to a dual species slower setup as detailed

in Ref. [125], if vacuum is ever broken. The dual species slower geometry helps enable a

far better vacuum pressure in the main chamber which would be helpful for future BEC

type experiments.

Of the smaller projects, the first is to improve the Li heat pipe used for frequency

locking the Li trapping laser. Currently we have a heat pipe loaded with a few grams of

Li metal, heated to around 400 C and kept at a modest vacuum of 10 mTorr. However,

the Li supply has to be replaced every month or so and getting the heat pipe to the right

temperature is time consuming. For around a thousand dollars, we could get a custom
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built Li vapor cell from Precision Glass Blowing in Colorado. The cell will need to be

heated like the heat pipe, but it will never need to have more Li added and once the

correct temperature is found, it will not require day to day adjustment like the heat pipe

currently does. However, care will need to be taken to ensure that Li vapor does not

condense on the optical faces of the vapor cell.

The second project is to replace the Tiger laser, which forms the Rb cooling light

with a tapered amplifier. The advantage here is that most of our data is limited by the

Tiger laser currently. The laser will spontaneously unlock, usually every 30 minutes or

so. This can be improved by periodically replacing its PZT but that also requires a large

re-alignment each time. The tapered amplifier will provide the high power of the Tiger

laser along with the stability of the low power seed laser. For example, we use a tapered

amplifier for the Li trapping light, and it is never a problem. The custom option is to

build our own seed laser at 780 nm and build our own tapered amplifier. Information for

building the seed laser can be found in Ref. [48] and information on building the tapered

amplifier can be found in the appendix to Ref. [126]. The more expensive, but easier

option is to let a company like Toptica build both for us (and they can even provide an

internal Rb reference).

The final project is to enclose the MOT lasers in plexiglass. A plexiglass enclosure

helps with the passive stability of the lasers and also helps keep the optics clean. The

goal would be to enclose the lasers and all the optics along the way to fibers; although a

bit time consuming, this project would pay dividends in the long run, reducing the need

for periodic re-alignment and cleaning.

9.2 Continuum STIRAP

The goal of the first project is to demonstrate an all optical route to ground state

bi-alkali molecules. The idea is from Ref. [67]; instead of forming molecules in the dipole

trap with magneto-association which will require giant magnetic fields and heavy mod-

ifications to the vacuum system, instead use STIRAP to transfer population from the

scattering state to the least bound vibrational state. Because LiRb has a very large PA

rate coefficient [127], an optical transfer like this will be unusually efficient and Ref. [67]

predicts around 5 % efficiency. While not great, this is competitive with many imple-
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Fig. 9.1. Table diagram for the 1064 nm dipole trap. A 1064 nm ECDL is
locked to a cavity to get approximately 1 kHz linewidth. This seeds the
fiber amplifier. After the amplifier, an AO directs most of the laser power
into the first-order. A pick off is setup to monitor and, in tandem with
the AO, finely control the laser power. Lenses focus the beam to about a
150 µm spot size in the middle of the MOTs. The beam is recycled for a
second pass. Again, an AO controls the power and it is focused to about
a 25 µm spot size. The two beams cross at approximately 15◦ forming a
dimple trap.

mentations of magneto-association, and could be improved upon with similar methods

to magneto-association. The least bound vibrational state is chosen for this work to

keep the frequency difference between the Raman lasers small. I suspect that the same

experiment could be made to work with the 2(1)− 4(1) state. However, the 2(1)− 4(1)

experiment would require a difference between the lasers of 1000’s of GHz opposed to

the 4.66 GHz difference proposed. (An exciting future project could be a direct transfer

from the scattering state to X 1Σ+ v = 0 through the 2(1)− 4(1) state.)

To make this transfer happen, two big things need to be done and I will provide as

much information as possible at this point in time. First, the atoms need to be transferred

to an optical dipole trap and cooled; second, the lasers for the STIRAP transfer need

to be assembled and phase locked. In our lab, we have a 1064 nm fiber amplifier from

NuFern along with two 1064 nm AOMs. A seed laser for the fiber amplifier would need
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to be constructed and stabilized to an optical cavity. The NuFern fiber amplifier needs

50 mW into its fiber. I recommend following the dipole trap design of Ref. [126], using

a wide beam and narrow beam, as shown in Fig. 9.1. The output of the fiber amplifier

should be sent through an AOM and the first-order beam used as the wide focus beam.

After passing through the vacuum chamber once, the beam can be shifted in a second

AOM and recycled for use as the narrow beam. The AOM control circuit presented in

this thesis can be used to control the AOMs and evaporatively cool the atom. To align

the dipole trap beam, I recommend following our general laser alignment plan, and co-

propagate it with the Ti:Sapphire output which can be tuned to destroy the MOT, thus

guaranteeing proper alignment.

Loading the dipole trap is a bit trickier. Ref. [126] illustrates a timing sequence for

loading 87Rb (I recommend using 87Rb for this experiment, by the way). The first goal

should be to get a 87Rb BEC before working on loading Li into the dipole trap. To

detect atoms in the dipole trap, absorption imaging can be used. For this, pick off a

small amount of light from the Rb cooling laser and shift it into resonance with an AOM.

Align this light through the MOT and onto a CCD camera; again Ref. [126] offers a good

primer.

After the 87Rb BEC is working, work can being on loading Li into the dipole trap.

I would recommend a sequential loading sequence like Ref. [125], using a gray molasses

on the Li D2 line. An example of a gray molasses in 23Na can be found in Ref. [128].

From here, the same evaporative cooling sequence can be followed, and interrupted just

before the Li BEC would start to form. Getting to this point is a lot of work, but here

the science can happen.

For STIRAP, two phase-locked lasers will be needed, around 795 nm. Two ECDLs

will work fine, and the first should be locked to a cavity, the second can be locked to

the first with a 4.66 GHz offset [67], as shown in Fig. 9.2. The phase lock can be made

to happen with the digital phase detector from Chapter 7. Tune the cavity-locked laser

about 50 MHz below the 2(0−) v = −5 PA resonance, and then use two more AOMs to

pulse the lasers and STIRAP should happen, transferring directly into the least bound

triplet state in an all optical method. Clean the trap of leftover Li and Rb atoms, and

then reverse STIRAP and image to detect.
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Fig. 9.2. Table diagram for 795 nm lasers setup. A small amount of
power is picked off from both lasers and sent through a fiber to lock, one
laser to a cavity and the second laser to the first at some offset frequency
using a digital OPLL. Afterwards, AOs control the power and timing.
Ultimately, the lasers are combined and sent to the experiment through
a polarization maintaining fiber.

9.3 Unitary Rb BEC

The final experiment is to demonstrate semi-long-lived all optical control over the

atomic scattering length and to produce dynamic unitarity BECs. The original unitarity

BEC experiment [129] was a fast ramp from zero interaction to infinite interactions using

a magnetic Feshbach resonance. This is accomplished with a 85Rb BEC using a Feshbach

resonance around 160 G and it involved sweep from 169 G (0 interactions) to 160 G

(infinite interactions) in around 10 µs.

Our twist on the experiment is to instead use a pair of Raman lasers to accomplish

the rapid change in the scattering length, inspired by Ref. [130]. A potential energy

diagram for this experiment is given in Fig. 9.3. A Feshbach resonance works by tuning

the least bound molecular state through the scattering state with the Zeeman effect.

Starting with the least bound state tuned near the scattering state, our Raman lasers

will dress the least bound molecular state with a second bound, ground molecular state,

while being far detuned from the excited state. This is a form of Autler-Townes dressing
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Fig. 9.3. (a) Potential energy diagram for a Raman ramp to unitarity in
Rb2. A pair of 795 nm ECDLs, with frequencies ω1 and ω2 and Rabi fre-
quencies Ω1, and Ω2, couple the two least bound molecular state through
an intermediate state. By carefully controlling the laser power, we can
increase or decrease the coupling. The detuning from the intermediate
state, ∆, will be chosen to be large compared to the lifetime of the ex-
cited state, γPA. (b) Dressed state picture in Rb2. The state coupling
Autler-Townes dresses the bare states. By increasing the Autler-Townes
splitting, the least bound state can be carried into resonance with the
scattering state. This mimics a magnetic Feshbach resonance.

and will push the least bound state up in energy as the laser power is increased. Thus

we accomplish a similar effect, tuning the molecular state into resonance with the scat-

tering state, but by an optical means. This also differs from previous implementations of

Raman coupling between scattering states and bound molecular states like in Ref. [131].

There, the scattering state itself is coupled to a bound state, and because the scattering

to bound transition is so weak, it requires being basically on-resonance with the excited

state, whereas our implementation only requires addressing two bound states allowing a

much greater detuning from the excited state. This makes all the difference: previously

Ref. [131] was limited by PA to the excited state, which is a strong atom loss mechanism,

making the technique nearly useless. The advantage of the optical ramp to unitarity

(beyond being optical and faster), also lies in its positional dependence. Because Gaus-

sian beams have a non-uniform profile, we can exploit this and make some parts of the
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BEC unitary while other will be non-interacting leading to interesting dynamics between

different populations in the BEC.

The best method for producing a 85Rb BEC is to sympathetically cool 85Rb with

87Rb, while the 85Rb self-scattering length is tuned to zero around 169 G. There are two

options for forming a 85Rb and a 87Rb MOT. The most obvious is to use the Tiger for

the 85Rb MOT and its replacement for the 87Rb MOT. The downside to this approach

is obvious. Alternately, if we buy the Tiger replacement from Toptica, it should be able

to produce both MOTs, sequentially. Toptica’s tapered amplifier systems have mode-

hop free tuning of 30 GHz which is more than enough to span the 3 GHz difference

between the 85Rb and 87Rb cooling transitions. The Toptica laser can be locked to one

of the repump laser with a digital OPLL which should allow a rapid change of the offset

frequency between the two lasers, as shown in Fig. 9.4.

Fig. 9.4. Table diagram for tunable Rb transfer lock. Homebuilt ECDLs
form repump lasers and are locked to saturated absorption resonances. A
beat-note is formed between one repump laser and the cooling laser. The
cooling laser is phase locked to the repump laser with a digital OPLL.
The digital OPLL can be used to tune the cooling laser between the 85Rb
and 87Rb cooling transitions in a fast, controllable manner.
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To generate the 169 G bias Magnetic field, the MOT coils can be changed from an

anti-Helmhotz configuration to a Helmhotz configuration. A circuit for rapidly changing

the MOT coil current drives can be found in Ref. [37]. Two-photon PA spectroscopy will

need to be carried out on 85Rb following the lead of Ref. [67] to find a suitable ground

state pair for this experiment. For more information on PA in BECs, consult Ref. [69].



APPENDICES
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A. NOTATION AND LABELING

The discussion of diatomic molecules in this section is borrowed from Ref. [66]. To a

reasonable approximation, the diatomic Hamiltonian is H = Hel + Hv + Hr. At this

point the Born-Oppenheimer approximation has already been made and the electrons

see the stationary nuclear potential in Hel that is a function of R, the internuclear

separation. Fig. 3.4 shows the low-lying electronic potential energy curves for LiRb. A

reasonable guess for solving H is to assume a wavefunction form |Ψ〉 = |Ψel〉|ΨN〉 and

|ΨN〉 = 1
r
|Ψv〉|Ψr〉 where the v subscript refers to vibration along the internuclear axis

and the r subscript refers to rotation about the internuclear axis. This solution looks

like:

H|Ψ〉 = (Eel + Ev + Er)|Ψ〉. (A.1)

Often this energy E will be written in wavenumber units called term values as T =

Te +G+ Fv and Te � G� Fv.

It is standard to assume that the vibration and rotation are uncoupled. The vibration

is modeled as an an-harmonic oscillator:

G = ωe(v +
1

2
)− ωexe(v +

1

2
)2 + ωeye(v +

1

2
)3 + ... (A.2)

with ωe, xe and ye constants of the electronic state. The rotation is modeled as a sym-

metric top:

Fv = BvJ(J + 1) + (A−Bv)Λ
2 −DvJ

2(J + 1)2 + ... (A.3)

with Bv and Dv constants of the vibrational level (and Bv � Dv) and A a constant of

the electronic state (usually AΛ2 is included in Te).

In atoms the coupling of different angular momenta is fairly simple, in diatomic

molecules an exact solution is not possible (not that it is always possible in relativistic

atoms). However, good approximations can be made and the common approximations

are the different Hund’s coupling cases. For this work the relevant Hund’s cases are (a),

(b) and (c), with (a) and (c) covering most of our work. Table A.1 shows the analogy

between atomic quantum numbers and diatomic quantum numbers. The assumption in
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Atomic Quantum Numbers Molecular Quantum Numbers

L - Orbital angular momentum L - difficult to define

ML - Projection of L onto a lab axis ML - projection of L onto internuclear axis

Λ = |ML|, ML=L, L-1, L-2 ... -L

S - electron spin S - sum of electron spin

MS - Projection of S onto a lab axis Σ - projection of S onto internuclear axis

~J = ~L+ ~S Ω = |Λ + Σ|

Table A.1.
Analogy between atom and molecular quantum numbers

Fig. A.1. Vector coupling of different angular momenta in diatomic
molecules. (a) Shows coupling in Hund’s (a). (b) Shows coupling in
Hund’s (c). Figure borrowed from Ref. [66].

Hund’s (a) is that the coupling of the nuclear rotation with the electronic motion is weak,

while the electronic motion is strongly coupled to the internuclear axis. This is shown in

a vector diagram in Fig. A.1 (a). N is the angular momentum from the nuclear rotation,

L is the electronic angular momentum, Λ is the projection of L onto the internuclear

axis, S is the total electronic spin, Σ is the projection of S onto the internuclear axis,

Ω = Λ + Σ and finally J = Ω + N . The good quantum numbers are Λ, S, Σ, Ω and J.

The rotational energy is Fv ' Bv[J(J + 1)− Ω2], J = Ω, Ω + 1, Ω + 2, . . .

Hund’s (b) is a subset of Hund’s (a) with Λ = 0 and S 6= 0. In this case Ω cannot

be defined and instead we define K = Λ + N which is the total angular momentum not

from spin. Then we define J = K + S. The good quantum numbers are Λ, S, K, and J.
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The rotational energy is Fv ' Bv[K(K + 1)], K = Λ, Λ + 1, Λ + 2, . . . For our work,

Hund’s (b) comes up when we work out of the lowest triplet state, a 3Σ+.

Hund’s (c) occurs when the spin-orbit coupling is stronger than the coupling to the

internuclear axis. In this case Λ and Σ cannot be defined and instead L and S combine

to form a resultant Ja with projection onto the internuclear axis Ω. And we define

J = Ω + N . The good quantum numbers are Ja, Ω and J. The rotational energy is the

same as in Hund’s case (a). This is shown in vector from in Fig. A.1 (b) and this scenario

comes up in our loosely bound PA states near atomic asymptotes.

Labeling molecular states is itself complicated. Let’s use a 3Σ+ v = 11, K = 1, J =

0− as an example. Here we have labeled the state in Hund’s (b) coupling: a labels this

as the first 3Σ+ state, 3 identifies that this is a triplet state (a la S=1), Σ+ identifies

this as an Λ = 0 state (Λ = 1 is a Π state, and Λ = 2 is a ∆ state) and the + identifies

this as a state with even symmetry upon inversion across any plane containing the two

nuclei, v=11 identifies this as the 12th most tightly bound state and J = 0− identifies the

Hund’s case (a) or (b) Hund’s case (c)

X 1Σ+ 1(0+)

a 3Σ+
1(0−)

1(1)

A 1Σ+ 2(0+)

c 3Σ+
2(0−)

2(1)

b 3Π

3(0+)

3(0−)

3(1)

1(2)

B 1Π 4(1)

Table A.2.
Correspondence between Hund’s case’s (a) and (c) in LiRb. We use
Hund’s case (c) labeling for our PA states and Hund’s case (a) for bound
to bound transitions.
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Fig. A.2. (a) Schematic representation of overlap between ground and
excited state vibrational levels. The degree of overlap, which in turn
determines the strength of the transition, is given by the Franck-Condon
factor. Figure adapted from Ref [132]. (b) Rotational structure and
parity of different electronic states in diatomic molecules, adapted from
Ref. [66].

Selection rules for radiative transitions in diatomic molecules

∆J = 0, ±1 and J = 0 9 J = 0

+↔ −, + = +, and −= − or

for ∆J = 0, e↔ f and for ∆J = ±1, e↔ e and f ↔ f

Hund’s (a) only Hund’s (b) only Hund’s (c) only

∆Λ = 0, ±1 (i.e. Σ− Σ, Σ− Π but no Σ−∆) ∆Ω = 0, ±1

Σ+ ↔ Σ+, Σ− ↔ Σ−, Σ+ = Σ− 0+ ↔ 0+, 0− ↔ 0−, 0+ = 0−

∆S = 0

∆Σ = 0 (i.e. 3Π0 −3 Π0, ∆K = 0, ±1, ∆K = 0 is

but no 3Π0 −3 Π1) forbidden for Σ− Σ

∆Ω = 0, ±1, if Σ− Σ,

∆J = 0 is forbidden

Table A.3.
Selection rules for radiative transitions in diatomic molecules, rules com-
piled from Ref. [66].
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rotational quantum number as zero with overall - symmetry when rotated π about the

internuclear axis. In Hund’s (c) labeling this state would be 1(0−) v = −4 J = 0−. This

labeling works as follows: 1(0−) means that this is the first state with Ω = 0− and v = −4

means this is the fourth bound state counting from the asymptote. Table A.2 lists the

correspondence between the Hund’s a) and c) labeling for the low-lying electronic series

in LiRb.

Selection rules for radiative transitions in diatomic molecules are also more compli-

cated than those in atomic systems. There are no selection rules for different vibrational

states, instead the probability of different vibrational transitions are governed by Franck-

Condon factors (FCF) illustrated in Fig. A.2(a). A FCF is the nuclear wavefunction

overlap between the two different vibrational levels, |〈Ψvi |Ψvf 〉|2. Classically (and usu-

ally a good guide for identifying strong transitions) there is a large probability for the

wavefunction to be at its turning points and slow moving while there. Because of this

vertical transitions from inner-inner, inner-outer or outer-outer turning points are strong.

For example, in Fig. A.2(a), vi = 0 → vf = 2 would be strong while vi = 0 → vf = 6

would be weaker.

While there are no selection rules for vibrational quantum numbers, there are selection

rules for other molecular quantum numbers. These are summarized in Table A.3. As it

should be expected, these vary with the different Hund’s cases and it is worth starting

with the two selection rules that are true across all Hund’s cases.

1) ∆J = 0, ±1 and J = 0 9 J = 0. This is analogous to the selection rule for total

angular momentum F in atomic systems.

2) +↔ −, + = +, and −= − or for ∆J = 0, e↔ f and for ∆J = ±1, e↔ e and

f ↔ f .

The second selection rule requires a little more knowledge to understand. Here + and

− refer to the total parity of the wavefunction while e and f refer to the parity of the

rotational wavefunction. For dipole allowed transitions, the wavefunction parity has to

change just like in atomic systems. Rigorously the definitions for + and − are as follows:

in general the wavefunction for a molecule can be written as

Ψe = cΨ+
e + dΨ−e with Ψ+

e = χeiΛφi + χ̄e−iΛφi and Ψ−e = χeiΛφi − χ̄e−iΛφi . (A.4)
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Under the mapping φi 7→ −φi it can be seen that Ψ+
e 7→ Ψ+

e while Ψ−e 7→ −Ψ−e . The

definitions of e/f parity are: levels with parity +(−1)J are e parity and levels with parity

−(−1)J are f parity [133]. Both are widely used in the literature. Fig. A.2(b) shows the

parity and rotational structure of common Hund’s case (a) and (b) vibrational states.

Finally because there are multiple LiRb isotopes, we care about the isotope shift for

molecules. The isotope shift shows up as a slight modification to the vibrational spring

constant and the moment of inertia. Specifically if the two isotopes have reduced masses

µ and µi then we can define

ρ =

√
µ

µi
=
viosc
vosc

. (A.5)

Now the vibrational energy of the second isotope will be

Gi = ρωe(v +
1

2
)− ρ2ωexe(v +

1

2
)2 + ρ3ωeye(v +

1

2
)3 + ... (A.6)

and the rotational energy will be

Fv = ρ2BvJ(J + 1) + ρ2(A−Bv)Λ
2 − ρ4DvJ

2(J + 1)2 + ... (A.7)

There is no shift in Te, the electronic energy of the state and the potential energy curves

do not change.
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B. EVAPORATIVE COOLING

Evaporative cooling is not trivial; at one point it was the greatest experimental challenge

in realizing a BEC. The techniques for evaporative cooling have gotten better reducing

the required trapping time from 100 s to 10 s. This drastically reduces the quality of

vacuum system needed and obviously speeds up experiments. A proposed experiment

requires evaporative cooling in a crossed beam dipole trap and as such this section exists

as a repository for the mathematics describing the process of evaporative cooling, dipole

trap loading and absorption imaging.

B.1 Trap loading

If the dipole trap and MOT are in equilibrium we can calculate how many atoms will

be loaded into the dipole trap from the MOT. This is done with the Fokker - Planck

model and

NT = nMOTVtrapF(
U0

kBT
) (B.1)

where nMOT is the density of the MOT, Vtrap is the volume of the dipole trap and F

F(q) =
q

3
2

2

∫ 1

0

g1(x)eq(1−x)dx; (B.2)

where

g1(x) = β
3
2

√
1− x16

π

∫ 1

0

u2
√
eβ(1−u2)du and β = −ln(1− x). (B.3)

These equations do not account for the finite size of the MOTs and are significantly

complicated by our trap geometry with the crossed beams. If we compute NT for Rb

and Li using MOT temperatures and densities stated earlier and for only the wide beam

present we arrive at NT,Rb = 8× 105 and NT,Li = 3× 104. This can be improved upon by

using transient techniques to cool and compress the MOT; in Ref. [134] they worked in

6Li (so comparison is apt) and found that the cooling and compression technique increase

their loading by a factor of 20. We won’t realize quite such a high increase because we

have to pick a magnetic field gradient somewhere between the Rb and Li maximum, but



131

I would expect and factor of 10 increase would be reasonable. Important for us, 8× 105

and 3× 104 are large enough to be detected by absorption imaging.

B.2 Absorption imaging

Ignoring the imaging optics for a second, absorption imaging measures the optical

density, OD, of an atom cloud. To do this takes 3 images, one with atoms and the

resonant light, one without atoms but with the resonant light and one with no atoms or

light. From these images the optical density of the cloud at pixel i,j can be found

ODij = ln(
CCDatoms − CCDbackground

CCDno atoms − CCDbackground

). (B.4)

At this point we will assume a Gaussian density distribution for the atoms, n(x, y, z) =

Ne
−( x

2

2σ2
x

+ y2

2σ2
y

+ z2

2σ2
z

)
and then extract the atom number by the fit

Nfit =
Apix
σeg

∑
i,j

ODi,j (B.5)

where σeg is the absorption cross-section of the cycling transition and Apix is the area

of each pixel. By extracting the atomic cloud size at different times, the temperature of

each degree of freedom can be measured

T =
m

kB

σ2
f − σ2

i

t2f − t2i
. (B.6)

B.3 Evaporative Cooling

First we will address the one species case and then we will discuss the binary mixture

case. For one species in the dipole trap, the momentum distribution of atoms is

f(r, p) = n0λ
3
dBe

−U(r)+p2/2m
kBT Θ(ηkBT − U(r)− p2/2m) (B.7)

where λdB =
√

2π~2

mkBT
, n0 is the peak density, U(r) is the dipole trapping potential,

Θ(ηkBT −U(r)− p2/2m) is the Heaviside function concatenating the momentum distri-

bution because of the finite trap depth, and η = U
kBT

is how many times deeper the trap

is relative to the atomic thermal energy. It is normal to introduce parameters η and ν

defined as ω̄ ∝ Uν and then keep these fixed through out evaporation [126]. The peak

density

n0 = Nω̄3(
m

2πkBT
)

3
2 (B.8)
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where N is the total number of the atoms in the trap. At this point the spatial density

and energy densities can be derived using Eq B.7

n(r) =
1

(2π~)3

∫
f(r, p)d3p = n0e

−U(r)
kBT and (B.9)

e(r) =
1

(2π~)3

∫
(
p2

2m
+ U(r))f(r, p)d3p =

3

2
n0kbTe

−U(r)
kBT + U(r)n(r). (B.10)

Now we can write down the differential equations for the energy and atom number

Ṅ = Ṅev + Ṅθ + Ṅ1B + Ṅ3B (B.11)

Ė = Ėev + Ėθ + Ė1B + Ė3B + Ėad (B.12)

The terms in this equation are as follows: Ṅev and Ėev are losses due to evaporation;

Ṅθ and Ėθ are losses due to the changing number of states and this is small for deep

traps [126]; Ṅ1B and Ė1B are losses due to collisions with background gases; finally, Ṅ3B

and Ė3B are losses due to three body collisions which become significant at high densities.

These can be found using Eqs B.9, B.10:

Ṅ1B + Ṅ3B = −Γ1BN − Γ3BN (B.13)

Ė1B + Ė3B = −Γ1BE − Γ3B
2

3
E. (B.14)

Here Γ1B is based on the vacuum system which we have previously measured to be

between 0.1 - 0.2 s−1 and Γ3B = L3B
n2

0

3
√

3
and L3B = 4.3 × 10−29 cm6/s for 87Rb. Addi-

tionally, Ṅev = −ΓevN , Ėev = −NΓev(η + η−5
η−4

)kBT and Γev = (η − 4)e−ηΓel (Γel = n0σv̄

and σ = 8πa2
s with as = 98 a0 for 87Rb is the scattering cross-section and v̄ = 4

√
kBT
πm

is

the average relative velocity). Finally, Ėad = νE Ṫ
T

accounts for work done by changing

the trap shape. This provides a full set of differential equations to model one species

evaporation courtesy of Ref. [126]. The reason for developing this formalism is that effi-

cient evaporative cooling is much more complicated than simply lowering the trap depth

by decreasing the power in the trapping beams. As outlined in Ref. [126] different cooling

routes are defined by those rather arbitrary looking parameters we picked earlier, η and

ν; they found that η = 8.5 and ν = 0.22 provided the most efficient route for them. These

parameters are dependent on the initial conditions and will change when we account for

our second species.
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B.4 Sympathetic Cooling

When there are two species in a dipole trap in thermal contact, they will exchange

energy through collisions and if they start at different temperatures, they will meet at

some intermediate temperature as t→ inf. In Eq. B.11 there will be a couple three body

interspecies loss terms ΓRb−Rb−Li and ΓRb−Li−Li which haven’t been measured and I hope

are small (this can be forced by changing the relative densities). Neglecting the new 3

body loss the energy now has an additional factor

ĖRb = ΓcollζkB(TLi − TRb) = −ĖLi (B.15)

where ζ = 4mRbmLi
(mRb+mLi)2 and

Γcoll = σv̄thnLin87(
2πkBT

mLiω̄2
Li +mRbω̄2

Rb

)
3
2 e

mLiω̄
2
Lid

2(mLiω̄
2
Li

+mRbω̄
2
Rb

)
−mLiω̄

2
Lid

2

2kBT (B.16)

and again σ = 4πa2
Li,Rb is the scattering cross-section with aLi,Rb = 59 a0, v̄th =

8kB
π

√
TLi
mLi

+ TRb
mRb

and d is an offset between the two clouds. The full model is

˙NRb = ˙NRbev + ˙NRb1B + ˙NRb3B (B.17)

ṄLi = ṄLi1B + ṄLi3B (B.18)

˙ERb = ˙ERbev + ˙ERb1B + ˙ERb3B + ˙ERbad + ΓcollζkB(TLi − TRb) (B.19)

ĖLi = ĖLi1B + ĖLi3B + ĖLiad + ΓcollζkB(TRb − TLi). (B.20)

Work is currently in progress to simulate evaporative cooling with this model.
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C. CIRCUIT DIAGRAMS
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D. CODE

D.1 Micro-controller code

1 // FBS

#pragma con f i g BWRP = OFF // Boot Segment Write Protect−>Disabled

3 #pragma con f i g BSS = OFF // Boot segment Protect−>No boot program f l a s h

segment

5 // FGS

#pragma con f i g GWRP = OFF // General Segment Write Protect−>General

segment may be wr i t t en

7 #pragma con f i g GCP = OFF // General Segment Code Protect−>No Protec t i on

9 // FOSCSEL

#pragma con f i g FNOSC = FRCPLL // O s c i l l a t o r Se l e c t−>Fast RC Os c i l l a t o r

with Po s t s c a l e r and PLL Module (FRCDIV+PLL)

11 #pragma con f i g SOSCSRC = DIG // SOSC Source Type−>Analog Mode f o r use

with c r y s t a l

#pragma con f i g LPRCSEL = HP // LPRC Os c i l l a t o r Power and Accuracy−>High

Power , High Accuracy Mode

13 #pragma con f i g IESO = ON // In t e r na l External Switch Over bit−>I n t e r na l

External Switchover mode enabled (Two−speed Start−up enabled )

15 // FOSC

#pragma con f i g POSCMOD = NONE // Primary O s c i l l a t o r Conf igurat ion b i t s−>

Primary o s c i l l a t o r d i s ab l ed

17 #pragma con f i g OSCIOFNC = CLKO // CLKO Enable Conf igurat ion bit−>Port I /

O enabled (CLKO di sab l ed )

#pragma con f i g POSCFREQ = HS // Primary O s c i l l a t o r Frequency Range

Conf igurat ion b i t s−>Primary o s c i l l a t o r / ex t e rna l c l o ck input f requency

g r e a t e r than 8MHz

19 #pragma con f i g SOSCSEL = SOSCHP // SOSC Power S e l e c t i o n Conf igurat ion

b i t s−>Secondary O s c i l l a t o r con f i gu r ed f o r high−power operat i on
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#pragma con f i g FCKSM = CSDCMD // Clock Switching and Monitor Se l e c t i on−>

Both Clock Switching and Fai l−s a f e Clock Monitor are d i s ab l ed

21

// FWDT

23 #pragma con f i g WDTPS = PS32768 // Watchdog Timer Pos t s ca l e S e l e c t b i t s

−>1:32768

#pragma con f i g FWPSA = PR128 // WDT Pre s c a l e r b i t−>WDT pr e s c a l e r r a t i o

o f 1 :128

25 #pragma con f i g FWDTEN = OFF // Watchdog Timer Enable b i t s−>WDT di sab l ed

in hardware ; SWDTEN b i t d i s ab l ed

#pragma con f i g WINDIS = OFF // Windowed Watchdog Timer Disab le b it−>

Standard WDT s e l e c t e d (windowed WDT di sab l ed )

27

// FPOR

29 #pragma con f i g BOREN = BOR3 // Brown−out Reset Enable b i t s−>Brown−out

Reset enabled in hardware , SBOREN b i t d i s ab l ed

#pragma con f i g RETCFG = OFF // −>Retent ion r e gu l a t o r i s not a v a i l a b l e

31 #pragma con f i g PWRTEN = ON // Power−up Timer Enable b it−>PWRT enabled

#pragma con f i g I2C1SEL = PRI // Alte rnate I2C1 Pin Mapping bit−>Use

Defau l t SCL1/SDA1 Pins For I2C1

33 #pragma con f i g BORV = V18 // Brown−out Reset Voltage b i t s−>Brown−out

Reset s e t to lowest vo l tage ( 1 . 8V)

#pragma con f i g MCLRE = ON // MCLR Pin Enable b it−>RA5 input pin d i sab led

, MCLR pin enabled

35

// FICD

37 #pragma con f i g ICS = PGx3 // ICD Pin Placement S e l e c t b i t s−>EMUC/EMUD

share PGC3/PGD3

39 #inc lude ” c o n f i g b i t s . h”

41 void s y s t em in i t ( void ) {

43 builtin write OSCCONL ( ( u i n t 8 t ) (0 x0100 & 0x00FF) ) ;

45 CLKDIV = 0x0000 ; // No c lk d i v i s i o n

TRISB = 0x0081 ; // Sets RB0, RB7 as inputs

47 TRISA = 0x0003 ; // Sets RA0−1 as input
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ANSB = 0x0000 ; // Sets no RB to analog in

49 ANSA = 0x0003 ; // Sets RA0−1 to be analog inputs

ODCA = 0x0000 ;

51 ODCB = 0x0000 ;

53 LATA = 0 ;

LATB = 0 ;

55

CNPD1bits .CN4PDE = 1 ; // Enables pu l l down on RB0

57 CNPD2bits .CN23PDE = 1 ; // Enables pu l l down on RB7

59 SP I i n i t ( ) ;

T imer in i t ( ) ;

61 } ;

63 void SP I i n i t ( void ) {

/∗

65 ∗ Conf igures f o r SPI master w/ c l k at f o s c /8 , c l k i d l e low , data tx on

∗ t r a n s i t i o n from i d l e to a c t i v e and input data i s sampled at middle

67 ∗/

SSP1CON1bits .SSPEN = 1 ;

69 SSP1STAT = 0x0000 ;

SSP1STATbits .CKE = 0 ;

71 SSP1CON1 = 0x0031 ;

} ;

73

void T imer in i t ( void ) {

75 /∗

∗ Sets t imer to use f o s c /2 and turns i t on

77 ∗/

T1CONbits .TCKPS = 0b00 ;

79 T1CONbits .TCS = 0 ;

T1CONbits .TON = 1 ;

81 } ;

#inc lude ” s p i d r i v e r . h”
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2

u i n t 8 t tx byte ( v o l a t i l e unsigned i n t ∗ sp i r e g , u i n t 8 t byte , v o l a t i l e

unsigned i n t ∗ s p i s t a t r e g ) {

4 ∗ s p i r e g = byte ;

whi l e ( (∗ s p i s t a t r e g & 0x01 ) == 0) ;

6 re turn ∗ s p i r e g ;

} ;

8

void tx word ( v o l a t i l e unsigned i n t ∗ s s i Reg , u i n t 16 t mask ss i , v o l a t i l e

unsigned i n t ∗ sp i r e g , u i n t 16 t byte , v o l a t i l e unsigned i n t ∗

s p i s t a t r e g ) {

10 u i n t 8 t thro away ;

12 ∗ s s i Reg &= ˜mask ss i ;

14 thro away=tx byte ( sp i r e g , ( u i n t 8 t ) byte >> 8 , s p i s t a t r e g ) ;

thro away=tx byte ( sp i r e g , ( u i n t 8 t ) byte , s p i s t a t r e g ) ;

16

∗ s s i Reg |= mask ss i ;

18 } ;

20 void tx 3Byte ( v o l a t i l e unsigned i n t ∗ s s i Reg , u i n t 16 t mask ss i , v o l a t i l e

unsigned i n t ∗ sp i r e g , u i n t 16 t byte1 , u i n t 16 t byte2 , v o l a t i l e

unsigned i n t ∗ s p i s t a t r e g ) {

u i n t 8 t thro away ;

22 ∗ s s i Reg &= ˜mask ss i ;

24 thro away=tx byte ( sp i r e g , ( u i n t 8 t ) byte1 , s p i s t a t r e g ) ;

thro away=tx byte ( sp i r e g , ( byte2 >> 8) , s p i s t a t r e g ) ;

26 thro away=tx byte ( sp i r e g , ( u i n t 8 t ) byte2 , s p i s t a t r e g ) ;

28 ∗ s s i Reg |= mask ss i ;

} ;

/∗

2 ∗ F i l e : main . c
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∗ Author : s t eve 000

4 ∗

∗ Created on August 17 , 2017 , 10 :44 AM

6 ∗/

8 #inc lude <s t d i o . h>

#inc lude <s t d l i b . h>

10 #inc lude <xc . h>

#inc lude ” c o n f i g b i t s . h”

12 #inc lude ” s p i d r i v e r . h”

14 void delay ms ( u in t 16 t time ) ;

void blink LED ( v o l a t i l e unsigned i n t ∗ ledReg , u i n t 16 t mask ) ;

16 void wr i t e dac8812 1 ( u i n t 16 t dac1 , u i n t 16 t dac2 ) ;

void wr i t e dac8812 2 ( u i n t 16 t dac1 , u i n t 16 t dac2 ) ;

18

/∗

20 ∗

∗/

22 i n t main ( void ) {

/∗ Pin ass ignments :

24 ∗ ra0 = analog in 1

∗ ra1 = analog in 2

26 ∗ ra2 =

∗ ra3 =

28 ∗ ra4 = AO 2 On/Off ( mistake , can ’ t be an output )

∗ ra7 = LED

30 ∗

∗ rb0 = switch

32 ∗ rb1 = LDAC 1

∗ rb2 = DAC Select 1

34 ∗ rb3 = DAC 1 RS

∗ rb4 = Dig i ta l Output

36 ∗ rb5 , rb6 = PGD3, PGC3

∗ rb7 = Dig i t a l I npu t

38 ∗ rb8 = DAC 2 RS

∗ rb9 = DAC Select 2

40 ∗ rb10 = LDAC 2
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∗

42 ∗ rb12 = AO 1 On/Off

∗

44 ∗ rb14 = Dig i ta l Output ( sometimes , p l e a s e check phy s i c a l board )

∗ rb15 = AO 2 On/Off ( needs to be jumpered )

46 ∗/

sy s t em in i t ( ) ;

48

LATBbits .LATB12 = 0 ;

50 LATAbits .LATA4 = 0 ;

// Turns o f f AO’ s whi l e s e t t i n g up

52

LATBbits .LATB1 = 1 ;

54 LATBbits .LATB2 = 1 ;

LATBbits .LATB9 = 1 ;

56 LATBbits .LATB10 = 1 ;

// Sets a c t i v e low LDAC and CS to be high

58

LATBbits .LATB3 = 1 ;

60 LATBbits .LATB8 = 1 ;

// Pu l l s DAC’ s out o f r e s e t

62

wr i t e dac8812 1 (0xFFFF, 0x84CC) ; // f o r use with Rb MOT

64 wr i t e dac8812 2 (0xFFFF, 0xD658 ) ;

// a channel f o r both i s attenuat ion , s e t to minimum at +15V

66 // b channel f o r both c on t r o l s VCO freq , s e t to MHz and MHz

68 LATBbits .LATB12 = 1 ;

LATBbits .LATB15 = 1 ;

70 // Turns on AO dr i v e s

72 whi le (1 ) {

// Main loop , wai t s f o r d i g i t a l t r i g g e r

74 // and then turns o f f AO’ s f o r about 10 us

76 whi le (PORTBbits .RB7 == 0) ;

78 LATBbits .LATB12 = 0 ;
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LATBbits .LATB15 = 0 ;

80

whi le (PORTBbits .RB7 == 1) ;

82

TMR1 = 0 ;

84 whi le (TMR1<160) ;

86 LATBbits .LATB12 = 1 ;

LATBbits .LATB15 = 1 ;

88

} ;

90

re turn 1 ;

92 }

94 void delay ms ( u in t 16 t time ) {

whi le ( time>0) {

96 time−−;

TMR1 = 0 ;

98 whi le (TMR1<16000) ;

} ;

100 } ;

102 void blink LED ( v o l a t i l e unsigned i n t ∗ ledReg , u i n t 16 t mask ) {

∗ ledReg |= mask ;

104 delay ms (200) ;

∗ ledReg &= ˜mask ;

106 } ;

108 void wr i t e dac8812 1 ( u i n t 16 t dac a , u i n t 16 t dac b ) {

/∗

110 ∗ rb2 = DAC 2 Select

∗ rb1 = LDAC2

112 ∗/

tx 3Byte(&LATB, 0x0004 , &SSP1BUF, 0x0001 , dac a , &SSP1STAT) ;

114 tx 3Byte(&LATB, 0x0004 , &SSP1BUF, 0x0002 , dac b , &SSP1STAT) ;

LATBbits .LATB1 = 0 ;

116 TMR1 = 0 ;



164

whi le (TMR1<10) ;

118 LATBbits .LATB1 = 1 ;

} ;

120

void wr i t e dac8812 2 ( u in t 16 t dac a , u i n t 16 t dac b ) {

122 /∗

∗ rb9 = DAC 2 Select

124 ∗ rb10 = LDAC2

∗/

126 tx 3Byte(&LATB, 0x0200 , &SSP1BUF, 0x0001 , dac a , &SSP1STAT) ;

tx 3Byte(&LATB, 0x0200 , &SSP1BUF, 0x0002 , dac b , &SSP1STAT) ;

128 LATBbits .LATB10 = 0 ;

TMR1 = 0 ;

130 whi le (TMR1<10) ;

LATBbits .LATB10 = 1 ;

132 } ;

/∗

2 ∗ F i l e : main . c

∗ Author : s t eve 000

4 ∗

∗ Created on August 17 , 2017 , 10 :44 AM

6 ∗/

8 #inc lude <s t d i o . h>

#inc lude <s t d l i b . h>

10 #inc lude <xc . h>

#inc lude ” c o n f i g b i t s . h”

12 #inc lude ” s p i d r i v e r . h”

14 void delay ms ( u in t 16 t time ) ;

void blink LED ( v o l a t i l e unsigned i n t ∗ ledReg , u i n t 16 t mask ) ;

16 void wr i t e ad f4111 ( void ) ;

void wr i t e ad f4113 ( u in t 16 t s i gn ) ;

18 void wr i t e ad f4001 ( void ) ;
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20 /∗

∗

22 ∗/

i n t main ( void ) {

24 s y s t em in i t ( ) ;

26 /∗

∗ RB0 i s switch input

28 ∗

∗ RB15 i s S lave S e l e c t

30 ∗ RB8 i s Chip Enable ( sometimes RB4)

∗

32 ∗ RA7 i s LED

∗/

34

LATBbits .LATB15 = 1 ;

36 LATBbits .LATB4 = 0 ;

LATBbits .LATB10=0;

38

wr i t e ad f4113 (0 x0000 ) ;

40

LATAbits .LATA7=1;

42

whi le (1 ) {

44 i f (PORTBbits .RB0==0) {

wr i t e ad f4113 (0 x0000 ) ;

46 LATAbits .LATA7=0;

whi l e (PORTBbits .RB0==0){

48 delay ms (100) ;

} ;

50 } e l s e {

wr i t e ad f4113 (0 x0080 ) ;

52 LATAbits .LATA7=1;

whi l e (PORTBbits .RB0==1){

54 delay ms (100) ;

} ;

56 } ;

} ;
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58

re turn 1 ;

60 }

62 void delay ms ( u in t 16 t time ) {

whi le ( time>0) {

64 time−−;

TMR1 = 0 ;

66 whi le (TMR1<16000) ;

} ;

68 } ;

70 void blink LED ( v o l a t i l e unsigned i n t ∗ ledReg , u i n t 16 t mask ) {

∗ ledReg |= mask ;

72 delay ms (200) ;

∗ ledReg &= ˜mask ;

74 } ;

76 void wr i t e ad f4111 ( void ) {

tx 3Byte(&LATB, 0x8000 , &SSP1BUF, 0x003D , 0xB822 , &SSP1STAT) ; // Writes

func t i on l a t ch

78 // l a s t word 0xB812 ( or 0xB892 ) i s f o r l o ck de t e c t on mux out , 0xB862

i s f o r s e r i a l data output , 0xB8A2 i s f o r N counter , 0xB8C2 i s f o r R

counter

tx 3Byte(&LATB, 0x8000 , &SSP1BUF, 0x00F0 , 0x0140 , &SSP1STAT) ; // Writes

R counter l a t ch

80 // Writes 80 to R counter

tx 3Byte(&LATB, 0x8000 , &SSP1BUF, 0x0000 , 0x8209 , &SSP1STAT) ; // Writes

A B counter l a t ch

82 // Should wr i t e A=2, B=31

delay ms (200) ;

84 LATBbits .LATB8=1; // Turns on RF PLL

} ;

86

void wr i t e ad f4113 ( u in t 16 t s i gn ) {

88 LATBbits .LATB8 = 0 ; // Turns o f f RF PLL

tx 3Byte(&LATB, 0x8000 , &SSP1BUF, 0x00BB , (0xB822 | s i gn ) , &SSP1STAT) ;

// Writes func t i on l a t ch
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90 // Uses 32/33 p r e s c a l e r

// l a s t word 0xB812 ( or 0xB892 ) i s f o r l o ck de t e c t on mux out , 0xB862

i s f o r s e r i a l data output , 0xB8A2 i s f o r N counter , 0xB8C2 i s f o r R

counter

92 tx 3Byte(&LATB, 0x8000 , &SSP1BUF, 0x00F0 , 0x0258 , &SSP1STAT) ; // Writes

R counter l a t ch

// Writes 150 to R counter

94 tx 3Byte(&LATB, 0x8000 , &SSP1BUF, 0x0021 , 0x6401 , &SSP1STAT) ; // Writes

A B counter l a t ch

// Should wr i t e A=0, B=356

96 delay ms (200) ;

LATBbits .LATB4=1; // Turns on RF PLL

98 } ;

100 void wr i t e ad f4001 ( void ) {

// These are t e s t va lue s f o r adf4111 ( need to change B f o r adf4001 )

102 tx 3Byte(&LATB, 0x8000 , &SSP1BUF, 0x003F , 0xB822 , &SSP1STAT) ; // Writes

func t i on l a t ch

// l a s t word 0xB812 ( or 0xB892 ) i s f o r l o ck de t e c t on mux out , 0xB862

i s f o r s e r i a l data output , 0xB8A2 i s f o r N counter

104 tx 3Byte(&LATB, 0x8000 , &SSP1BUF, 0x00F0 , 0x0008 , &SSP1STAT) ; // Writes

R counter l a t ch

tx 3Byte(&LATB, 0x8000 , &SSP1BUF, 0x0000 , 0x0601 , &SSP1STAT) ; // Writes

A B counter l a t ch

106 // Last word i s 0x5001 l o ck s to 80 MHz, 0x9601 l o ck s to 150 MHz

// Should wr i t e R=2, N=6

108 delay ms (200) ;

LATAbits .LATA4=1; // Turns on RF PLL

110 LATBbits .LATB10=1; // Damaged chip r e qu i r e s use o f RB10?

} ;

1 /∗

∗ F i l e : main . c

3 ∗ Author : s t eve 000

∗

5 ∗ Created on August 17 , 2017 , 10 :44 AM



168

∗/

7

#inc lude <s t d i o . h>

9 #inc lude <s t d l i b . h>

#inc lude <xc . h>

11 #inc lude ” c o n f i g b i t s . h”

#inc lude ” s p i d r i v e r . h”

13

void delay ms ( u in t 16 t time ) ;

15 void blink LED ( v o l a t i l e unsigned i n t ∗ ledReg , u i n t 16 t mask ) ;

void wr i t e ad f4001 ( void ) ;

17

/∗

19 ∗

∗/

21 i n t main ( void ) {

s y s t em in i t ( ) ;

23 /∗

∗ RB0 i s switch

25 ∗ RB1 i s analog in 1

∗ RB2 i s analog in 2

27 ∗ RB7 i s d i g i t a l in

∗

29 ∗ RA7 i s LED

∗ RB14 i s Chip Enable

31 ∗ RB15 i s chip S e l e c t

∗/

33 LATBbits .LATB15=1;

35 wr i t e ad f4001 ( ) ;

37 LATAbits .LATA7=1;

39 whi le (1 ) ;

41 re turn 1 ;

}

43
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void delay ms ( u in t 16 t time ) {

45 whi le ( time>0) {

time−−;

47 TMR1 = 0 ;

whi l e (TMR1<16000) ;

49 } ;

} ;

51

void blink LED ( v o l a t i l e unsigned i n t ∗ ledReg , u i n t 16 t mask ) {

53 ∗ ledReg |= mask ;

delay ms (200) ;

55 ∗ ledReg &= ˜mask ;

} ;

57

void wr i t e ad f4001 ( void ) {

59 // These are t e s t va lue s f o r adf4001

tx 3Byte(&LATB, 0x8000 , &SSP1BUF, 0x003F , 0xB8A2 , &SSP1STAT) ; // Writes

func t i on l a t ch

61 // l a s t word 0xB812 ( or 0xB892 ) i s f o r l o ck de t e c t on mux out , 0xB862

i s f o r s e r i a l data output , 0xB8A2 i s f o r N counter

tx 3Byte(&LATB, 0x8000 , &SSP1BUF, 0x00F0 , 0x07D0 , &SSP1STAT) ; // Writes

R counter l a t ch

63 tx 3Byte(&LATB, 0x8000 , &SSP1BUF, 0x0003 , 0x2001 , &SSP1STAT) ; // Writes

A B counter l a t ch

// Should wr i t e R=500 , N=800 enab l e s s t ep s o f 100 kHz

65 delay ms (200) ;

LATBbits .LATB14=1; // Turns on RF PLL

67 } ;

1 /∗

∗ F i l e : main . c

3 ∗ Author : s t eve 000

∗

5 ∗ Created on August 17 , 2017 , 10 :44 AM

∗/

7
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#inc lude <s t d i o . h>

9 #inc lude <s t d l i b . h>

#inc lude <xc . h>

11 #inc lude ” c o n f i g b i t s . h”

#inc lude ” s p i d r i v e r . h”

13

void delay ms ( u in t 16 t time ) ;

15 void de l ay us ( u i n t 16 t time ) ;

void blink LED ( v o l a t i l e unsigned i n t ∗ ledReg , u i n t 16 t mask ) ;

17 void wr i t e dac8812 1 ( u in t 16 t dac1 , u i n t 16 t dac2 ) ;

u i n t 16 t read ADC fast ( ) ;

19 u in t 16 t read ADC slow ( ) ;

21 /∗

∗

23 ∗/

i n t main ( void ) {

25 /∗ Pin ass ignments :

∗ ra0 = analog in 1 (Used f o r Photodiode )

27 ∗ ra1 = analog in 2 (Used f o r POT)

∗ ra2 =

29 ∗ ra3 =

∗ ra4 = (Can ’ t be an output )

31 ∗ ra7 = LED (Not i n s t a l l e d )

∗

33 ∗ rb0 = switch

∗ rb1 = LDAC 1

35 ∗ rb2 = DAC Select 1

∗ rb3 = DAC 1 RS

37 ∗ rb4 = Dig i ta l Output (Not i n s t a l l e d )

∗ rb5 , rb6 = PGD3, PGC3

39 ∗ rb7 = Dig i t a l I npu t (Not i n s t a l l e d )

∗ rb8 = DAC 2 RS (Not i n s t a l l e d )

41 ∗ rb9 = DAC Select 2 (Not i n s t a l l e d )

∗ rb10 = LDAC 2 (Not i n s t a l l e d )

43 ∗

∗ rb12 = AO 1 On/Off

45 ∗
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∗ rb14 = Dig i ta l Output (Not i n s t a l l e d )

47 ∗ rb15 = AO 2 On/Off (Not i n s t a l l e d )

∗/

49 s y s t em in i t ( ) ;

51 u in t 16 t num;

53 LATBbits .LATB12 = 0 ;

// Turns o f f AO’ s whi l e s e t t i n g up

55

LATBbits .LATB1 = 1 ;

57 LATBbits .LATB2 = 1 ;

// Sets a c t i v e low LDAC and CS to be high

59

LATBbits .LATB3 = 1 ;

61 // Pu l l s DAC’ s out o f r e s e t

63 wr i t e dac8812 1 (0xFFFF, 0x84CC) ;

// a channel i s attenuat ion , s e t to minimum at +5V

65 // b channel c on t r o l s VCO freq , s e t to 76 MHz

67 LATBbits .LATB12 = 1 ;

// Turns on AO dr i v e s

69 whi le (1 ) {

num = read ADC fast ( ) ;

71 wr i t e dac8812 1 ( (num<<4) , 0x84CC) ;

} ;

73

re turn 1 ;

75 }

77 void delay ms ( u in t 16 t time ) {

whi le ( time>0) {

79 time−−;

TMR1 = 0 ;

81 whi le (TMR1<16000) ;

} ;

83 } ;



172

85 void de l ay us ( u i n t 16 t time ) {

whi le ( time>0) {

87 time−−;

TMR1 = 0 ;

89 whi le (TMR1<16) ;

} ;

91 } ;

93 void blink LED ( v o l a t i l e unsigned i n t ∗ ledReg , u i n t 16 t mask ) {

∗ ledReg |= mask ;

95 delay ms (200) ;

∗ ledReg &= ˜mask ;

97 } ;

99 void wr i t e dac8812 1 ( u in t 16 t dac a , u i n t 16 t dac b ) {

/∗

101 ∗ rb2 = DAC 1 Select

∗ rb1 = LDAC1

103 ∗/

tx 3Byte(&LATB, 0x0004 , &SSP1BUF, 0x0001 , dac a , &SSP1STAT) ;

105 tx 3Byte(&LATB, 0x0004 , &SSP1BUF, 0x0002 , dac b , &SSP1STAT) ;

LATBbits .LATB1 = 0 ;

107 TMR1 = 0 ;

whi l e (TMR1<10) ;

109 LATBbits .LATB1 = 1 ;

} ;

111

u in t 16 t read ADC fast ( ) {

113 /∗

∗

115 ∗/

AD1CON1bits .SAMP = 1 ;

117 de lay us (1 ) ;

AD1CON1bits .SAMP = 0 ;

119 whi le (AD1CON1bits .DONE==0) ;

re turn ADC1BUF0;

121 } ;



173

123 u in t 16 t read ADC slow ( ) {

/∗

125 ∗

∗/

127 AD1CON1bits .SAMP = 1 ;

de l ay us (1 ) ;

129 AD1CON1bits .SAMP = 0 ;

whi l e (AD1CON1bits .DONE==0) ;

131 re turn ADC1BUF0;

} ;
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E. FEMTOSECOND LASERS INTERACTING WITH

ULTRACOLD ATOMS

Using spectroscopic data from previous Chapters, I worked on coherently imaging ro-

tational wavefunctions with a mode-locked Ti:Sapphire laser in this Chapter. A sketch

of this experiment is as follows. We currently continuously create LiRb molecules in

X 1Σ+ v′′ = 43 with PA to 4(1) v = −16 and then in the future we will form a super-

position between the J = 0 and J = 1 states with an RF pulse. The energy difference

between these states is 5.1 GHz and so a superposition state will evolve with a period

of 1/5.1 GHz = 0.2 ns. The repetition rate of the mode-locked Ti:Sapphire laser will

be coherent with the energy difference between the states, and thus the femtosecond

(fs) pulses, which have a duration much less than 0.2 ns, will consistently interrupt, and

hopefully ionize, the molecule at the same point in the state evolution. Finally, by imag-

ing the ionization pattern spatially we should be able to see the full, spatial evolution of

the rotational wavefunction with almost arbitrary precision.

E.1 Femtosecond Laser

In order to make this experiment happen we will need a femtosecond laser. Shown

in Fig. E.1, is the table setup of a mode-locked Ti:Sapphire laser we borrowed from

Dan Leaird and Dr. Andy Wiener. The laser is based on a design from Ref. [135], and

it is capable of producing 11 fs pulses with a pulse energy around 1 nJ (or 500 mW

average power) between 740 - 900 nm. Unlike our REMPI laser which produces pulses

through Q-switching, the femtosecond pulses are produced by mode-locking. Mode-

locking occurs when the laser lases across a wide band of transverse modes, all separated

by c/cavity length, and the internal quantum effects force phase coherence between the

different modes. To get this to happen, cavity dispersion needs to be compensated.

Dispersion is dω
dk

and on some level it is related to slightly different path lengths for the

different CW laser modes. For coherence between the different modes to be sustainable,
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Fig. E.1. Table diagram of femtosecond Ti:Sapphire laser; design is from
Ref. [135]. The repetition rate of this laser maybe tuned on a gross scale
by changing the distance to the folding mirror, labeled as x. Fine control
of the repetition rate is established by mounting the output coupler (OC)
on a translation stage and a PZT in the translation stage provides ultra-
fine tuning.

they all need exactly the same path length, and/or the dispersion needs to be zero for

a wide range of modes. The dispersion usually comes from the variation of index of

refraction in the Ti:Sapphire crystal with wavelength, i.e. dn
dλ
6= 0, and is compensated

for either with prisms or specially designed mirrors. As seen in Fig. E.1, our laser uses

the older prism method. The laser makes a not-very-good CW Ti:Sapphire initially and

then by carefully tuning the prisms it will start mode-locking.

Once mode locking, it produces pulses like shown in Fig. 7.4 (a). Fig. 7.4 presents

the time domain picture of a mode-locked laser pulses. It will produce pulses (usually

around 100 fs) separated by 1/fr, where fr = c/cavity length is the repetition rate. This

can be easily thought of as an optical carrier wave, carrying a sharp and well defined

RF envelope. For low pulse energies, a frequency domain treatment often makes more

sense, like shown in Fig. 7.4 (b). Here, the femtosecond pulse can be thought of as a

large number of low intensity, phase coherent CW lasers each with narrow linewidth and

a frequency f = Nfr + fceo, where N is a large integer, and fceo is the carrier-envelop

offset frequency (which by definition −fr < fceo < fr). In this frequency domain picture,
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each CW laser has an intensity equal to the laser average intensity divide by M, where

M is the number of modes. We can estimate the equivalent CW laser intensities for our

laser. It produces about 500 mW, and has a bandwidth around 15 nm. Thus M is around

70,000 which results in an effective power for each CW laser around 10 µW.

E.2 Molecular transition

Shown in Fig. E.2 is the expected three-photon doubly-resonant pathway from the

X 1Σ+ v′′ = 43 state to the ionization continuum. Our original plan is much like REMPI

except with the fs Ti:Sapphire providing the photons connecting the states. At first we

estimated the laser intensity for REMPI and the fs Ti:Sapphire lasers in the interaction

region. REMPI has a 10 ns pulse, 1mJ/pulse and a 4 mm diameter spot size which

corresponds to nearly 106 mW/cm2. The fs laser is 500 mW averaged power, with 100 fs

duration pulses every 10 ns, in a 300 µm diameter spot size which corresponds to about

108 mW/cm2. From this perspective, the fs laser looks like it should behave like an extra

saturated version of REMPI.

The fs laser repetition rate is around 100 MHz, which is much too fast for time-of-

flight to separate out LiRb+ ions from Rb+ ions. Instead we use an AOM to pick out a

handful of femtosecond pulses and send them to the experiment region while rejecting the

rest. In the end, we decided on picking out 1 µs worth of femtosecond pulses (around 100

pulses in total) followed by 99 µs of dead time, for an experiment repetition rate around

10 kHz. After the pulse of fs pulses, the LiRb+ or Rb+ arrive at the MCPs around 20 µs

later. The 1 µs on time was chosen because this is the longest time possible, that still

allows us to separate LiRb+ ions from Rb+ ions.

For our first attempt at this experiment, we set the center frequency of the femtosec-

ond laser to around 787 nm, to be close to the first molecular transition, see Fig. E.2 (b),

tuned the bandwidth to around 10 nm, which should include the second transition but

we saw no evidence of LiRb+ ions.
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Fig. E.2. Energy level diagram for LiRb showing doubly resonant ioniza-
tion pathway for X 1Σ+ v = 43 molecules. (a) Double photon path. (b)
Close examination of first transition with smaller splitting from vibration,
rotation and hyperfine structure labeled from previous spectroscopy.

Fig. E.3. (a) Energy level diagram for 85Rb showing doubly resonant
ionization pathway. Data is from Refs. [136,137] and the NIST data tables
on atomic Rb. The integers label the the hyperfine quantum number,
while the decimals next to them label the difference in energy between
neighboring hyperfine states in MHz. (b) Ionization signal as a function
of center wavelength of femtosecond laser.

E.3 Atomic transition

We turned to ionizing atomic Rb+, in our first step in trying to better understand

why we saw no LiRb+ ions. Our logic is that the Rb density is around 104 higher than the
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LiRb molecule density, and there is a three-photon, doubly-resonant ionizing transition

at 778 nm; the molecular states are asymptotic to this progression of atomic states. The

atomic energy level diagram for this process is shown in Fig. E.3. After playing around

with the fs laser a little, we found Rb+ ions and worked on studying the ionization of

atomic Rb in order to understand how the fs laser was interacting with the atoms and

molecules.

Our first step was to study the dependence of the center wavelength on the atomic

signal. We had seen in REMPI that having light resonant with a molecular or atomic

transition is very important and expected a similar result here. It is worth noting that

the fs laser has a bandwidth of 15 nm, or nearly 250 cm−1, which is much greater than

REMPI’s 0.5 cm−1 bandwidth, so we expect much wider features. Fig. E.3 (b) shows

how the atomic Rb count varies as a function of center wavelength. Clearly there are

two strong peaks, one centered between 776 and 780 nm, which could either be the three

photon, doubly resonant transition 5S1/2 → 5P3/2 → 5D5/2 or a two photon transition

from the 5P3/2 state, and a second peak around 740 nm which is the transition energy for

the 5P3/2 → 7S1/2 transition. Our conclusion from this is that the dominant ionization

process was the fs laser picking off atoms in the 5P3/2 state from the MOT, as this is

the only way to populate the 5P3/2 state for the 5P3/2 → 7S1/2 transition and in a MOT

there are a small number of atoms in the excited state of the cooling transition. As we

wanted to study the three photon ionizing transition, this was a problem. Ultimately we

used the AOMs in the beam path of the Rb trapping lasers to shutter the Rb trapping

lasers in advance of the fs pulse of pulses. The timing diagram is shown in Fig. E.4.

Fig. E.4. Timing of fs experiment.
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Fig. E.5. Comparison between REMPI and fs laser. (a) Molecular ioniza-
tion signal across many initial vibrational levels as a function of REMPI
laser intensity. All fits are to X(1 − e−αI), where X is the ion count at
infinite power, α is a constant, and I is the laser power. (b) Atomic ion
signal as a function of fs laser intensity. Fit is to ax + bx2 + cx3, where
a, b, and c are all constants and x is the measured laser power.

Our second step was to study the power dependence of our ion count at the three-

photon transition. We were looking to better understand how to consider the fs pulse

interacting with the atoms. Fig. E.5 (b) shows how our Rb+ ion count varies as we

attenuate the laser power, and contrast this with Fig. E.5 (a) which shows how the

REMPI ion count varies as we drop the pulse energy of the REMPI laser. The REMPI

laser follows a traditional saturated type curve. The first REMPI transition is saturated

so more power does not do much and most of the population that makes it to the first

excited state get ionized (so adding more power does not help here either). The fs laser

is clearly different, despite having a larger intensity. Instead, a cubic polynomial fits the

progression well suggesting that none of the three transitions are saturated. Perplexed

by this, we consulted our friends in theory. After talking with them, we returned to our

presentation of a fs laser in the frequency domain at the start of this chapter (which is

put there because of our discovery). The Rb atoms act as a frequency discriminator and

only talk to the modes of the fs laser close to the D2 line. So long as the intensity of these

pseudo-CW modes are low, about 1 mW/cm2, compared to the saturation intensity, 3.8

mW/cm2, all modes of the fs laser more than a few natural linewidths, 6.06 MHz, away

from the D2 line can be ignored. This effectively drops the pulse intensity by a factor of

105, and suddenly the fs laser and REMPI laser pictures look very different.
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Data from our second experiment inspired the second round of improvements to the

fs laser. First, we changed the focusing of the femtosecond laser. Previously we had

around a 300 µm spot size in the MOT region and we switched to a best-form 15 cm lens

that results in around a 50 µm spot size. We expected this to produce 36 times more

signal, and were not disappointed. Now at full power, we saturate our ion detection

so heavily as to make accurate ion counting impossible. Second, we built a plexiglass

enclosure around our femtosecond to help isolate it from environment perturbations. We

noticed that the ion count would drift between highs, an order of magnitude above what

is reported in Fig. E.5 (b), and lows, often two orders of magnitude below the average.

The enclosure helped slow down the drifting ion counts and helped keep it mode-locking

for longer periods of time. Third, we worked on, but did not finish trying to stabilize

the repetition rate and carrier-envelop offset of the laser. Ultimately, we stopped work

on stabilizing our laser after determining that even with the stabilization improvements,

we would not be able to find molecular signal.

Our second search for molecular signal began with the femtosecond laser in its box,

and with the 15 cm lens in place. We co-propagated the PA laser with the femtosecond

laser, verified that we still had a strong REMPI signal, and then went looking for a

molecular signal. We didn’t get very far. Because our Rb+ signal was so well optimized,

it spilled into the LiRb+ time-of-flight window at a level 100 times what we expected the

LiRb+ count to be. We investigated two strategies to remove unwanted Rb+ ions. First,

we noticed that Rb+ ions occured at high rates, even with the fs laser off, in roughly

an exponential decay pattern. We suspect that the PA laser was picking off leftover

population in the semi-long lived atomic 5D state. We tried to gate the PA laser with

an AOM, to no success. We suspect that because of the tight focusing of the CW laser

(which co-propagated with the fs laser), that even with the factor of 103 attenuation

provided by the AOM, the ionization transition was still saturated.

Our second approach was to use a pulse shaper to remove the light resonant with

the atomic transitions from the femtosecond pulse. Fig. E.6 shows a pulse shaper table

diagram. For additional information on pulse shapers please consult Ref. [138] (or any of

Dr. Wiener’s students). A pulse shaper works by using a pair of gratings and lenses to

Fourier transform a femtosecond pulse spatially. The first grating separates the different

pulse colors angularly and the lens following it collimates the beam. At the midpoint
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Fig. E.6. Femtosecond pulse shaper, design is from Ref. [138].

between the two lenses lies the Fourier plane, here a spatial light modulator can be placed

to phase shift the different colors of the pulse, or in our case we placed a razor blade to

form a band-pass filter, and by sliding the razor blade into the pulse, we removed the

higher frequency colors. After the Fourier plane, the second lens focuses the different

colors onto the grating which reforms the pulse. A pulse shaper requires diffracting off

gratings twice which resulted in a loss of 65 % of our power. With the pulse shaper

created, we tried to measure molecular signal again. This time, we tuned the razor blade

into the pulse until the atomic signal went away, verified we were not blocking the colors

we needed but again observed no LiRb+ ion signal.

E.4 fs ionization probability

At this point it is useful to examine the observed ionization probability for atomic Rb

and then compare it to the molecular system. In the second generation of this experiment,

where we focused the fs laser to a 300 µm spot size, we would observe around 2 ions for

each pulse of fs pulses. The Rb MOT is around 2 mm diameter and holds about 3× 106

atoms. About 1 % of the Rb atoms will be in the fs beam. This implies a cumulative

ionization probability for the fs pulses is about 10−4. Assuming things remain linear as

we focus to the 50 µm spot size, we expect an atomic ionization probability around 10−3.

For the molecular system, we generate around 105 molecules per second, implying

that there will be around 50 LiRb molecules available for each pulse of fs pulses. We
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usually integrated across 104 pulse of pulses and have a dark count around 5. This

suggests we should see around 500 LiRb+ ions, if the molecular ionization probability

is equivalent to the atomic ionization probability. However, we know that molecular

transitions are usually weaker than their atomic counterparts. On the simplest level, this

is just caused by FCFs. We calculated the molecular FCFs and they are about 0.2 and

0.15, which suggests that the molecular transition should be around 0.03 times as strong

as the atomic transition. Adding this extra factor results in an estimate of 15 LiRb+ ions

against a background of 5. If there are any further imperfections in the molecular signal

(maybe just a misalignment between the two lasers) it becomes clear why we will not

see any signal. Fundamentally, there are too few LiRb molecules and/or the ionization

probability is far too small.

E.5 Next steps

Here I propose three possible fixes to our signal problem.

1) Use a dense sample of LiRb molecules. An ideal target would be molecules formed

in a dipole trap either after magneto-association or by continuum STIRAP.

2) Use an ECDL laser to provide the second photon and let the photoassociation laser

provide the last photon. This guarantees the second and third legs to be strongly driven

transitions (currently a problem), while maintaining the pulsed nature of the femtosecond

laser.

3) Get a regenerative amplifier for the femtosecond laser. These amplifiers can turn

1 nJ pulses into 1 mJ pulses, which will solve the low signal level problem (and possibly

cause other problems).

Of these, I expect number three to be the best solution overall, although it will be

costly and labor intensive. Number two is the easiest, and although it may require a

bit of luck to get working, it is the one I will discuss further. My recommendation is

to first get a two-step depletion system working. The goal is to probe the bound state

locations for the second photon in the ionizing pathway and get some understanding of

transition strengths. Again there are some unknowns and problems. We have seen that

populating these highly excited states and having a CW laser on at the same time results

in ionization (at least in the atomic system), and I expect the molecule system will require
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turning off the CW lasers a few µs in advance of REMPI laser as to not contaminate the

LiRb+ ion arrival window. Additionally, I’m not sure how good the mutual coherence

between the two lasers will have to be. The two-photon Rabi frequency is Ω1Ω2

2∆
, where

Ω1 and Ω2 are the one-photon Rabi frequencies and ∆ is the detuning. I would expect

detunings of a few GHz to be optimal, as this avoids too much one-photon depletion while

not being so far detuned as to have no signal. You would also need to make sure that the

second photon does not one-photon deplete the signal (because they are so close in color,

it might hit a nearby resonance). If I were to try this, I would use an ECDL for PA, a

second ECDL for the first depletion step and the Ti:Sapphire for the second depletion

step. If I don’t get signal, locking the two depletion lasers to the Menlo frequency comb

would be an early thing to try. Using the results of Chapter 7, this should be possible as

the Menlo comb is quite strong around 780 nm.
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