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α Stark scalar transition polarizability

α̃ two-photon scalar transition polarizability

αns static polarizability of an ns state

APV Atomic parity violation

β Stark vector transition polarizability

β̃ two-photon vector transition polarizability
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ECDL External cavity diode laser
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PNC Parity non-conservation

PZT Piezo electric transducer

SAS Saturated absorption spectroscopy

YDFA Ytterbium doped fiber amplifier

17



ABSTRACT

Atomic parity violation measurements facilitate tests of the standard model in a tabletop

platform. This parity violating effect is caused by the weak force interaction that slightly

mixes states of opposite parity and weakly allows electric dipole transitions. Precision deter-

minations of the extremely weak parity violating transition amplitude rely on interference

techniques to amplify this weak transition. The strength of this interfering transition is

critical in evaluating the parity violating amplitude and is the primary focus of this work.

Here we discuss several measurements in atomic cesium-133 that aid in our understanding of

atomic parity violation. We have remeasured the relative strength of the scalar and vector

transition polarizabilities on the 6s 2S1/2 → 7s 2S1/2 transition to better that 0.1%. We

have measured the static Stark polarizability on the 6s 2S1/2 → 7s 2S1/2 transition to better

than 0.04%. With this value we also reevaluate the reduced electric dipole matrix elements

〈7s||r||7pJ〉. We use these new matrix elements to reevaluate the calculated scalar transition

polarizability on the 6s 2S1/2 → 7s 2S1/2 transition. Finally, we have also measured hyperfine

intervals on the 12s 2S1/2, 13s 2S1/2, 11d 2DJ , and 6p 2PJ levels.
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1. INTRODUCTION

1.1 Motivation

Atomic parity violation (APV) experiments permit studies of the weak force interaction

between nucleons and electrons at low momentum transfers. This enables searches for new

physics or physics beyond the standard model in a tabletop platform as opposed to large

accelerator-type facilities. Several measurements are required to facilitate such a test of the

standard model and the following equation for the weak charge of cesium (Qw) summarizes

these contributions.

Qw = kP V
Im(EP NC)

β

β

α
α (1.1)

Here kP V is an atomic structure factor dependent on electronic wave functions near the

nucleus. This factor is the calculated ratio between the weak charge (Qw) and the parity non-

conserving moment (EP NC). The second and third terms are precision ratio measurements

done in an experimental lab. The final term (α) is the Stark scalar polarizability. Due to

the extraordinary difficulty of making an absolute measurement of Im(EP NC), this moment

is evaluated using two ratio measurements and a calculated value for α (or Mhf
1 ). 

1
 This

thesis includes measurements intended to aid our theory friends in calculation of kP V , a new

measurement of α/β, and a Stark shift measurement that updates our value for α. This only

leaves the second term, a measurement of the parity non-conserving weak interaction. The

primary goal of our group is towards a new higher precision measurement of Im(EP NC)/β.

Although this onerous task has not been completed in this thesis, we still report much

progress in many aspects of that measurement. We now have phase coherence between

three optical fields, atomic spin polarization near 99%, a system to measure atomic spin

polarization to this precision, and a significantly improved technique for phase-modulating

optical fields.

Even though our EP NC/β measurement is steadily progressing, atomic parity violation

measurements are never easy. The weak force interaction perturbs atomic systems and

weakly mixes opposite parity states. This mixing weakly allows electric dipole transitions
1

 ↑ We will circle back to Mhf
1 later, but right now it isn’t critical.
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between the same parity states where it would otherwise be forbidden. As a comparison,

the parity non-conserving (PNC) weak transition amplitude is eleven orders of magnitude

smaller than D1 or D2 electric dipole transition amplitudes in cesium. Direct observation

of the transition is futile. APV experiments rely on quantum interference techniques to

modulate the weak transition relative to a stronger known transition. This technique was

used to great effect by Wood and Wieman to reach an impressive 0.35% uncertainty in the

ratio of EP NC/β [ 1 ]. Studies of weak transitions are typically limited by systematic effects.

These effects arise from imperfect field reversals required for interference. Our group has

demonstrated a two-pathway coherent control technique to reduce these systematic errors

as a means for weak signal detection [ 2 – 5 ]. This technique reduces systematic uncertainties

by varying the optical phase of the driving laser radiation to interfere the weak transitions

as opposed to changing experimental parameters that are difficult to reset reliably, such as

field orientation and state preparation.

1.2 History of parity violation

The possibility of parity violation in weak interactions was first proposed in the late 1950s

by Yang and Lee [  6 ]. Until then, parity was thought to have been a preserved quantity due

to measurements studying the electromagnetic and strong interactions. Chien-Shiung Wu

later showed experimentally that parity was not conserved in the beta decay of cobalt-60 [ 7 ].

This discovery led to Yang and Lee receiving the Nobel prize in 1957.

Table 1.1. The most precise measurements of PNC in various atomic species.
Atom Year Uncertainty Technique Ref.
Bi 1991 2% Optical Rotation [ 8 ]
Pb 1995 1.1% Optical Rotation [  9 ]
Tl 1995 1.1% Optical Rotation [  10 ]
Yb 2019 0.5% Stark Interference [  11 ]
Cs 1997 0.35% Stark Interference [  1 ]

PNC experiments quantify the strength of the weak interaction between electrons and

nucleons in atoms. This interaction is mediated by the exchange of a Z boson. The range
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of this interaction is minuscule and can be thought of as a contact interaction [ 12 ]. Orig-

inally the parity non-conserving transition amplitude was thought to have been negligible,

but interest in atomic parity non-conservation measurements heightened once Bouchiat and

Bouchiat realized that the atomic parity violating transition amplitudes scaled roughly as

the atomic number cubed, Z3 [ 13 ,  14 ]. Since then, several heavy elements have been studied,

the best of which have been recorded in Table  1.1 . There is an effort by Antypas to further

improve the Yb PNC measurement precision [ 15 ]. There are also ongoing efforts to mea-

sure PNC in Francium [ 16 ]. Even with this cubic dependence, the PNC interaction is quite

difficult to measure. These measurements rely on relative measurements to compare with

stronger more precisely known transitions. The best measurements of PNC rely on either

Stark interference or optical rotations with the best of which being the Stark interference

measurements.

The strength of the PNC interaction is related to the weak charge through an atomic-

structure factor kpv, and this relation is;

Qw = kpvEP NC (1.2)

where EP NC is the measured interaction strength and Qw is the weak charge. Measurements

of APV in cesium remain the most accurate to date of any atomic species. Although cesium

is fairly simple with a single valence electron, theoretical calculations of kpv have struggled

to reach the 0.35% level uncertainty of the best PNC measurements due to many small

corrections that must be included. There is presently disagreement over contributions to kpv

and new calculations are underway to help resolve discrepancies and push the uncertainty

below that of experimental results [  17 ]. New high-precision calculations of dipole matrix

elements in cesium hint at the possibility that theoretical calculations are more precise than

what they were believed to be [  18 ,  19 ]. Improved theoretical calculations strengthen the

need for an updated measurement of PNC in cesium. Along with atomic theory, PNC

measurements explore standard model low-energy predictions, while operating in a tabletop

format. This is compared to large accelerator-type facilities working at higher energies. PNC
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measurements play a unique and important role in searches for new physics not included in

the standard model.

1.3 1997 measurement of EP NC

The most precise measurement of atomic parity violation was conducted by the Boulder

group in 1997 [  1 ]. Carl E. Wieman’s group measured the ratio of Epnc/β = −1.5935(56)

mV/cm, the electric field at which the Stark-induced and PNC interactions are equal in

strength. This measurement utilized a spin-polarized atomic beam to prepare atoms and a

high-finesse optical cavity to amplify the weak signal from the 6s 2S1/2 → 7s 2S1/2 transition.

Interference due to 32 unique field orientations and polarizations allow them to characterize

the strength of the weak force interaction relative to the well-known Stark vector polariz-

ability while also rooting out systematic errors.

Figure 1.1. Experimental diagram of the 1997 PNC measurement from [ 1 ]

An experimental diagram of the Boulder measurement is illustrated in Fig.  1.1 . In their

experiment, they prepared the atoms in the atomic beam into a specific hyperfine (F ) and

Zeeman magnetic sublevel (m). The spin-polarized atoms then interact with an intense
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standing wave laser beam resonant with the 6s 2S1/2 → 7s 2S1/2 transition that is centered

between two electric field plates. This intense laser beam greatly amplifies the observed

interference signal. To detect the atoms that have undergone the transition, another laser

is tuned to a cycling transition to detect atoms in the previously emptied state. Each atom

scatters several photons which are detected by a large area photodiode. By modulating the

fields or polarization of the standing wave, the interference between the Stark and PNC

interaction reverses between constructive and destructive. This facilitates a precise relative

measurement of the two interactions that is independent of poorly known experimental

parameters, such as atomic beam density and interaction beam size. More information

about this can be found in Wood’s thesis [ 20 ].

1.4 Coherent control

We plan to repeat this exceptional measurement of Epnc/β and further reduce the uncer-

tainty using a coherent control technique that was pioneered in our lab [ 2 – 4 ]. This technique

involves interfering weak transition amplitudes by varying the optical phase of the driving

laser beams. This differs from Wieman’s work in that they perform field reversals to interfere

the weak transitions. By varying the optical phase, we are not reliant on the perfection of

field reversals and we do not have to move or change the polarization of the laser beams.

This technique was first demonstrated by our group and is depicted in Fig.  1.2 . Here a

strong two-photon interaction is beat against the much weaker Stark-induced interaction on

the 6s S1/2 → 8s S1/2 transition in cesium [  2 ,  3 ]. An intense laser tuned to the two-photon

frequency is used to generate a second harmonic beam in a nonlinear crystal. The two beams

are coherent, a necessity for this type of experiment, and are split in a Mach-Zehnder inter-

ferometer. The relative phase of one of the beams is varied using a piezoelectric transducer

(PZT) before the two beams are recombined and focused into a vapor cell containing electric

field plates. Upon application of an electric field, the Stark-induced interaction becomes

weakly allowed. The transition rate is proportional to the sum of the two transition path-

ways and is modulated by varying the optical phase. This modulation is studied to measure

the relative strength of the two interactions.
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Figure 1.2. Experimental diagram of a weak signal measurement using
coherent control from [ 3 ] PZT-Piezoelectric transducer, Cs-Cesium, PMT-
Photomultiplier tube

This technique was then utilized by our group in a precision measurement of the ratio

of the magnetic dipole moment to the vector Stark polarizability on the 6s 2S1/2 → 7s 2S1/2

transition in cesium [  4 ]. This was completed by interfering three different transitions, vector

Stark, M1, and a two-photon transition. When driving the interactions with phase-coherent

laser fields, the transition rate goes as the square of the sum of each individual transition,

A2 = |A2p + ASt + AM1|2 ≈ A2
2p + 2A2p(ASt + AM1) (1.3)

where A2p, ASt, and AM1 are the transition amplitudes for the two-photon, Stark, and

M1 transitions respectively. The two-photon transition is much stronger than the other

two transitions, so the individual transition rates and interference between only the weaker

transitions are negligible and have been omitted. By varying the strength of the electric

field driving the Stark transition, the interference term varied in amplitude and the relative

strength of the M1 and Stark transitions was measured. Currently, we use many of the
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Figure 1.3. Experimental diagram of the M1/β measurement using coherent
control from [  4 ]

techniques developed in these measurements in our lab. Dionysios Antypas constructed much

of the vacuum system and multiple lasers we use for these coherent control experiments [ 21 ]

and George Toh has spent a great deal of time searching for and reducing sources of noise

in the lasers and electronics we currently use [ 22 ].
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2. THEORY

This chapter details the theory that is necessary to understand the PNC experiment. Ini-

tially, properties of the 6s 2S1/2 → 7s 2S1/2 transition and 7s 2S1/2 state will be discussed.

States will be abbreviated as ns and npj for ns 2S1/2 and np 2Pj respectively. This will

be followed with an overview of the weakly allowed 6s → 7s single photon transitions and

two-photon transition. Finally, the coherent control technique used to measure extremely

weak transitions will be discussed.

2.1 Cesium

Figure 2.1. An energy level diagram of the 6s and 7s states. The hyperfine
splitting of the 7s state is from [ 23 ] and the state energy is from [  24 ].

Cesium-133 is an alkali metal with an atomic number of 55. Its ground state is the

6s 2S1/2 state. To first order, an electric dipole transition coupling the 6s and 7s states is
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forbidden due to their same parity. Cesium has a nuclear spin I = 7/2, so the 6s and 7s

states are split into two hyperfine component, F = 3 and F = 4. F represents the total

angular momentum (F = I + J). The ground state, 6s, hyperfine interval is the basis of

the second and is defined as 9 192 631 770 Hz. Under application of a magnetic field, the

degeneracy of the 2F + 1 magnetic Zeeman sublevels (m) is lifted. The energy shift of

Zeeman sublevels is:

∆E = mgF µBBz (2.1)

where m is the magnetic Zeeman sublevel, gF is the Lande g-factor, µB is the Bohr magneton,

and BZ is the applied magnetic field. For the F = 3 hyperfine level, the consecutive Zeeman

sublevels are split by −0.35 MHz/G (0.35 MHz/G for F=4). This shift is illustrated in Fig.

 2.2 . Note that the state energies for different hyperfine levels, F = 3 and F = 4, move in

opposite directions for the same magnetic Zeeman sublevel and that both the ground and

excited 7s states are perturbed in this way. For example, under application of a magnetic

field, the energy spacing between the 6s F = 3, m = 3 state and the 6s F = 4, m = 3

increases and oppositely signed magnetic sublevels would move closer. 

1
 

Figure 2.2. Illustration of the magnetic sublevel energy shift due to an applied
magnetic field. Image from [ 22 ]

1
 ↑ This property will be used when determining ground state populations as discussed in Chapter  3 .
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Fig.  2.1 illustrates the energy levels of the 6s and 7s states along with their hyperfine

structure. The 6s → 7s transition can be driven weakly by a single photon at 539.5 nm

(green) or two photons whose frequency add to that of the one photon frequency. The

scaling of the hyperfine intervals has been greatly expanded for visibility.

2.2 Atomic parity violation

Atomic parity violation is caused by the weak force interaction through the exchange of

a massive Z boson between nucleons and electrons. Due to the large mass of the Z boson

(mz ≈ 91 GeV), the interaction occurs over a short range and acts as a contact interaction[ 25 ].

This interaction is heavily dependent on the overlap of the electronic wave function and the

nucleus. There are four main contributions to atomic parity violation, which are illustrated

in figure  2.3 . The first and by far the largest is a nuclear spin-independent (NSI) contribution

from a Z-boson exchange between the axial-electron and nucleon-vector currents. The nuclear

spin-dependent (NSD) contribution is comprised of three smaller contributions. The first is

a Z-boson exchange between the nucleon-axial and electron-vector currents. The second and

largest of the NSD terms is the electromagnetic exchange between and electron and a parity-

violating toroidal current distribution within the nucleus know as the anapole moment. The

last NSD interaction is a combined interaction between the NSI currents and the hyperfine

interaction.

Figure 2.3. Diagram depicting the nuclear spin independent and nuclear spin
dependent PNC interactions. Figure from [ 26 ].

The only observation of an anapole moment in any atomic species is the Boulder group’s

PNC measurement in cesium. Their determination consisted of measuring EP NC/β on both
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the 6sF = 3 → 7sF = 4 and 6sF = 4 → 7sF = 3 interactions. The average of these

measurements is used to determine the nuclear spin-independent parity violating amplitude

and the difference is used for the nuclear spin-dependent parity violating amplitude. Due to

their high precision, they we able to measure the difference between these lines to be

∆
[

EP NC

β

]
34−43

= −0.077 ± 0.011 mv/cm. (2.2)

A majority (84%) of this difference is caused by the anapole moment [  27 ]. There is presently

a deviation between the observed anapole moment and standard model predictions and a

more precise measurement could possibly indicate new physics [  28 ,  29 ]. We are currently

working towards a new measurement of the NSD amplitude on the ground state of cesium.

2.3 6s → 7s transitions

In this section, the weakly allowed transitions coupling the 6s and 7s states will be

discussed. Interference between these transitions is the basis for weak signal detection and

is a key component in our coherent control technique. In Fig.  2.4 , a simplified energy level

diagram illustrates these weak interactions between the 6s and 7s states. In this figure, ω1

represents the frequency of the one photon transitions. ω2 and ω3 represent the frequencies

whose sum equals the one photon frequency.

Figure 2.4. Simplified energy level diagram depicting the five allowed tran-
sitions that couple the 6s and 7s states.
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2.3.1 Stark induced

When a DC electric field is applied to the atoms, opposite parity states mix via the Stark

effect. This mixing weakly allows
∣∣∣6S1/2 F, m

〉
to
∣∣∣7S1/2 F ′, m′

〉
transitions. Mixing of the

ns states is represented as
∣∣∣6S1/2Fm

〉
where the bar denotes an s state with a slight amount

of p states included. The transition amplitude between these two mixed states is;

ASt(F, m; F ′, m′) =
〈
7S1/2F ′m′|(−d · Eω1)|6S1/2Fm

〉
=
[
αE · Eω1δF,F ′ + iβ (E × Eω1)z CF ′,m′

F,m

]
δm,m′ eiφω1

+
[
±iβ (E × Eω1)x − β (E × Eω1)y

]
CF ′,m′

F,m δm,m′±1 eiφω1

(2.3)

where
∣∣∣6S1/2Fm

〉
and

∣∣∣7S1/2Fm
〉

represent the Stark mixed 6s and 7s states. α and β

represent the scalar and vector transition polarizabilities, respectively. CF ′,m′

F,m are derived

from the usual Clebsch-Gordon coefficients and are calculated using Ref. [  30 ], E is the static

applied electric field, and Eω1 and φω1 are the electric field amplitude and phase of the driving

laser field.

The coefficients α and β are calculated using a sum-over-states approach [ 31 ]. The

equation to calculate the scalar coefficient is,

α = 1
6
∑

n

 〈7S||r||nP1/2
〉 〈

nP1/2||r||6S
〉( 1

E7S − EnP1/2

+ 1
E6S − EnP1/2

)

−
〈
7S||r||nP3/2

〉 〈
nP3/2||r||6S

〉( 1
E7S − EnP3/2

+ 1
E6S − EnP3/2

) (2.4)

and the vector term is

β = 1
6
∑

n

 〈7S||r||nP1/2
〉 〈

nP1/2||r||6S
〉( 1

E7S − EnP1/2

− 1
E6S − EnP1/2

)

+1
2
〈
7S||r||nP3/2

〉 〈
nP3/2||r||6S

〉( 1
E7S − EnP3/2

− 1
E6S − EnP3/2

).

(2.5)
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Here the denominators represent the difference in energy between the ground or excited

state and the intermediate nP1/2 or nP3/2 level. The
〈
n′S||r||nP1/2

〉
are reduced matrix

elements connecting the ground or excited state (S) to an intermediate level (P ). Clearly,

the nearer P levels provide the strongest effect. Since there is large cancellation in the vector

(β) term due to the minus sign, the β coefficient is smaller than α. The relative magnitude

of α to β is
∣∣∣α

β

∣∣∣ ≈ 10. Since α and β are calculated from the same reduced matrix elements

and the uncertainty in the state energies is almost negligible, the relative uncertainty of α

is around ten times smaller than for β. It is for this reason that a ratio measurement of α
β

and a calculation of α is preferable to a direct calculation of β. 

2
 

It is important to note that there are several quantities that are commonly called po-

larizabilities. Even in this document alone there are three. They all quantify how an atom

responds to an electric field. The polarizability is described/named by the type of electric

field causing the effect and great care will be taken to distinguish the three polarizabilities

as they come up. One interesting parallel between these polarizabilities is that they all can

be calculated in a similar sum-over-states manner and the key difference is what is in the

energy denominator. See Eqns.  2.4 or  2.5 .

2.3.2 Magnetic dipole

The magnetic dipole transition is driven by the oscillating magnetic field of the excitation

laser and its transition amplitude is as follows:

AM1(F, m; F ′, m′) =
(k̂ × Eω1

)
z

δm,m′

+
[
±
(
k̂ × Eω1

)
x

+ i
(
k̂ × Eω1

)
y

]
δm,m′±1

M1C
F ′,m′

F,m eiφω1

(2.6)

where k̂ is the laser propagation direction and M1 is the magnetic dipole matrix element.

This moment is approximately 20 000 times larger than the PNC interaction. Careful field
2

 ↑ Both our group and Wieman’s group have measured α/β to 0.1 %, so this is not too significant of a factor
in the overall uncertainty in the calculation of Qw.
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alignment along with counter-propagating laser beams minimize systematic errors. This

ratio M1/β was measured by our group in 2013 using the two-pathway coherent control

technique [  4 ]. A modified version of this technique will be used for the PNC measurement

proposed here.

Systematic errors due to the relative size of the PNC amplitude to the M1 amplitude

significantly complicate a precise measurement of the EP NC/β. To circumvent this, Wie-

man’s group utilized a high finesse cavity to ensure that the forward laser field exciting the

6s → 7s transition was nearly equal to the backward laser field. These two beams produced

oppositely signed M1 amplitudes that tend to cancel very well and reduce systematics due

to stray fields. Without this effect, stray magnetic fields would have to be reduced to the

20 000x1000 level, an intractable solution, for a 0.1% measurement of EP NC/β. For our

multi-wavelength approach, we require that all three laser fields be high finesse standing

waves to produce the same effect. This requirement will be elaborated on in section  7.2 .

The magnetic dipole contribution has a nuclear-spin-dependent contribution as well.

Bouchiat and Piketty introduce a general phenomenological transition operator that is time-

reversal invariant and parity conserving.[ 32 ] This operator is as follows,

T (n, n′) = a1S · E × k + ia2 (S × I) · (E × k)

+ia3 [(S · E) (I · k) + (S · k) (I · E)] .
(2.7)

Bouchiat and Piketty substitute a1 → −2M1, a2 → −4Mhf
1 /(2I + 1), and a3 → −E2/2.

Here S and I represent the electronic and nuclear spin. When the nuclear spin of cesium is

included, the transition operator simplifies to the following,

T (n, n′) = −2M1S · (E × k) − i(Mhf
1 /2) (S × I) · (E × k)

−i(E2/2) [(S · E) (I · k) + (S · k) (I · E)] .
(2.8)
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This equation includes a hyperfine changing magnetic dipole contribution as well as an

electric quadrupole moment. The relative strength of the Mhf
1 to M1 is

∣∣∣∣Mhf
1

M1

∣∣∣∣ = 0.1906 (5)

[ 33 ]. A list of all the weak transitions and their relative strengths are recorded in table  2.1 

2.3.3 Electric quadrupole

The 6s1/2 → 7s1/2 line also has a small electric quadrupole (E2) amplitude. This E2

moment is weakly allowed due to hyperfine coupling between S1/2 and D3/2 states [  32 ].

Bouchiat and Guena reanalyzed a series of inconsistent measurements on the 6s → 7s

transition and show better agreement among the measurements when the E2 moment was

included[ 34 ]. Later, Bennet combined their results in [  35 ] with the results of Gilbert [  36 ] and

determine E2/Mhf
1 = 53(3) × 10−3. Derevianko et al. [ 37 ] write the transition amplitude for

the quadrupole moment as;

AE2(F, m; F ′, m′) =
〈
7s F ′, m′| (−e~r · Eω1)

(
k̂ · ~r

)
|6s F, m

〉

= (−1)F ′−m′

 F ′ 2 F

−m′ q m

 (2F + 1)1/2

× (2F ′ + 1)1/2

 J F I

F ′ J ′ 2

E2 Eω1 ,

where E2 is the electric-quadrupole moment, () and {} brackets denote the Wigner 3-j and 6-j

symbols. This electric quadrupole moment is weakly allowed, but will drive only ∆m = ±2

transitions in our field geometry. Since our interaction will be on a ∆m = ±1 transition, the

quadrupole moment will not interfere and won’t affect the measurement.

2.3.4 PNC interaction

Opposite parity states mixed by the weak interaction permit electric dipole transitions

between the 6s and 7s states. This parity non-conserving weak amplitude is:
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Table 2.1. Strength of the weak transitions relative to the Stark vector polar-
izability, β. The ratios are given in terms of the static electric field required to
make the β polarizability as strong as the transition moment of interest. Both
the α and β transitions scale as the electric field and that ratio is unitless.

Transition Ratio
α -9.902(9) [ 5 ]

M1 -29.48(7) V/cm [  35 ]
Mhf

1 -5.6195(91) V/cm [  35 ]
E2 -0.298(17) V/cm [  35 ]

Im {EP NC} -1.5935(56) mV/cm [ 1 ]
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AP NC(F, m; F ′, m′) =
[
Eω1

z δm,m′ +
(

± Eω1
x + iEω1

y

)
δm,m′±1

]
iIm {EP NC} CF ′,m′

F,m eiφω1 (2.9)

where EP NC is the PNC matrix element produced by the electro-weak interaction between

the electrons and nucleons in the cesium atom. The relative strength of the EP NC to the

vector Stark polarizability (EP NC/β) has been previously measured and reported to 0.35

% uncertainty. Further measurement of this ratio along with theoretical calculations allow

precise determinations of the weak charge of the nucleus and could elucidate new physics

or physics not included in the standard model. We plan to measure EP NC/β to greater

precision than that of Wieman’s group using our coherent control technique.

2.3.5 Two-photon interaction

The above transitions are extremely weak and measurements of their amplitudes benefit

from interference techniques. This requires a stronger transition with which the weaker

transition interferes. We choose to interfere these weak transitions with the two-photon

transition coupling the 6s and 7s state. The two-photon transition amplitude is;

A2p(F, m; F ′, m′) =
{[

α̃Eω2 · Eω3δF,F ′ + iβ̃
(
Eω2 × Eω3

)
z
CF ′,m′

F,m

]
δm,m′

+
[

± iβ̃
(
Eω2 × Eω3

)
x

− iβ̃
(
Eω2 × Eω3

)
y

]
CF ′,m′

F,m δm,m′±1

}
ei(φω2 +φω3 )

(2.10)

where Eω2 and Eω3 are the laser electric field amplitudes for the two two-photon beams.

The scalar coefficient α̃ and vector coefficient β̃ characterize the strength of the two-photon

transition when the two laser beam polarizations are parallel or perpendicular, respectively.

The coefficients α̃ and β̃ are calculated using a sum-over-states approach in a similar manner

by which the Stark scalar and vector transition polarizabilities are calculated [  31 ]. The

equation to calculate the scalar coefficient is,
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α̃ = 1
6~
∑

n

 〈7S||r||nP1/2
〉 〈

nP1/2||r||6S
〉( 1

ω3 − ωnP1/2

+ 1
ω2 − ωnP1/2

)

−
〈
7S||r||nP3/2

〉 〈
nP3/2||r||6S

〉( 1
ω3 − ωnP3/2

+ 1
ω2 − ωnP3/2

).

(2.11)

To calculate the vector term, the following equation is used,

β̃ = 1
6~
∑

n

 〈7S||r||nP1/2
〉 〈

nP1/2||r||6S
〉( 1

ω3 − ωnP1/2

− 1
ω2 − ωnP1/2

)

+1
2
〈
7S||r||nP3/2

〉 〈
nP3/2||r||6S

〉( 1
ω3 − ωnP3/2

− 1
ω2 − ωnP3/2

).

(2.12)

Here the state energies have been rewritten in terms of optical frequencies and the ω2 and ω3

terms represent the two optical frequencies driving the two-photon transition. By inspection

of equation  2.12 , it is apparent that β̃ transitions are not possible with equal photons (ω2 =

ω3). With only a single laser source, ∆F = ±1 transitions are not possible. This would

require us to measure EP NC/α instead of EP NC/β. A measurement of EP NC/β is preferable

since it allows a measurement of the NSD amplitude and would allow direct comparison with

the measurement by Wood et al. [ 1 ]. Also, a measurement of EP NC/β is more practical since

β is ten times smaller than α. A relative measurement of EP NC/β would then be ten times

less susceptible to stray electric fields compared to a ratio measurement of EP NC/α.

Since we want to interfere a EP NC with β, we must drive this two-photon transition with

two unequal photons. Equation  2.12 shows that we can enhance this transition strength by

choosing a laser source (ω2 or ω3) such that it is near an intermediate resonance (nP3/2 or

nP1/2). The caveat to this technique is that the laser frequency should not overlap with

the intermediate resonance at all since that would ruin the coherence and effectively destroy

the interference. It is also important to note that the smaller the detuning from resonance,

the better the laser frequency must be stabilized since the transition amplitude may vary

significantly if the detuning is small.
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2.4 Coherent control

For the PNC measurement, we plan to interfere the two-photon and Stark transitions

with the very weak PNC transition. In Fig.  2.5 , we show the geometry of the static fields

necessary to drive select transitions. In the figure, all lasers propagate in the ŷ direction

and the atomic beam propagates in the x̂ direction. The symbol ~Elaser represents the electric

field of the driving excitation laser and ~B and ~E are the applied magnetic and electric fields,

respectively. This configuration differs from the Boulder group in that the weak signal is

amplified by the stronger two-photon transition instead of just the Stark induced transition.

The scheme is also modified from what D. Antypas used in the measurement of M1/β.

Antypas drove the two-photon transition with equal 1079 nm photons where we will excite

the transition with unequal photons. This will allow measurements of spin-dependent PNC

effects. As an added bonus, the unequal photons will couple to the intermediate 6p3/2 state

more strongly and will amplify the two-photon signal.

X

Y

Z

~B ~E~E1470

~E852

~E540

Figure 2.5. Field geometry for the PNC measurement

Using these fields in Fig.  2.5 , most of the terms are zero in equations  2.3 ,  2.9 , and  2.10 .

The sum of the remaining terms is below;
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A = A2p + ASt + AP NC =
(

− iβ̃Eω2Eω3CF ′,m′

F,m ei(φω2 +φω3 ) − βEEω1CF ′,m′

F,m eiφω1

±iEω1Im {EP NC} CF ′,m′

F,m eiφω1
)
δm,m′±1

(2.13)

The phases of each of the optical fields are included here and are critical in the coherent

control technique. If we ignore the extremely small interference between the PNC and Stark

terms as well as the DC offset of the Stark and PNC terms, the observed transition will be;

A2 ≈
(
β̃Eω2Eω3CF ′,m′

F,m

)2

− iβ̃Eω2Eω3CF ′,m′

F,m ei(φω2 +φω3 )
(
−βEEω1CF ′,m′

F,m e−iφω1 ∓ iEω1CF ′,m′

F,m e−iφω1 Im {EP NC}
)

+ iβ̃Eω2Eω3CF ′,m′

F,m e−i(φω2 +φω3 )
(
−βEEω1CF ′,m′

F,m eiφω1 ± iEω1CF ′,m′

F,m eiφω1 Im {EP NC}
)
(2.14)

The first term here represents a DC offset of the observed signal due to the two photon

absorption and the second two terms are dependent on the relative phase. The equation

above can be simplified to;

A2 ≈
(
β̃Eω2Eω3CF ′,m′

F,m

)2

+ 2β̃Eω1Eω2Eω3
(
CF ′,m′

F,m

)2√
β2E2 + (Im {EP NC})2 sin(φω2 + φω3 − φω1 + Φ(E))

(2.15)

This observed signal has a large DC offset and a modulation term that is proportional

to the product of the weak amplitudes and the much stronger two-photon amplitude. We

vary the modulation by shifting the optical phase of the driving laser radiation. This was

previously completed in our lab by passing one of the beams through a rotating window. As

the window rotated, the apparent path length changed and allowed precise phase modulation.

This phase modulation led to a sinusoidally varying interference that was later analyzed to
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determine the amplitude and phase. The technique we intend to use is facilitated through

our locking scheme and will be discussed later.
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3. EXPERIMENTAL APPARATUS

This section will detail the experimental apparatus that has been in part used for weak signal

detection [  21 ] and will be configured to detect the parity nonconserving weak interaction.

Fig.  3.1 gives an overview of the experimental configuration. This general overview illustrates

the vacuum system and the three regions within. Atoms travel from the oven through the

preparation region where they are spin polarized and then through the interaction region

where they are driven through the 6s → 7s transitions mentioned above. The final region

is used to detect the atoms that interact by driving them through a cycling transition on a

previously emptied hyperfine level and collecting the fluorescence. The following sections will

discuss this process in detail as well as other techniques required for the PNC measurement.

Figure 3.1. Drawing of experimental diagram. The abbreviated elements are;
PPLN-periodically poled lithium noibate, PBC-power build-up cavity, SHG-
second harmonic generation

3.1 Vacuum Chamber

The coherent control technique to study atomic parity violation utilizes an atomic beam

generated in a vacuum chamber to carry out measurements. The vacuum chamber in which

we generate a cesium beam is a large aluminum box measuring 50×55×40 cm, see Fig.  3.2 .
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The chamber is large enough to contain all necessary magnetic field coils and electric field

plates, photodetector, and a pair of cryogenically cooled copper baffles. It is notable that

the chamber is aluminum as opposed to the more conventional options. This is necessary

to reduce stray magnetic fields to a level as low as possible. The chamber is closed with a

heavy aluminum lid that rests on an o-ring for a vacuum seal. The lid can easily be removed

(with help) to allow access to the experimental components within the vacuum.

Figure 3.2. Illustration of the vacuum chamber from [  21 ].

The chamber is evacuated by an Edwards STP-451 turbomolecular pump (480 L/sec) that

is magnetically levitated to increase bearing life. This turbopump is backed by a mechanical

roughing pump (Alcatel 2012) that is necessary to start a vacuum from atmospheric pressure.

A pneumatic gate valve separates the turbopump from the main chamber. Along with a

separate valve and roughing pump, the pneumatic valve allows us to open, close, and repump

the chamber while the turbo pump rotates. This reduces the number of accelerations and

increases the lifespan of the pump. The fast pumping speed of the turbopump and the lack

of need for an ultrahigh vacuum allows us to pump back down to a base pressure in 12 to 24

hours as opposed to weeks or months for our ultra-high vacuum friends. The base pressure

for this system is approximately 5 × 10−7 Torr. To reduce the clouding of the atomic cesium

inside the chamber, a pair of liquid nitrogen cooled copper baffles act as a secondary pump

that further reduces the pressure by as much as an order of magnitude. The copper baffles

consist of a stainless steel tank with a large copper plate affixed to its surface. The pair of
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baffles are on opposite sides of the chamber. The atomic beam passes through an aperture

(10 mm wide, 3 mm tall) in the first copper baffle that defines the geometry of the atomic

beam and the opposite baffle acts as an atomic beam dump to further reduce clouding of

the chamber. The chamber contains four pairs of 50 mm (not 2 in.) 

1
 antireflection coated

viewports for 852 nm light and a pair of 1 in. dual antireflection coated windows for 540

nm and 1079 nm. The chamber also contains eight other ports that allow us to connect a

variety of other electronic feedthroughs for electric field biasing, magnetic field generation,

and weak signal detection.

Figure 3.3. Illustration of the vacuum chamber oven/nozzle assembly. Image from [  21 ]

The oven and nozzle assembly consists of a tee, bellows valve, rod, and nozzle (see Fig.

 3.3 ). The tee is capped on two ends and contains the 5g cesium ampoule. We are able to

load the cesium ampoule by removing one of these end caps and opening the bellows valve.

Once the cesium ampoule is placed under the rod, the tee is recapped and the chamber

is evacuated. By closing the bellows valve, we crush the ampoule to release the cesium

safely. A pair of cartridge heaters are used to heat the nozzle to ∼170 ◦C and heating

tape is used to control the temperature of the oven in the range of 130 to 160 ◦C. The
1

 ↑ A 2 in window will just barely not fit in the opening.
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nozzle temperature is kept well above the oven temperature to avoid clogging the nozzle and

to minimize clouding in the chamber. We vary the atomic beam density by adjusting the

temperature of the oven. The oven components are relatively heavy and are wrapped in

multiple layers of aluminum foil to reduce cesium beam density drifts. The atomic beam is

steady to <1% in an hour. Since relative measurements are completed in seconds, atomic

beam drift is negligible. Occasionally it is necessary to open the chamber after having filled

the oven with a fresh charge of cesium. In this instance, a vent valve is used to back fill the

oven with dry argon or nitrogen gas to reduce cesium oxidation.

Figure 3.4. 2-photon spectrum illustrating the atomic beam divergence. Or-
ange represents the cesium fluorescence as the atoms are driven through the
6s → 7s transition. The Blue trace is the fit that includes the sidebands of
the laser.

A collimated atomic beam is generated by effusing cesium through the heated nozzle

constructed of many thin stainless steel capillaries (1 cm long, 0.8 mm I.D.). The geometry

of the nozzle along with the temperature of the oven defines the collimation of the atomic

beam. The beam divergence has been measured by Dionysios to be 38 mrad (14 MHz

for our geometry) [ 21 ] and has since been remeasured. This was conducted by sweeping

a laser at 1079 nm across the 6s → 7s transition while modulating the laser at 20 MHz

(higher than the linewidth of the transition). The fluorescence, see Fig.  3.4 , is then fit to

determine the sideband spacing (mod. frequency) and linewidth. Without knowing the scan

depth, the relative spacing of the sidebands to the linewidth allows a decent determination
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of the linewidth. Here we measure the linewidth to be 14 MHz in the atomic beam and 6.3

MHz 

2
 in a vapor cell. The broadening in the beam is primarily due to the atomic beam

divergence. The natural linewidth along with transit time broadening dominates in the cell.

Further improvement of atomic beam collimation has been achieved by using a down-stream

collimator composed of microscope slides and cover slips. This reduces the beam density

and is not typically used unless necessary. The well collimated atomic beam travels from

left to right in Fig.  3.2 and is centered vertically on the optical viewports. Through these

viewports, laser beams intersect the atomic beam at right angles to drive select transitions.

3.2 External cavity diode laser

To drive atomic transitions in cesium, we choose to use external cavity diode lasers

(ECDL). ECDLs are much cheaper and easier to maintain than solid state lasers or dye lasers.

This is at the expense of power and ease of tuning. ECDLs consist of a diode laser that has

an external diffraction grating that provides feedback to stabilize and narrow the laser output

frequency. This is commonly done in either a Littrow or a Littman-Metcalf configuration

(see Fig.  3.5 ). In a typical Littrow configuration, light from a laser diode is collimated by

an antireflection coated aspheric lens and then is incident on a diffraction grating. The first

order diffracted light is directed back towards the laser diode to provide feedback. Since the

diffraction angle is wavelength dependent, the tuning angle of the diffraction grating allows

coarse adjustment with a tuning screw and relatively fine adjustment with a piezoelectric

element. A piezo electric element (PZT) can be placed between the frame on an optical

mount that the grating rests on and the adjustment screw (see Fig  3.6 for clarity). A voltage

applied to this PZT changes its length and tunes the laser frequency. The bandwidth of this

configuration is limited to below the resonant frequency of the piezo-mount system and is

in the range of a few kilohertz. The Littman-Metcalf configuration is similar to the Littrow

configuration except that the first order diffraction is directed onto a mirror and then the

mirror is rotated to tune the wavelength. The cavity then consists of the diode, grating, and

mirror as opposed to just the diode and grating. This configuration allows a wide tuning
2

 ↑ This linewidth is measured using two-photon absorption in a heated vapor cell using focused and retro-
reflected beams at 1079 nm to reduce residual Doppler broadening.
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range without changing the angle of the output beam, which reduces alignment errors when

tuning.

Figure 3.5. Illustration of a) a Littrow style ECDL and b) a Littman-Metcalf
style ECDL Image from [ 21 ]

A more realistic example of a Littrow ECDL is depicted in Fig.  3.6 . Here we see an

external cavity formed by the laser diode and grating. Supporting these elements are the

base plate and optic mount. Due to the coefficient of thermal expansion (CTE) of these

elements as well as the diodes own temperature dependent gain curve, temperature control

to the few mK level is critical. The diode gain curve can shift by 100 MHz/mK [ 38 ]. Without

precise temperature control, atomic spectra can walk right off of the scan. 

3
 

Figure 3.6. Illustration of and external cavity diode laser. Image from [  21 ]
3

 ↑ There have been instances in our lab where cold air blowing directly down on the lasers and driving
electronics have shifted spectra around. This was circumvented by plastic sheets that divert air across the
room instead of downward.
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Faster tuning of an ECDL is possible through the modulation of the driving laser diode

current. The current through the diode laser affects the index of refraction inside the diode

laser chip, which directly affects the output frequency of the laser. Along with that, higher

currents affect the temperature of the diode chip which shifts the frequency as well. Since

noise on the current will produce unwanted amplitude and frequency modulation, diode lasers

require exceedingly quiet current supplies to reduce laser linewidth. Tuning sensitivity is

typically around 3 GHz/mA [  38 ]. Sub-MHz linewidths would require much less than 300 nA

of RMS current noise. This does not include longer term effects such as acoustic vibrations

and air pressure changes. 

4
 Modulation of the diode current is often necessary to cancel

out these fluctuations and to apply sidebands to the laser output. The modulation rate

of the diode laser depends on the technique in which the modulation is applied. Directly

connecting the diode laser to a bias-tee allows fast AC modulation (a few GHz is possible).

A safer way to modulate the diode laser current is typically built into the driving circuitry of

the diode laser current driver. Commercial diode laser controllers typically have modulation

bandwidths on the order of a few hundred kilohertz or even slower. This is insufficient if

it is necessary to reduce the linewidth of a fairly noisy laser. Libbrecht and Hall [  39 ] have

published designs for low-noise fast laser diode current controllers that meet and exceed

specifications for many commercial supplies. 

5
 We have utilized these designs as well as have

made other suggested modifications to drive all of our homemade ECDLs [  39 – 42 ].

3.3 Saturated absorption spectroscopy

Due to thermal motion of an atomic vapor in a vapor cell, simply passing a laser beam

through the cell will result in a Doppler broadened spectrum. This is due to the apparent

frequency of the laser radiation in the frame of the atom. In the atom’s frame of reference,

the laser frequency is shifted to;

ω′ = ω − ~k · ~v (3.1)

4
 ↑ Laser manufacturers can be deceptive in their specifications of linewidth by quoting linewidths for ex-

tremely short time scales or by just quoting a linewidth without a time.
5

 ↑ Many commercial current controllers don’t need or want this fast modulation since it increases noise and
they have modulation ports built directly into the laser head.
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where ~k is the laser wave vector and ~v is the atom’s velocity. This broadening leads to a

Doppler width;

ωD = ω0

√
8kBT ln2

mc2
(3.2)

where ω0 is the rest frequency of the transition and kB is Boltzman’s constant [  43 ]. For

the cesium D2 line, this width is ∼400 MHz at room temperature. Doppler broadening

completely hides the hyperfine structure that we wish to stabilize our lasers to. To narrow

this observed linewidth, atoms need to be probed with counter propagating beams. One

technique that accomplishes this is saturated absorption spectroscopy (SAS), illustrated in

Fig.  3.7 . Here, a pump beam depletes atoms from the ground state of a particular velocity

subgroup while on resonance. When the weaker probe beam interacts with the same velocity

group of atoms, fewer atoms are available to absorb the light and the probe beam has larger

transmission. Off resonance, the pump beam is not saturating the same velocity group

that the probe beam is interrogating and probe beam absorption increases which decreases

transmission. Typically, a second probe beam is used to subtract off the Doppler broadened

dip. The result is a relatively flat spectrum with peaks at each transition.

Figure 3.7. Diagram of a saturated absorption setup. BPD-balanced pho-
todetector. Image from [  22 ].
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An example spectrum of saturated absorption spectroscopy for the 6s F = 4 → 6p3/2 F =

3, 4, 5 transitions in cesium is shown in Fig.  3.8 . Here the upper trace includes the three

hyperfine transitions as well as their cross over resonances, which occur exactly half way

between each peak. Below the spectrum is the error signal (i.e. the derivative spectrum)

that we stabilize the lasers to.

Figure 3.8. Saturated absorption spectroscopy signal

An example peak is illustrated in Fig.  3.9 (left) as well as its derivative (right). When

stabilizing a laser, a servo needs a region where the error signal is monotonic. This allows

the servo to know which way to correct frequency changes. We can electronically derive the

dispersion shape in Fig.  3.9 (right) by dithering the laser frequency near 25 kHz and then

multiplying the spectrum by the dither via a mixer. The output of the mixer is lowpass

filtered and used to stabilize the laser. In this configuration, the three ECDLs stabilized via

SAS stay locked for at least several hours, if not all day.

3.4 Pound-Drever-Hall

Direct current modulation and grating position can be used to stabilize and narrow the

frequency of an ECDL. The extent to which the frequency is stabilized and the linewidth

is narrowed depends on the speed of the feedback, the sharpness of the error signal, and

the stability of the reference used to derive the error signal. Previously, we have discussed
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Figure 3.9. Plot illustrating top-of-fringe locking.

using atomic resonances as a means to stabilize the frequency, but they are limited due

to the linewidth of the transition. To further narrow the linewidth of a laser, the laser

can be stabilized to a narrow Fabry-Perot interferometer using Pound-Drever-Hall (PDH)

locking. The PDH technique is commonly used to stabilize a laser to a Fabry-Perot cavity

due to the high bandwidth and intensity independence compared to side-of-fringe locking or

low-bandwidth top-of-fringe locking.

Figure 3.10. Transmission through a Fabry-Perot cavity with a finesse of
about 12 as a function of laser frequency. Image from [  44 ]

The frequency discriminator in PDH locking is the Fabry-Perot optical cavity. When

light is incident on one of the mirrors of an optical cavity, most of the light is reflected

unless its frequency is nearly equal to an integer multiple of the cavity’s free spectral range,

FSR = c/2nL where n is the index of refraction of the material and L is the distance
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between the mirrors. Fig.  3.10 shows the transmission of light through an optical cavity

with a finesse of about 12 as the laser frequency is swept. 

6
 Prior to PDH, it was common

to stabilize the frequency of a laser by using the side of one of these fringes as a locking

point. By measuring the transmitted light at one of these points, a small frequency change

will lead to a proportional change in transmitted light. This change can be measured and

an appropriate servo response can correct the frequency error. Unfortunately, this technique

cannot distinguish between intensity and frequency fluctuations of the laser. PDH uses the

optical cavity as a frequency discriminator when on resonance and is much less susceptible

to intensity fluctuations.

Figure 3.11. Reflected light intensity as a laser frequency is swept across an
optical cavity resonance. Image from [ 44 ]

To stabilize the laser on resonance with an optical cavity, a problem is quickly apparent

for the servo. When on resonance, each direction the servo can push the laser reduces cavity

transmission (and increases the reflection). This concept is illustrated in Fig.  3.11 . To pro-

duce a signal that a servo can understand, the laser frequency needs to be modulated. This

modulated light is reflected off of an optical cavity and is detected with a fast photodiode.

This signal is then mixed with the same modulation source to produce a dc response that is

proportional to the slope of the reflection curve with a zero crossing at maximal transmis-

sion. When modulating at a low frequency compared to the bandwidth of the cavity, the

dispersion shape looks similar to Fig.  3.12 . This error signal can be used to stabilize the
6

 ↑ The cavity length can also be swept using a mirror mounted on a piezoelectric transducer. A finesse of
12 is small for typical applications and would correspond to a two mirror cavity with a mirror reflectivity of
around 77%.
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laser frequency in a bandwidth less than the modulation frequency. This technique can be

improved to increase the locking bandwidth and increase the slope of the error signal near

resonance by modulating the phase faster than the bandwidth of the cavity.

Figure 3.12. Error signal for top-of-fringe locking with a low modulation
frequency. Image from [ 44 ]

To modulate a laser fast enough for PDH stabilization, an EOM is typically used to

modulate the phase. It is possible to modulate the frequency of the laser by modulating

the current, but this also imparts intensity fluctuations as well. With a high frequency

modulation signal passing to an EOM, the electric field of the laser beam becomes

E = E0ei(wt+ηsin Ωt)

where η is the modulation depth and Ω is the modulation frequency. This exponential can

be expanded with Bessel functions to

E ≈ E0[J0(η)eiwt + J1(η)ei(w+Ω)t − J1(η)ei(w−Ω)t]

where the modulation index is small so that most of the power is in the carrier, eiwt, and the

first order sidebands, ei(w±Ω)t. When this fast modulated (much faster than the bandwidth

of the cavity) light is incident on an optical cavity, the cavity does not have a chance to

respond quickly enough. Instead of modulating the intensity of light in the cavity, the cavity

acts as a reservoir frequency discriminator to average out the incoming signal. As the laser

frequency is swept across the cavity resonance, the laser sidebands beat against the averaged
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signal in the cavity at the modulation frequency, Ω. This averaged cavity signal allows a

servo to correct for frequency fluctuations of the laser that are faster that the cavity can

respond. When the reflected signal is then mixed with the modulation frequency, the phase

of the beat signal between the sidebands and the light in the cavity acts as an error signal

with a very large slope near resonance. This error signal is illustrated in Fig.  3.13 . Here

the slope is much higher than that of the slow frequency modulation and the capture range

is also extended. This allows extremely tight and stable locks to cavity resonances that also

narrow the linewidth of the laser.

Figure 3.13. Error signal for Pound-Drever-Hall locking with a high modu-
lation frequency. Image from [  44 ]

The experimental setup to perform PDH frequency stabilization is illustrated in Fig.

 3.14 . Here the rf source provides the modulation signal to the electro-optic phase modulator

(EOM) and to a phase shifter (φ) and mixer. The laser beam passes through the EOM, a

polarizing beam splitter (PBS), and quarter-wave plate (QWP). This beam is coupled into

the cavity and the reflected beam travels back through the QWP and is then deflected by the

PBS onto a photodiode (PD). The photodiode signal is amplified and mixed down with the

phase shifted modulation signal. The phase shifter is necessary to align the phase of the beat

signal with the EOM modulation to maximize the error signal.  

7
 This mixed down signal is

then low-pass filtered (LPF) and then sent to a servo to control the laser frequency. For our

configuration, we are servoing the laser current to eliminate fast frequency fluctuations and

the piezo to account for slow drifts.
7

 ↑ A length of cable is also a phase shifter.
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Figure 3.14. Pound-Drever-Hall experimental configuration. The laser beam
is phase modulated in an EOM and reflected off on a F-P cavity. The re-
flected light is collected by a fast photodiode and mixed with the modulation
frequency to produce an error signal.

To drive the single photon 6s → 7s transition, we have purchased a commercial laser at

1079 nm and servo and have integrated them into our experiment. To determine the quality

of the laser lock to the cavity, we observe the laser noise spectrum centered at the EOM

frequency. This signal is observed by placing a 20 dB (1%) coupler after the photodiode and

sending this signal to a spectrum analyzer. The noise could be observed at DC, but 1/f

noise would be significant and the noise floor would be high. The laser noise spectrum is

illustrated in Fig.  3.15 . The spectrum is centered around 20 MHz, the span of the spectrum

analyzer is set to 10 MHz, and the resolution bandwidth is 1 kHz. The noise is greatly

suppressed from the carrier out to a few MHz. When the frequency fluctuations are faster

than the time it takes for the error signal to reach the servo and for the servo to respond,

the servo starts to add noise. This characteristic frequency is the servo bandwidth. To avoid

the system from oscillating, the gain on the servo needs to fall below 0 dB before the servo

bandwidth.

3.5 Optical pumping and detection

Interference of the two-photon transition with one of the weak amplitude transitions (β-

Stark, M1, and EP NC) is dependent on the particular Zeeman sublevel the atoms are in.
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Figure 3.15. Laser noise spectrum centered at the EOM modulation fre-
quency. The peak in the center is the residual amplitude modulation (RAM)
in the laser. This is caused by a slight misalignment of the laser polarization
into the EOM. This causes the electro-optic phase modulator to act a bit like
an electro-optic amplitude modulator. This RAM could also be caused by
etalon effects in the EOM crystal. Either way, this peak is bad, but the PNC
measurement is not sensitive to this effect.

To detect atoms that have undergone these weak interactions, we empty out a particular

hyperfine level, drive the atoms with the weak interaction, and then probe the previously

empty level for new population. Thus it is necessary to drive as much of the ground state

population to either of the extreme hyperfine and Zeeman sublevels in a process described

as optical pumping.

Optical pumping and detection is driven by way of three home built ECDLs tuned to

the 6s → 6p3/2 transition. These lasers are the hyperfine, Zeeman, and detection lasers. The

three lasers are in Littrow configuration and produce 15 to 20 mW of power. We drive these

lasers with homemade current controllers and temperature stabilize them with commercial

(Thorlabs Model TED 8020) temperature controllers. The lasers are all frequency stabilized

using saturated absorption spectroscopy. Previous heterodyne measurements between our

homemade ECDLs by George Toh [  22 ] give ∼1 MHz linewidth on a long time scale. This
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linewidth is not considered narrow, but it is narrower than the optical transition and is more

than sufficient.

Figure 3.16. Energy level diagram of the ground state and 6p3/2 excited state
in cesium. Optical pump transitions are indicated with arrows. Image from
[ 21 ] .

3.5.1 Hyperfine

The hyperfine laser is used to empty the ground state population out of a particular

hyperfine level. Beam geometry, polarization and excited state branching ratios all affect

the quality of pumping. We use linear polarization and saturate the transition with a one cm

diameter beam that intersects the atomic beam at a right angle. To pump to the 6s F = 3
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hyperfine state, we drive the 6s F = 4 → 6p3/2 F = 3 transition, where the atoms are likely

to decay back to the F = 3 state (75 %). Few scattered photons are needed on average

to populate the F = 3 state. To populate the F = 4 state, the 6s F = 3 → 6p3/2 F = 4

transition is used. Here the branching ratio is less favorable (58 %), but still depletes the

level after a few scattering cycles [  20 ]. To ensure that we drive atoms out of all of the

magnetic Zeeman sublevels, we use linearly polarized light that is polarized perpendicular

to the applied magnetic field. This linear polarization can be thought of as equal parts right

and left circularly polarized light which drive ∆m = ±1 transitions. Care is taken to keep

the applied magnetic field low such that the edge magnetic Zeeman shifted levels are not

pushed out of resonance with the excitation laser.

3.5.2 Zeeman

Along with hyperfine pumping, preparation of magnetic Zeeman sublevels is also neces-

sary. A weak magnetic field is applied to lift the degeneracy of the magnetic sublevels. This

shift is small compared to the laser linewidth and broadening due to laser intensity. We

drive atoms into extreme magnetic sublevels by driving ∆m = +1 or −1 transitions with

left or right circularly polarized light tuned to the 6s F = 4 → 6p3/2 F = 4 (F = 4 hyperfine

pumping) or 6s F = 3 → 6p3/2 F = 3 (F = 3 hyperfine pumping). Circular polarization

reversal switches which extreme magnetic sublevel is reached. It is necessary to drive as

much of the ground state population to either of the extreme Zeeman sublevels as possible

because the weak transition we interfere varies with m and opposite m states have opposite

transition amplitudes and would tend to average. This makes relative measurements of weak

interactions where only one is dependent on m exceedingly difficult. These measurements

require extremely precise determinations of the distribution of atoms in the magnetic sub-

levels. For instance, the primary source of uncertainty in the two most precise measurements

of the ratio of scalar to vector polarizability on the 6s → 7s transition was the determination

in the magnetic sublevel distribution [  5 ,  45 ].
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3.5.3 Detection

Detection of atoms in the previously emptied hyperfine state occurs by way of a detection

laser tuned to a cycling transition. This laser is expanded horizontally to 3 cm wide and is

directed through the chamber. Below where the atomic beam and detection laser intersect,

a large area photodiode collects the scattered light. A curved gold mirror is aligned above

this point to direct upward scattered photons downward into the diode. To reduce the

background, a 40 nm bandpass filter centered at 852 nm sits atop the photodiode. The output

of this photodiode is sent into a transimpedence amplifier with 20 MΩ of transimpedence

gain.

To detect atoms in the 6s F = 3 state, we drive a 6s F = 3 → 6p3/2 F = 2 transition and

hopefully scatter several photons in a cycling transition. This transition is not a true cycling

transition since atoms can evolve into a dark state. To reduce this effect, the detection laser

intersects the atom beam with linear polarization, travels through a λ/4 wave plate, and

then is retroreflected. This configuration produces crossed polarization for the returning

beam and reduces the likelihood that atoms will evolve into a dark state. This is due to the

rapidly varying polarization the atoms see across the atom beam. Along with the varying

polarization, a magnetic field gradient helps. Even with these steps to reduce dark states,

detection of the 6s F = 3 state is less efficient than detection on the 6s F = 4 state, driven

by a 6s F = 4 → 6p3/2 F = 5 cycling transition.

3.6 Raman Lasers

The quality of optical pumping is important in optimizing the interference signal since

weak amplitudes often depend on m and oppositely signed m states tend to cancel. Inter-

ference measurements comparing weak transitions that do not depend on Zeeman sublevel

(α-Stark) to ones that do depend on Zeeman sublevel (β-Stark) require precise determina-

tion of average m states. These two constraints require a means of accurately transferring

population from individual magnetic Zeeman sublevels on one hyperfine line to the other hy-

perfine level, where we detect population, without an intermediate step that would introduce

population error.
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There are multiple techniques with which this transition could be driven, but some have

significant downsides which will be mentioned first. The transition could be driven directly

with a microwave cavity resonant at the ground state splitting (9192.631 770 MHz). Mi-

crowave cavities are bulky, have a finite linewidth, and are difficult to operate in the same

location as the optical interaction we wish to study. Since we wish to measure the pumping

efficiency at precisely the same location and with the same magnetic field as the interaction

we are trying to study, a different technique is required. Another (better) option is to drive

this transition optically through a Raman process enhanced by the 6p3/2 state, detuned

from resonance by 1 GHz or less. This can be done by placing sidebands on a laser with an

electro-optic phase modulator at half the ground state splitting so that the sidebands are

spaced by the ground state splitting. We refrained from this technique since fast fiber-based

EOMs are expensive and often have low input powers due to photorefractive effects. Also,

it would be difficult to stabilize or even measure the sideband amplitude to the 0.1% level

using this technique. A simple and relatively cheap option was to place sidebands directly

on a single diode laser through direct current modulation. Initially, this was the technique

that our group (and the Boulder group) used [  20 ,  21 ]. Dionysios Antypas constructed this

single Raman laser and drove Raman transitions by frequency modulating the laser diode

at half of the ground state splitting to produce upper and lower side bands that are ∼9.2

GHz apart. Then the upper sideband was stabilized ∼160 MHz below the 6s → 6p3/2 tran-

sition via an acousto-optic modulator. By tuning the modulation frequency (4.6 GHz), the

individual Zeeman split sublevels are driven to the opposite hyperfine level to determine

relative populations. This technique was cumbersome and unstable since diode lasers do

not like being modulated at such high frequencies. Along with being difficult to stabilize,

the sideband amplitude varied by as much as 10 % as a function of modulation frequency

[ 20 ]. This necessitates a significant correction when determining pumping efficiency. This

instability and amplitude variance pushed us towards another option.

A fair amount of time was spent, by Joseph (Jungu) Choi, to recreate this system with

three laser sources where two of the sources would be injection locked to ∼4.6 GHz sidebands

on a third laser source. By varying the modulation frequency, the sideband would pull the

other two bare diode lasers along for frequency offset. This system did not have a large
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sideband variance over modulation frequency since the "sidebands" were derived from two

laser diodes, but it was quite difficult to use and was unstable.

Due to the complexity and instability of previous systems, I undertook the task of up-

grading the Raman lasers to what we use today. With greatly appreciated advice from

Cheng-an Chen, I constructed an optical-phase-lock loop utilizing a fast Schottky photodi-

ode (Newfocus 1434) 

8
 , several RF amplifiers and a ADF4007 evaluation board. I constructed

a new ECDL and high speed servo 

9
 . Using this system, I was able to optical-phase-lock two

ECDLs that remain stable and modulate the offset frequency between the lasers. Although

quiet and phase locked, the degree to which the two ECDLs were phase locked left much to

be desired due to a lack of gain. Conveniently, John Hood graciously offered to loan one of

his Vescent D2-135 optical-phase-locking servos. Although the homemade servo was likely

not too far away from acceptable in terms of performance, the D2-135 was far too nice. It

allowed fast modulation, low phase noise, and almost never came unlocked. After having a

taste of the finer things, we had to purchase one ourselves. This system was used as is for

a while, but we yearned for even lower phase noise. Since one laser is optical-phase-locked

to the other, the noise of one laser is written onto the other. With this concept in mind, we

purchased a commercial 852 nm ECDL from Moglabs and phase locked the better behaved

of the two homemade ECDLs to it. By phase locking the homemade ECDL to the Moglabs

ECDL, we narrow the relatively noisy homemade laser down to the linewidth of the Moglabs

(60 kHz). The following section will discuss optical-phase-lock loops in more detail.

3.6.1 Optical-phase-locked loops

Optical-phase-locked loops (OPLL) are slightly more complicated phase-locked loops

(PLL). Phase-locked loop are common in lock-in amplifiers, radio-frequency synthesizers,

spectrum analysers, and other RF electronics 

10
 that require a high frequency source to be

stabilized to a stable, low phase noise oscillator. Using techinques from PLLs, the offset

phase of two independent lasers can be stabilized. This is a critical step in driving coherent
8

 ↑ loaned to us by Carol Tanner
9

 ↑ design from Cheng-an Chen
10

 ↑ PLLs are pretty much in everything in a lab
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Raman transitions. The offset beat frequency of two lasers is observed on a fast photodiode.

The relative phase of this beat signal is compared to a reference and is then stabilized.

OPLLs rely on phase detectors to differentiate which source is advanced in phase relative

to the other. This knowledge allows a control signal to vary the phase of one of the laser

sources to stabilize the phase difference. Phase detection can either be analog (mixer) or

digital. A diagram depicting each is included in Fig.  3.17 .

Figure 3.17. Diagram depicting an analog optical-phase-lock loop (top) and
a digital phase lock loop (bottom)

Mixers are simple and thus are easy to integrate into a system. They mix (read multiply)

the signal down to DC and the DC level indicates the phase. A low pass filter is used to

eliminate the local oscillator harmonics and the filter output can be directly fed into a servo.

Digital phase locked loops typically utilize frequency dividers, digital phase detectors, and

charge pumps. These components are integrated together as a single chip and provide a

flexible phase detection system. The D2-135 and the ADF4007 both utilize digital phase

detectors. On the PLL integrated circuit, the reference (R) and signal (N) dividers are used

to divide the frequency for the phase frequency detector (PFD) to detect the phase. The

charge pump (CP) sends out short current pulses whose polarity indicates which phase is

ahead (reference or signal). This current pulse is integrated with a loop filter and the output

of this loop filter is used as an error signal for phase stabilization. Digital phase detectors
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work well with moderate to high signal-to-noise ratios and are monotonic everywhere. This

is a convenient feature since large frequency excursions (other than mode hops) are quickly

corrected for. On the other hand, the error signal for an analog OPLL is the same when it

is locked and when it is not.

Figure 3.18. Diagram of the Raman laser system

To stabilize the difference between two ECDLs at 852 nm, we beat them on a 26 GHz

Schottky photodetector and amplify this beat signal for phase detection. There are commer-

cially available digital phase-lock-loop detectors and servo units to simplify integration. We

ultimately chose to purchase a servo from Vescent photonics that includes a digital phase

detector. This servo is fast and allows us to phase lock two independent ECDLs 0.25 to 10

GHz apart with a phase error of less that 90 mrad at 9.2 GHz in a 1 MHz bandwidth. An

example beat note spectrum is included in Fig.  3.20 . Here the servo bumps indicate the loop

bandwith is about 1 MHz. It is at this point that the phase of the feedback is 180 degrees

out of phase with the error signal and the servo adds to the noise in the system. The servo

will begin to oscillate more as the gain increased. With this system we are able to modulate

the input reference frequency into the OPLL to vary the offset between the laser and drive

the coherent Raman interaction.

So, why do we care about coherence between the two Raman lasers for population de-

tection? We actually don’t. It is not necessary for the Raman laser offset frequency to be

phase coherent with anything. We only need the lasers to be frequency offset locked. It is,

however, critical for the Raman lasers to be phase coherent with the RF cavity in the ground
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state experiment. In this experiment, the Raman lasers interact with the cesium atoms and

generate a 50:50 mixture of atoms in the ground and excited state. The experimental con-

figuration is illustrated in Fig.  3.19 . Then the atoms will be excited with an electric dipole

transition facilitated by the weak force interaction within an RF cavity. When the phase of

the RF cavity is varied relative to the Raman offset phase, the 50:50 mixture of atoms will

oscillate between the ground and excited state. This oscillation will be measured and used to

determine the strength of the weak force interaction on this transition. My contribution to

the ground state project is the phase coherent Raman field and the technique for modulating

the Raman lasers relative to the RF cavity excitation. The technique that we use here, and

will use in the PNC measurement, is that we will drive the RF cavity and the Raman lasers

at slightly different frequencies. Before, we were using a rotating window to vary the optical

path length of a laser to modulate the phase. This technique suffers in the linearity of the

scan, the difficulty in setting the scan rate, and the finite length of the scan. By driving

the Raman and RF cavity with slightly different frequencies, the phase automatically and

infinitely scans at the frequency difference. If we connect all of the 10 MHz clocks, the lock-

in-amplifier and the RF generators all agree in frequency. This allows the RF generators to

be offset a small amount (≈ 150 Hz and the lock-in amplifier can demodulate at that 150 Hz

and output an amplitude that is proportional to the interference. Prior to this technique, we

had to scan and dither the phase. This produced a sinusoidal interference signal that then

had to be fitted to determine its amplitude. It is much more preferable to not have to fit

sinusoids.

3.6.2 Raman spectra

To determine the magnetic sublevel distribution, the two phase-locked lasers are spatially

overlapped using an optical fiber and are directed unfocused into the atomic beam. The

polarization of these Raman lasers dictate the allowed ∆m transition. When we optically

pump the atoms into the 6s, F = 3 m = ±3 states, we can drive ∆m = 0 transitions since

the corresponding m state exists in the F = 4 ground state for detection. This is not true

for all Zeeman sublevels in the F = 4 ground state and a ∆m = ±2 transition is necessary.
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Figure 3.19. Experimental diagram of the ground state experiment. The
abbreviations are as follows: DAQ - Data acquisition system, PLL - phase-
locked-loop, φ - phase shifter, Trans. AMP - transimpedance amplifier, LI -
lock-in amplifier, RF - radio frequency.

The ∆m = ±2 transitions are more complicated to analyze since the ∆m = 0 are much

stronger and tend to still be prominent when trying to only drive ∆m = ±2 transitions.

For this reason, we have less confidence in the determination of the pumping efficiency when

pumping to the 6s, F = 4 m = ±4 states.

To drive a ∆m = 0 transition we circularly polarize the Raman lasers with the same

handedness while applying a magnetic field in the direction of laser propagation. To collect

Raman spectra, we tune the hyperfine laser to empty out a particular hyperfine state and

tune the detection laser to the cycling transition exciting that emptied state. By scanning

the frequency difference between the Raman lasers, the individual Zeeman shifted magnetic

sublevels can be selectively driven in a weak magnetic field. This drives population into the

previously emptied hyperfine level where many photons are scattered per atom due to the

detection laser. These photons generate a photocurrent that is converted to a voltage signal

that is measured by our analog-to-digital converter. An example spectrum without Zeeman

pumping is included in Fig.  3.21 . In this spectrum, the frequency difference between the

Raman lasers is scanned with the offset frequency increasing from left to right. While tuning,
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Figure 3.20. Beat note spectrum between the two lasers driving the Raman
transitions. The peak in the center here is the beating between the two Raman
lasers (divided by two). Here the peak height to noise floor shows a large signal
to noise ratio that is indicative of highly coherent laser fields.

the Raman lasers drive ∆m = 0 transitions starting with 6s, F = 3 m = −3 → 6s, F =

4 m = −3 (left) and ending with 6s, F = 3 m = 3 → 6s, F = 4 m = 3 (right). The spectra

are collected by sweeping the frequency difference between the Raman lasers by 64 MHz

peak-to-peak around the 9.192 ground state splitting at a rate of 0.5 Hz. Fifteen scans are

collected and averaged to reduce noise. Transit time broadening in the Raman beam is the

primary broadening mechanism. We operate well below saturation and pressure broadening

effects are negligible.

3.6.3 Initial population determination

We use the Raman lasers to probe the individual Zeeman sublevels and look at the relative

amplitudes of each transition. To determine the populations, we need to know how strong

each transition is. To do this we collect Raman spectra without Zeeman pumping so that one

hyperfine level is empty and the opposite hyperfine level is hopefully uniformly populated.

Also, we have calculated the line strength of each ∆m = 0 transition and have compared

them with the observed value in Fig.  3.21 . Each peak is labeled with the percent difference

between the observed line strength and the calculated line strength. This comparison relies
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Figure 3.21. Raman spectrum without Zeeman optical pumping.

on the Zeeman levels being evenly populated, but simply having the hyperfine laser emptying

one of the hyperfine states affects this initial state population. So, we don’t know whether

the calculation is right and the hyperfine laser is redistributing the Zeeman sublevels or that

the calculation is off and the levels are evenly distributed. To aid in this confusion, we did

observe that if the hypefine laser was sent through a good polarizer right before the chamber

the calculated line strengths matched better (<7%) than without the polarizer. This is

attributed to non-pure polarization of the hyperfine beam causing a weak Zeeman pumping

and this indicates that the hyperfine laser does Zeeman pump to a lesser degree. Fortunately,

we are not as concerned with the exact populations of each state as we are with the average

m value. We can determine the average m value to 0.1 % with a poor knowledge of the

line strengths (<7%) if the pumping efficiency is high enough. This decreases the correction

for atoms that are not in the correct Zeeman state. To then determine the population, we

divide the measured transition amplitudes by their respective calculated line strength.
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Figure 3.22. Raman spectrum with Zeeman optical pumping into m = +3.

3.6.4 Average m

We now know the line strengths for each transition well enough for a 0.1 % measurement of

m. If we now allow the Zeeman laser to pump into an extreme Zeeman sublevel, Fig  3.21 turns

into Fig.  3.22 when pumping to the m = +3 state or into Fig.  3.23 when pumping to the

m = −3. These spectra are analyzed to determine the peak area for each hyperfine transition.

This is done by performing an initial fit to the spectra with a Lorentzian profile, a DC offset

and a sloping background. The spacing between each peak and the width of each peak are all

forced to be the same. We don’t rely on the fit for anything other than determining the peak

centers. With the peak centers, we splice individual peaks out of the spectrum and use the

edge values to determine the background. Once the background is subtracted, we integrate

the peak area to determine the transition amplitude. We divide these amplitudes by their

respective transition strengths to determine the relative populations. Then the average value

of m can be calculated as;
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Figure 3.23. Raman spectrum with Zeeman optical pumping into m = −3.

〈m〉 =
∑

Pmm (3.3)

where Pm is the relative population of that magnetic sublevel and m is the value of that

Zeeman sublevel. The value of 〈m〉 ranges from −F to F for a particular hyperfine level and

a larger magnitude of 〈m〉 indicated more efficient pumping.

3.7 Generation of high power 540 nm light via SHG

To generate narrow band high power at 540 nm, it is easier to start at half the frequency

with a low-power quiet seed laser since 540 nm amplifiers aren’t available. In general, high

power sources are not quiet and quiet sources are not high power. This is typically circum-

vented by using a master oscillator power amplifier system (MOPA). This technique uses

low power quiet lasers to seed high power amplifiers. A MOPA system maintains most of

the characteristics of the seed while amplifying up to high powers. We use a 50 mW seed
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laser at 1079 nm and amplify up to 10 W in an Azurlight systems fiber amplifier. 

11
 This

amplifier has two gain stages and is described as low phase noise 

12
 . This high power light

is then frequency doubled in a magnesium doped periodically poled lithium niobate crystal

(MgO:PPLN or PPLN), see Fig.  3.24 .

Figure 3.24. Drawing of PPLN crystal. Each channel contains periodic
poling. The poling spacing varies to operate across a wider wavelength range.
Image from MSHG1064-1.0-20 datasheet.

The periodic poling of the crystal substrate is generated by applying a large alternating

electric field to the crystal as it is grown. This periodic structure is necessary for a non-

linear process known as quasiphase matching. With an appropriately chosen poling period,

extremely high conversion efficiencies can be reached. Bulk PPLN crystals typically come

with several poling periods for coarse tuning to the desired wavelength and are typically

heated for fine tuning. A tuning chart of the PPLN crystal we use is included in Fig.  3.25 

to illustrate this tuning. With 10 W of 1079 nm light focused with a 12.5 cm lens 

13
 , 1150

mW of light at 540 nm is produced.

The 1079 nm laser is amplified and focused tightly into the PPLN crystal. This very

intense beam causes local heating in the crystal and may crack it if the crystal is moved

quickly or significantly. Alignment into the PPLN crystal should be done at low power and

very carefully. Any tweaking at high power should be minuscule if done at all. We have an

old damaged PPLN crystal with the smaller 0.5 mm channel width that was cracked while
11

 ↑ We actually purchased this fiber amplifier shortly after Toptica purchased Azurlight systems (I got quotes
from Azurlight and bought from Toptica). So, technically it is a Toptica amplifier.
12

 ↑ The manufacturer has tested that a 1 kHz seed is not broadened after amplification.
13

 ↑ Antypas noted in [ 21 ] that a tighter focus produces more second harmonic light, but leads to instabilities
on the output power likely due to the Green-Induced IR absorption effect (GRIIRA).
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Figure 3.25. Optimal wavelength for second harmonic conversion as a func-
tion of temperature for the five PPLN channels. Image from MSHG1064-1.0-20
datasheet.

being used in this manner. We have since switched to the 1 mm channel width, but care must

still be taken. To do the alignment, work at low intensities and roughly align the tip-tilt/xyz

positioner so that the majority of the 1079 nm beam transmits through the crystal with

minimal beam distortion. A small amount of green light should be seen if the crystal has

been heated to an appropriate temperature. The chart in Fig.  3.25 is a good place to start

when looking for a temperature. The optimal temperature is quite dependent on wavelength,

so if you switch from one hyperfine transition to the next, the crystal temperature would need

to be tuned for optimal conversion efficiency. Once the beam is aligned and the temperature

is set, the power of the laser can be increased and the beam profile should be viewed by

picking off a small portion. Here the 1079 nm and 540 nm beam shapes should be checked.

The 1079 nm beams comes out of a fiber, so it should have a great beam shape. Since

the laser can cause local heating, a small temperature tune down may be necessary at high

powers.
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3.8 Conclusion

This chapter described the atomic beam apparatus and accompanying lasers that we use

to prepare the cesium atoms, excite the transitions of interest, and then detect excited atoms.

Then we discussed techniques used to build and stabilize diode lasers to atomic transitions

or Fabry-Perot cavities. Finally, the technique for quantifying the atomic spin polarization

(〈m〉) and the technique for frequency doubling the 1079 nm laser is discussed. We have

used these techniques for several measurements which will be discussed through the rest of

this dissertation.
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4. MEASUREMENTS OF HYPERFINE COUPLING

CONSTANTS IN CESIUM

4.1 Introduction

One of the goals of our group is to perform precision measurements to help advance

understanding of the weak force interaction. Both the weak Hamiltonian and the hyperfine

interaction are sensitive to the electronic wave-function near the nucleus. Ginges and Volotka

[ 46 ] have proposed a method to calculate lower ns state hyperfine splittings using high

precision measurements of higher ns1/2 and np1/2 states. High precision measurements of

these high ns1/2 and np1/2 levels aid in the understanding of the electronic wave-function

near the nucleus and ultimately the relationship between Epnc and the weak charge of the

nucleus, Qw.

This motivation, along with availability of laser sources, led to multiple measurements

of hyperfine coupling constants. These hyperfine coupling constant measurements were pre-

formed on the 8p1/2 and 8p3/2 states (discussed first) as well as on the 12s, 13s, 11d3/2, and

11d5/2 states (discussed second). The J = 1/2 states are pertinent to the calculations on

electronic wave-function near the nucleus and the J 6= 1/2 are measured due to their close

wavelength to J = 1/2 states.

4.2 Theory

The experiment to measure the 8p1/2 and 8p3/2 hyperfine coupling constants consists of

atomic beam spectroscopy with detection of cascaded fluorescence. The 6s → 8p1/2 transition

is illustrated in Fig.  4.1 . In Fig.  4.1 , the hyperfine structure is depicted for both the excited

8p1/2 state and for the ground state, 6s. For the electron angular momentum of J = 1/2,

two hyperfine states exist with total, nuclear and electron, angular momentum F = 3 or 4.

The splitting between these F=3 and F=4 states depends on the strength of the magnetic

dipole moment of the 133Cs nucleus. For J = 3/2, higher order effects such as the electric

quadrupole moment of the nucleus also affects the hyperfine spacings. The Hamiltonian that

describes these interactions is, [ 47 ,  48 ]

71



Figure 4.1. Energy level diagram depicting the 6s, F = 3, 4 → 8p1/2, F ′ = 3, 4 transition.

Hdipole = AI · J, Hquadrupole = B
3(I · J)2 + 3

2I · J − I(I + 1)J(J + 1)
2I(2I − 1)J(2J − 1) (4.1)

where J is the electron’s total angular momentum and I is the nucleus’ angular momentum.

A and B are the magnetic dipole and electric quadruple constants.

The energy shift due to the hyperfine interaction is,

∆Ehfs = 1
2AK + B

3
2K(K + 1) − 2I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1) (4.2)

where,

K = F (F + 1) − I(I + 1) − J(J + 1) (4.3)
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.

For the 8p1/2 state, the energy splitting between 8p1/2, F ′ = 3 and 8p1/2, F ′ = 4 is

∆Ehfs = 4A The 8p3/2 state contains four lines due to the four possible values for the

total angular momenta, F’. The 8p3/2 state is illustrated in Fig.  4.2 . The individual energy

spacings for the 8p3/2, F ′ = 2, 3, 4, 5 states are more complicated than that of the 8p1/2 due

to the inclusion of the electric quadrupole effect and are calculated using equation  4.2 .

Figure 4.2. Energy level diagram depicting the 8p3/2, F ′ = 2, 3, 4, 5 states.

The limiting factor in the uncertainty of these measurements was the linewidth of the

individual transitions. Broader lines are more difficult to determine the center of and lines

can be less resolvable if they are close enough together. For the 8p1/2 and 8p3/2 experiments,

the transition linewidth was most affected by the divergence of the atomic beam. The

atomic beam is generated in a vacuum chamber and the driving laser beam intersects the

atomic beam at a right angle to reduce the Doppler broadening. The atoms are housed in

a heated oven and are effused through narrow capillaries. After the capillaries, the atomic

beam is further collimated by parallel glass microscope coverslips that are spaced by glass

microscope slides. The geometry of the nozzle assembly and the cover slip collimator define

the divergence of the atomic beam and directly impact the observed linewidth. Residual

Doppler broadening due to the unwanted divergence of the atomic beam is approximately

[ 43 ],

∆ω = k · v. (4.4)

Here k is the wave vector of the laser beam and v is the velocity of the atomic beam. With

a 40 mrad divergence estimated from the geometry of the collimator, the observed linewidth
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of 26 to 27 MHz is in excellent agreement with the estimate of broadening due to the nozzle

geometry, 27.7 MHz width for 〈v〉 =270 m/s Cs beam where 〈v〉 is the average atomic velocity.

Other smaller broadening mechanisms include the laser linewidth, transit-time broadening,

collisional broadening, Zeeman broadening, and Stark broadening. Transit time broadening

occurs due to the finite time of the interaction between the fast atomic beam through the

narrow laser beam. In this experimental geometry, the transit-time broadening is estimated

to be less than 20 kHz. Collisional broadening occurs when atoms collide with one another.

We operate in a vacuum of 5 × 10−6 Torr and with a fairly well collimated atomic beam.

Collisions are quite infrequent and do not significantly contribute to the linewidth of the

transition. We mitigate the broadening and line shifts due to the Stark effect by operating

much lower than the saturating power of the transition and by varying the laser power to

extrapolate back to zero power. Finally, the Zeeman shifts and broadening are studied and

determined to be negligible when biasing magnetic fields are used to cancel out external

fields.

A critical component for these hyperfine coupling constant measurements is the frequency

comb laser source we share with Prof. Wiener’s group, see Fig.  4.3 . This laser source is

a mode locked erbium doped femtosecond fiber laser. Many coherent modes of light are

oscillating inside of the laser resonator. This produces an ultrashort pulse of light that is

emitted with a repetition rate of approximately 250 MHz. In the frequency domain, this

pulse train represents many different optical frequencies that are spaced by the repetition

rate. This signal looks much like an upturned comb hence the name, frequency comb laser.

When the repetition rate and offset frequency of the mode locked laser are stabilized, the

comb of light that it produces becomes a valuable tool for spectroscopy, optical clocks, and

many other areas of study.

Along with fluorescence, we measure the absolute frequency of the driving laser to resolve

the line center of each transition. We measure this frequency by beating our laser against the

previously discussed frequency comb laser source. The frequency comb’s center wavelength

is 1560 nm. This output is frequency doubled to 780 nm and then spectrally broadened

through four-wave mixing in a highly nonlinear photonic crystal fiber. Prior to spectral

broadening, the comb width is a few tens of nanometers. After broadening, the comb spans
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over an octave, 500 to 1050 nm. The comb is self-referenced and is stabilized to a low phase

noise GPS conditioned reference. The repetition rate is νrep = 250 MHz and the offset is

νoffset = 40 MHz. The absolute frequency of an individual comb line is,

ν = Nνrep + νoffset (4.5)

and the absolute frequency of a laser beat against the comb is,

νlaser = Nνrep + νoffset ± νbeat. (4.6)

The ±νbeat accounts for beating from above or below the nearest comb tooth. By measuring

the frequency of our laser to better than half the repetition rate with a wavemeter, we

determine the comb tooth number, N. The sign of the beat frequency can be determined

by viewing the beat note as the laser frequency is tuned higher or lower on a spectrum

analyzer. For instance if the laser frequency and beat note are both increasing, then the

laser is above and moving away from the nearest tooth. The comb tooth number (N) can

also be determined by varying the repetition rate of the comb and observing how much the

beat note changes. This technique was not preferable since it requires someone to run back

and forth between labs several times. With the comb tooth number, repetition rate, offset

frequency, and beat frequency, the absolute frequency of the beating laser can be determined.

The experiments to measure the hyperfine coupling constants of the 8p, 12s, 13s, and

11d states comprised of measuring the absolute frequency of the driving laser while detecting

fluorescence from the excited atoms in either a vapor cell or in an atomic beam. Fluorescence

versus frequency spectra are recorded and fit with appropriate lineshapes to determine the

center frequency of each line.

4.3 8p hyperfine measurements

The hyperfine coupling constant measurements were completed and reported separately.

The 12s1/2, 13s1/2, and 11d3/2,5/2 measurements were completed first in a vapor cell and
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Figure 4.3. a) Frquency comb laser source control electronics b) Frequency
comb laser source

then the 8p1/2 and 8p3/2 were completed later in an atomic beam. The 12s1/2, 13s1/2, and

11d3/2,5/4 measurements were completed in a vapor cell since the two-photon transition is

much weaker and the signal was Doppler-free using retro reflected beams. The 8p1/2 and

8p3/2 measurements were driven with a single photon and in this case an atomic beam is

preferable since an atomic beam produces less broadening.

The experimental configuration for the 8p1/2 and 8p3/2 hyperfine coupling constant mea-

surements are as follows, see Fig  4.4 . 3.5 W of 778 nm light is generated in a commercial

ECDL and tapered amplifer unit and is focused into a lithium tri-borate crystal (LBO) in

a single pass configuration to generate second harmonic light at 388 to 389 nm (170 µW)

to excite the electric dipole transition. This doubled light is chopped and directed into a

vacuum chamber, through an atomic beam and is retro-reflected to reduce Doppler shifts.

The cascaded fluorescence is detected from primarily the 6p1/2 and 6p3/2 excited states using

a silicon photo detector filtered with a 700 nm long pass filter to reduce scattered light.

The fluorescence is amplified in a homemade transimpedence amplifier with 50 MOhm of

transimpedence gain. This amplified signal is then demodulated in a lock-in amplifier at

the chopped frequency. The output of the lock-in amplifer is digitized in an analog to dig-

ital converter. Concurrently, a portion of the 778 nm light is beat against the frequency
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Figure 4.4. Experimental configuration for the 8p1/2 and 8p3/2 hyperfine
spectroscopy. The lithium tri-borate crystal used for frequency doubling is
labeled LBO. The fine red dotted section includes the fluorescence detection
and magnetic field canceling coils. The coarse green dotted section illustrates
the frequency measurement and stabilization.

comb laser (FCL) and another portion is measured with a wavemeter. The combination of

these measurements yields precise absolute frequency measurements limited by the observed

linewidth of the transition. The center frequency of the atomic resonance is fit and has an

uncertainty in range of 12-28 kHz. We sweep the laser by utilizing an analog optical phase

lock loop to stabilize the fundamental laser offset from the nearest comb tooth. The offset

frequency driving the OPLL is varied to sweep the laser across the desired transition. Offset

phase locking the ECDL to the frequency comb imposes the inherent stability of the comb

onto the laser and can significantly reduce the linewidth of the ECDL  

1
 . In this configuration,

the laser linewidth does not significantly increase the linewidth of the transition.

We collect data in the following manner. After the temperature of the oven and nozzle

have adequately stabilized to produce a consistent atomic beam density, the signal generator

frequency is set to control the offset beatnote. The system pauses for a time 2τ , where

τ = 100 ms is the time constant of the lock-in amplifier. One hundred voltage samples are

then collected using a 16-bit analog-to-digital converter (ADC) at a rate of one kHz, and
1

 ↑ The shared comb has approximately 65 kHz of linewidth near the fundamental comb frequency. This
linewidth can be viewed on the CEO beat monitor.
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are averaged and recorded. Ten sets of 100 voltage samples are collected. This protocol

reduces correlation among the ten different data sets. The average and standard error of the

ten voltage sets are then computed and recorded. The frequency of the signal generator is

measured with a frequency counter and the beat signal itself is measured with a spectrum

anaylzer. Both of these frequencies are recorded. Then the signal generator is advanced

to the next frequency. We collect a spectrum by stepping up and then back down through

the optical transition and carefully search for drifts in the atomic beam density. A scan

across the spectrum in both directions takes between four and six minutes, depending on the

frequency width of the scan. We collect 15 to 20 spectra for each transition and fit the entire

scan (both up and down-scans together). With these 15 to 20 individual fits, we determine

the mean center frequency for each transition.

We separately measure and record the absorption spectrum of each of the hyperfine

components 6s, F → 8p1/2, F ′, where F = 3, 4 (F ′ = 3, 4) is the total angular momentum

of the ground 6s (excited 8p1/2) state. We show a single spectrum of the 6s, F = 3 →

8p1/2, F ′ = 3 line, as a representative sample, in Fig.  4.5a . The hyperfine lines for the

6s, F = 3(4) → 8p3/2, F ′ = 2, 3, 4(3, 4, 5) transitions are plotted in Fig.  4.5b ( 4.5c ).

(a) Hyperfine spectrum for
the 6s, F = 3 → 8p1/2, F ′ =
3 transition.

(b) Hyperfine spectrum ex-
cited from the 6s, F = 3
ground state → 8p3/2, F ′ =
2, 3, 4.

(c) Hyperfine spectrum ex-
cited from the 6s, F = 4
ground state → 8p3/2, F ′ =
3, 4, 5.

Figure 4.5. Three representative hyperfine spectra for the 8p1/2 and 8p3/2
states. Each figure contains the measured fluorescence spectra and fit (above)
and the associated residuals (below).

The spectrum shows the fluorescence signal (lock-in amplifier output) versus the mea-

sured beat frequency between the fundamental (778 nm) laser and the nearest comb tooth of
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the frequency comb laser. The spectra are fit to a Voigt profile using a least-squares fitting

algorithm. The fitting parameters include the amplitude, Gaussian and Lorentzian width,

and center frequency of the peak, and a sloping baseline. The gently (< 1% change) sloping

baseline is produced by scattered light, and is present even in the absence of the atomic

beam.

The spectra here illustrates the fluorescence detected from the electric dipole transition

excited by the second harmonic generated light versus the beat frequency between the comb

and the fundamental laser frequency. Since we drive the transition with the second harmonic

light and measure the laser frequency with the fundamental light, a frequency change in the

fundamental light results in twice the change in the second harmonic. Due to this, the atomic

linewidth is twice the plotted linewidth in Fig.  4.5 . As stated above, the linewidth is in

excellent agreement with estimated atomic beam divergence. Other broadening mechanisms

are negligible and the natural linewidth is much narrower than the observed transition, 0.42

MHz for 8p1/2 and 0.5 MHz for 8p3/2. These linewidths are calculated from [  49 ]. The

residuals are shown in the lower plots of Fig.  4.5 . This rms value of the residual is ∼0.5%

of the peak signal level, and is primarily due to thermal noise in the feedback resistor of

the transimpedence amplifier. This Johnson−Nyquist noise scales as the square root of the

resistance. Reducing the transimpedance amplifier resistance would reduce the noise, but

also decrease the signal-to-noise ratio. The only modification to approach the shot noise

limit would be to increase the fluorescence signal itself.

To account for ac Stark shifts in our measurement, we measure each transition at multiple

different laser intensities. With these measurements, we extrapolate the center frequency

back to zero laser power for each line. We measure the hyperfine splitting of the 8p1/2 state

while driving transitions from either the 6s F = 4 or 6s F = 3 hyperfine ground states.

The two values are 42.936(9) MHz and 42.926(15) MHz, respectively. A weighted average

of these two is computed and reported in Table  4.1 . The uncertainty in this measurement

is largely dominated by the line center fitting due to the width of the transition, 12 to 28

kHz. We also include the error due to the frequency comb uncertainty (<0.5 kHz), and the

Zeeman effect (<0.2 kHz). These errors are added in quadrature and are reported as the

total uncertainty in the determination of the line center frequencies in Table  4.2 . We also

79



report previous measurements and theoretical calculations of A. Our value agrees well with

previous measurements, but with significantly reduced uncertainty, and with calculations by

[ 50 ] in Table  4.1 . Other theoretical calculations appear to differ, but do not report an error.

Table 4.1. Summary of results for the hyperfine coupling constant A, in MHz,
of the 8p1/2 level. The numbers in parentheses following each value are the 1σ
standard error of the mean in the least significant digits.

A MHz Source
Experiment

42.97 (10) Tai et al., 1973 [  51 ]
42.92 (25) Cataliotti et al., 1996 [  52 ]
42.95 (25) Liu & Baird, 2000 [ 53 ]
42.933 (8) This work

Theory
42.43 Safronova et al., 1999 [  54 ]
42.32 Tang et al., 2019 [  55 ]
42 (1) Sahoo et al., 2021 [  56 ]

42.95 (9) fit method, Grunefeld et al., 2019 [  50 ]
42.93 (7) ratio method, Grunefeld et al., 2019 [  50 ]

Table 4.2. Sources of error and the uncertainty resulting from each, for the
determinations of line centers for each of the spectra. We add the errors in
quadrature to obtain the total uncertainty. *Beam misalignment affects only
the absolute frequency determinations.

Source σint(kHz)
Fit, σν 12-28
FCL frequency, νFLC < 0.5
Zeeman < 0.2
Beam misalignment* 150

Total Uncertainty, σtotal
int 12-28

The hyperfine splittings of the 8p3/2 state are also measured. This measurement is quite

similar to the 8p1/2 state, but differ in a few notable ways. The first of which is that three

individual lines are driven from each ground state since we drive ∆F = 0 or ±1 transitions.
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This allows us to fit multiple peaks in a single scan. Another difference is that the lines

are close to one another and are not completely resolved. This increases the uncertainty in

the fitted center frequency compared to the 8p1/2 spectra. The last important difference is

that the transition amplitude is larger by a factor of 5 to 10. This allows us to have better

signal-to-noise ratios for the low laser power spectra. Other than these differences, the data

collection and analysis is the same as the 8p1/2.

We observed no change to the hyperfine spacings of the 8p3/2 state when applying a one

Gauss magnetic field and power dependence spectra show a slight laser power dependence

(200 to 450 Hz/µW). With these hyperfine spacings, we calculate the hyperfine coupling

constants and report them in Table  4.3 .

In this work, we report a new, high precision measurement of the hyperfine coupling

constant A =42.933(8) MHz for the 8p1/2 state in atomic cesium-133. This determination

is supplemental to theoretical efforts toward high precision calculations of electronic wave

functions. These wave functions are critical in determining the dependence of EP NC on

the weak charge, Qw. We were generously loaned the atomic beam apparatus and critical

equipment by one of our collaborators, Dr. Carol Tanner, that is similar to the beam

apparatus used in her group’s high precision studies of hyperfine coupling constants [ 47 ,  57 ,

 58 ]. With this vacuum chamber, we were able to quickly generate an atomic beam necessary

for this experiment. The measurement of the hyperfine coupling constants for the 8p1/2 and

8p3/2 levels has been published in Physical Review A [  59 ].
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Table 4.3. Summary of results for the hyperfine coupling constants A, B,
and C, in MHz, of the 8p3/2 level. The numbers in parentheses following each
value are the 1σ standard error of the mean in the least significant digits.

A MHz B MHz C MHz Source
Experiment
7.626 (5) -0.049 (42) - Bucka et al., 1962 [  60 ]
7.58 (1) -0.14 (5) - Faist et al., 1964 [ 61 ]
7.626 (5) -0.090 ( 24) - Rydberg et al., 1972 [  62 ]

7.644 (25) - - Abele et al., 1975 [  63 ]
7.42 (6) 0.14 (29) - Bayram et al., 2014 [  64 ]
7.609 (8) -0.005 (40) 0.016(4) This work, 2022
Theory

7.58 (5) -0.046 (35) - Barbey et al., 1962 [  65 ]
7.27 - - Safronova et al., 1999 [  54 ]
7.44 - - Tang et al., 2019 [  55 ]

4.4 12s, 13s, and 11d hyperfine measurements

To aid in electronic structure calculations, we also measured the hyperfine splittings of

two higher ns1/2 states, n = 12 and 13. The two-photon transition relies on coupling between

opposite parity states to facilitate the transition and is much weaker than the electric dipole

transition driving the 6s → 8p transitions. Due to this much weaker signal, we excite the

transition in a heated vapor cell and collect fluorescence with a photomultiplier tube (PMT,

type R928). The PMT has a much higher sensitivity (3.5×104 A/W) than the photodetector

described above and the heated vapor cell produces a much denser cesium cloud than an

atomic beam. These two methods for increasing the signal are not without consequence.

The collisional broadening in the vapor cell, which is negligible in a atomic beam, becomes

significant and must be accounted for. We reduce systematic effects of collisional broadening

by measuring the center frequencies as a function of collision rate, controlled by vapor cell

temperature, and extrapolate back to zero collision rate. In this measurement, we drive a

two-photon transition with an amplified ECDL in a MOPA configuration. Since the two
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photons were of equal frequency (from the same laser source), we excite only ∆F = 0

transitions. Laser frequency determination is identical to the 8p measurements, but the

frequency stabilization technique differs. This is due to the decreased optical power at the

two-photon wavelength in the frequency comb output. The photonic crystal fiber responsible

for the spectral broadening via four-wave mixing is optimized for green light and not red (670

nm). The amount of frequency comb power at 670 nm is about 30 dB lower than the power

near the center frequency (where the ECDL was phase locked for the 8p measurements).

Figure 4.6. Energy level diagram showing the hyperfine components (not
to scale) of the 6s and ns states of cesium, where n = 12 or 13. ν33 (ν44)
indicates the frequency of the laser when resonant with the F = 3 → F ′ = 3
(F = 4 → F ′ = 4) two-photon transition. Ecg is the energy of the 12s or 13s
state in the absence of the hyperfine interaction (that is, the center-of-gravity
of the state).

The experimental setup is as follows and is illustrated in Fig.  4.8 . The commercial diode

laser (ECDL) and tapered amplifier generate 180-300 mW of narrow-band cw light, which

is focused into a heated cesium vapor cell. After passing through the cell, the laser light is

reflected back on itself for Doppler-free two photon excitation. We collect the fluorescence

light (green box) emitted from the final 6p3/2 → 6s step of the decay, which we measure

with a photomultiplier tube (PMT). We use a Faraday isolator to separate the retro-reflected

beam from the input beam, while maintaining the linear polarization of the excitation beam

in the vapor cell. We stabilize the laser frequency (blue box), offset with a broadband electro-
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Figure 4.7. Energy level diagram showing the hyperfine components of the
11d3/2 and 11d5/2 states in cesium. Not shown here is the ground state from
which we excite the cesium atoms. Note that the 11d5/2 state is inverted,
with the level energy decreasing with increasing F ′. The energy spacings of
the 11d3/2 state are not drawn to scale with the energy spacings of the 11d5/2
state, nor is the fine structure interval between the 11d3/2 and 11d5/2 states to
scale.

optic modulator (EOM), to the transmission peak of a temperature-stabilized etalon. We

measure the frequency (red box) of the beat note between the laser light and a single tooth

of a frequency-comb laser (FCL) for absolute calibration of the laser frequency.

To measure the transition amplitude as a function of laser frequency, we very slowly ramp

the laser frequency by tuning the EOM driving frequency. The frequency is swept back and

forth several times to eliminate shifts in the center frequency. Since the sideband of the

laser is stabilized to the etalon, the carrier signal sweeps with the driving frequency. We do

not rely on the etalon for frequency measurement (only for short term frequency stability),

slight shifts in the etalon frequency over the course of a scan do not affect the fitted center

frequency. Unmodulated laser light is beat against the nearest tooth of the frequency comb

source. This beat frequency is recorded continuously during the scan. The fluorescence from

the 6p3/2 → 6s decay is imaged by a lens onto the photomultiplier tube photocathode. This

signal is amplified in the PMT and then digitized using a 16-bit analog-to-digital converter.

We collect 6 to 9 spectra similar to the one shown in Fig.  4.9 for each hyperfine line and fit
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the center frequencies using a Lorentzian function. From these fitted center frequencies, we

calculate the mean and standard error.

Figure 4.9. (a) An example of a two-photon spectrum of a single hyperfine
line, consisting of the normalized fluorescence signal versus the beat frequency
νbeat. These data represent the 6s, F = 4 → 13s, F ′ = 4 line. Each data point
is the signal collected in a 100 ms window as the laser frequency is scanned
continuously over the 14 MHz span. The solid green line is the result of a
least-squares fit of a Lorentzian function to the data. (b) The residuals of the
fitted function.

To test for effects of collisional broadening, ac Stark shift, and possible Zeeman shifts,

we measure the linecenter frequencies at various vapor cell temperatures, laser powers, and

applied magnetic fields. Under a one Gauss applied field, there are no observable Zeeman

shifts within the resolution of our measurement. We reduce the magnetic field around the

vapor cell to a level below 10 mGauss by applying a weak magnetic field using three pairs

of magnetic field coils. This helps reduce the effect of Earth’s magnetic field and stray

fields originating from the optical table. Collisional broadening and ac Stark shifts both

affect the linewidth of the transition as well as linecenter frequency. We record linecenter

frequencies in a grid of various vapor pressures and laser powers. We then fit this surface

with a plane and use the zero laser power and vapor pressure intercept to determine the

linecenter frequencies. This process was repeated on the opposite hyperfine level of the

ground state to excite the opposite ns hyperfine state (Note only ∆F = 0 transitions are

allowed). From these frequencies and the defined ground state splitting, the hyperfine spacing
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for the 12s and 13s states are calculated. The resultant hyperfine coupling constants, A, are

reported in Table  ?? . These values are in excellent agreement with theoretical calculations

[ 50 ,  55 ] and previous experimental results [  66 ,  67 ]. Using the fitted center frequencies and the

comb tooth number, the absolute frequency is calculated and reported in Table  ?? . These

linecenter frequencies agree with and are more precise that previous measurements [  24 ].

Table 4.4. Summary of results for the hyperfine coupling constants Ahfs of
the 12s, 13s, 11d3/2 and 11d5/2 states of 133Cs. The numbers in parentheses fol-
lowing each value are the 1σ standard error of the mean in the least significant
digits. The techniques employed in Refs. [  68 ] and [  69 ] yielded the magnitude
of Ahfs, but not its sign. Therefore, we have listed these results preceded by
the ’±’ sign.

Ahfs (MHz)
State Experiment Theory

This work Prior exp. Ref. [  55 ] Ref. [ 50 ]
12s 26.318 (15) 26.31 (10) [  66 ] 26.28 26.30 (2)
13s 18.431 (10) 18.40 (11) [  67 ] – 18.42 (1)

11d3/2 +1.0530 (69) ±1.055 (15) [  68 ] 1.06 –
±1.05 (4) [  69 ]

11d5/2 −0.21 (6) ±0.24 (6) [  68 ] −0.142 –

Due to the proximity of the 11d3/2 and 11d5/2 lines to the 12s and 13s lines, we decided

to measure the hyperfine coupling constants as well as the absolute frequency of these lines.

These lines differ in that we can scan across most of the hyperfine lines in a single scan.

These lines are difficult to resolve in our experimental configuration and the accuracy of

the hyperfine coupling constant determination is reduced. Nevertheless, we measured the

hyperfine coupling constants in a similar manner as the 12s and 13s states except that we

fit multiple peaks in a single scan. We correct for power and collisional broadening as before

and report coupling constants in Table  ?? and absolute frequencies in Table  ?? .

This work, published in PRA [ 70 ], reports new high precision values for the hyperfine

coupling constants for the 12s and 13s states in atomic cesium. This work is in support of

theoretical calculations of the electronic wave function that has implications on the relation-

ship between the parity nonconserving moment and the weak charge of the nucleus. This
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Table 4.5. Summary of results for the state energies Ecg/h of the 12s, 13s,
11d3/2, and 11d5/2 states of 133Cs. The numbers in parentheses following each
value are the 1σ standard error of the mean in the least significant digits.

Ecg/h (MHz)
Line this work Prior exp. [  24 ]

6s → 12s 889 448 351.098 (29) 889 448 348.5 (60)
6s → 13s 900 450 284.724 (20) 900 450 282.0 (60)

6s → 11d3/2 896 269 630.698 (65) 896 269 624.7 (60)
6s → 11d5/2 896 365 856.56 (24) 896 365 852.6 (60)

work also includes high precision determinations of the linecenter frequencies of the 12s, 13s,

11d3/2, and 11d5/2 states.
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5. STATIC STARK SHIFT OF THE 7s 2S1/2 LEVEL IN ATOMIC

CESIUM

5.1 Motivation

In this chapter, we will discuss the measurement of the static Stark shift of the 7s 2S1/2

level. The 2019 letter by Toh et al. [ 71 ] pointed out a discrepancy, 2.8 σ, between values

of the Stark vector polarizability when using a sum-over-states approach to determine α

combined with the measured α/β ratio and a calculated value of Mhf
1 combined with a

measured value of Mhf
1 /β. Contention between the two techniques used to evaluate the

Stark vector polarizability casts doubt on each technique’s precision. An accurate value for

the Stark vector polarizability is critical in determining the value for Qw. Any of these four

quantities (α, α/β, Mhf
1 , and Mhf

1 /β) could be errant. Since atomic theorists are pretty

confident in the calculated value of Mhf
1 to the 0.1% level [ 72 ], we turned our attention

towards a ratio measurement of α/β and the static Stark shift measurement. We are also

interested in measuring the Mhf
1 /β ratio, but that is another thesis.

Recent high precision theoretical calculations of reduced electric dipole matrix elements

pointed towards a discrepancy between the calculated and the measured value for the

〈7s||r||7p1/2〉 and 〈7s||r||7p3/2〉 matrix elements [ 73 – 75 ]. The determination of these reduced

E1 matrix elements was derived from a measurement of the static Stark polarizability of the

7s state by Bennett [ 76 ]. Here we report a new high precision measurement that differs from

that of Bennett and somewhat reduces the discrepancy between the two techniques used for

determining β.

5.2 Measurement of the static polarizability of the 7s state in cesium

The application of an external electric field shifts the energy of a state according to,

∆U = −1
2αE2, (5.1)

where α is the static polarizability of the state. To help distinguish this polarizability from

the other two mentioned previously, we will add a subscript 7s. We determine α7s of the
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7s state of atomic cesium by measuring the relative frequency shift of the 6s 2S1/2 and the

7s 2S1/2 states,

∆ν = α6S
− α7S

4π E2. (5.2)

This equation shows a frequency shift of the 6s → 7s transition that varies quadratically with

the applied electric field due to the difference in polarizabilities of the excited and ground

state, α6s − α7s. When combined with precise measurements of the static polarizability of

the ground state α6s [ 77 ,  78 ], ∆ν can be evaluated to determine α7S
. This frequency shift

varies linearly with the applied electric field squared and can be reported as a slope,

k = ∆ν

E2 = α6S
− α7S

4π . (5.3)

This static polarizability can be calculated through a sum-over-states method [ 79 ],

α7s = 1
3
∑

n

[
|〈7s||r||np1/2〉|2

Enp1/2 − E7s

+ |〈7s||r||np3/2〉|2

Enp3/2 − E7s

]
. (5.4)

Using this equation, we can see that a large contribution to α7s will come from the 7p

levels since they are much closer in frequency than other p levels. When we combine a high

precision measurement of α7s with 〈7s||r||n′p1/2〉 and 〈7s||r||n′p3/2〉 matrix elements where

n′ 6= 7, we are then able to calculate our 〈7s||r||7p1/2〉 and 〈7s||r||7p3/2〉 matrix elements.

Since the largest contribution to α7s comes from these 〈7s||r||7pJ〉 matrix elements, this result

is a precise technique for evaluating 〈7s||r||7pJ〉. This technique also requires a calculation of

the ratio of the 〈7s||r||7pJ〉 matrix elements. Our theory friends are very good at calculating

this ratio to the 0.014% level [  73 – 75 ,  80 ].

5.3 Experimental configuration

This experiment was conducted with an atomic beam of cesium that was generated in

an effusive oven. The atomic beam is further collimated using a 1 mm aperture 30 cm after

the oven nozzle. The atomic beam travels along the vacuum chamber where the atoms are

prepared into a single hyperfine state, excited with a 2-photon transition, and then detected

on the previously emptied hyperfine state via a cycling transition.
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Figure 5.1. Experimental configuration for the 7s Stark shift measurement.
We stabilize the frequency of the 1079 nm laser (ECDL) light to the frequency
comb laser (FCL) using an optical phase-lock loop and sweep the offset by
varying the reference oscillator driving the local oscillator (LO) port of the
mixer (M). The following elements are labeled as; BP - band pass filter, PD
- photodetector, BS - beam splitter, LPF - low pass filter, SAS - saturated
absorption spectroscopy cell, 2PS - two photon spectroscopy in a vapor cell,
QWP - quarter wave plate, DET - detection laser, HF - hyperfine laser. The
dashed section illustrates the vacuum chamber, which contains the field plates
and detection system.

The experimental configuration of this measurement is illustrated in Fig.  5.1 . Here a

1079 nm ECDL with 50 mW of power is split for frequency stabilization and for amplification

in a ytterbium doped fiber amplifier (YDFA). The amplified light (10 W) is directed into the

vacuum chamber where it intersects an atomic beam of cesium. This amplified light is

nearly perpendicular to the atomic beam and is retro-reflected so that both the forward and

return beams overlap at the atomic beam. The reflected beam is then safely dumped. The

crossing angle between the two unfocused beams is ≈10 mrad. A quarter waveplate before the

vacuum chamber generates circular polarization and the second quarter waveplate changes

the handedness of the polarization for the return beam. This forces the cesium atoms to only

absorb a single photon from each direction and not two photons from a single direction [  43 ].

This further reduces the Doppler width of the transition. The observed transition is primarily

broadened due to the transition lifetime (3.3 MHz) and residual Doppler broadening from

the crossing angle, resulting in an observed linewidth of ≈ 3.8 MHz. Transit time broadening

is estimated to be 250 kHz and collisional effects are expected to be negligible due to the

high vacuum, 5 × 10−7 Torr.

91



To DC Stark shift the 7s state, we apply a large electric field around the interaction

region (where the atomic and laser beams intersect). To generate this precise and large

electric field, we constructed a parallel plate structure using two unprotected gold-coated 2"

square mirrors. The mirrors are spaced by three precision ceramic spacers and these three

spacers give a field plate spacing of 8.169 (1) mm. We apply up to 5 kV to the plates and

measure this voltage with a precision voltage divider. This divided voltage is continuously

monitored during the experiment using a freshly calibrated 7.5 digit digital multimeter. The

contributions to the electric field uncertainty are listed in Table  5.1 

Table 5.1. Contribution to the uncertainty in the applied electric field. This
uncertainty (times two) constitutes the systematic error of the differential po-
larizability. *We apply up to 5 kV.

Source of error relative size (ppm)
Spacer length 122
Divider ratio 50

Divider nonlinearity 5/kV*
Voltage measurement 22
Divider temperature 10

Plate flatness 10
Total 137

The picked-off portion of the 1079 nm beam is combined and beat with a commercial

frequency comb laser source. The frequency of the 1079 nm laser is stabilized in an optical-

phase-lock loop to a tooth of the frequency comb laser source. The carrier-envelope offset

frequency and repetition rate of the frequency comb are locked to a GPS conditioned reference

(Endrun Meridian II). The OPLL is completed by mixing down the beat note and low pass

filtering to generate an error signal to control the laser current. Although the comb teeth

have an extremely narrow linewidth relative to one another, the absolute linewidth of the

comb teeth is around 65 kHz. 

1
 

In this measurement, we minimize the stray magnetic fields in the interaction region by

observing the Raman spectra while only hyperfine pumping. Under no magnetic field, there
1

 ↑ The comb teeth beating together generate a beatnote that is so narrow that we don’t have the proper
equipment to measure it, a phase noise analyzer. The overall linewidth of the comb can be measured by
itself! The output of the f-2f interferometer shows the CEO and the phase noise of the comb.
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are no Zeeman shifts and the individual magnetic Zeeman sublevels should be degenerate.

The sublevels are often not quite degenerate and show up as broadening or even individual

peaks. This Raman spectra and three orthogonal magnetic field coils are used to reduce the

stray magnetic field to below 3 mG. The lower limit on stray field reduction is due to transit

time broadening in the Raman transition. The resolution for the magnetic field control is

finer than the small differences we see in the Raman spectra. For the ground state and PNC

experiments, we use a larger beam size to further reduce stray fields below this 3 mG value.

Atoms are excited in the large electric field and the change in population is recorded

as fluorescence from the cycling transition in the detection region. Spectra are collected

by stepping the reference oscillator that is used to down mix the beat signal. After each

frequency step, we wait 50 ms for the signal to stabilize and collect 240 voltage measurements

at a rate of 480 Hz. The bandwidth of the detection signal is around 550 Hz. The individual

voltage measurements are mostly, but not completely uncorrelated. Since we wait around 25

time constants, we ensure that the detection signal has stabilized after a frequency step. This

eliminates apparent frequency shifts due to scanning speed. During each step, the power

of the fiber amplifier is recorded as well as the beat frequency between the laser and the

frequency comb. The reference oscillator is stepped up and down 15 MHz in 250 kHz steps

for slightly over one minute. We then change the applied DC electric field and repeat the

measurement. Sample scans are shown in Fig.  5.2 . Here we show the fluorescence signal

as the laser offset frequency is stepped relative to the frequency comb. The offset from the

comb is labeled νbeat. Since this is a two photon transition, the shift in center frequency of

the 6s → 7s transition is twice of the shift measured in the 1079 nm laser frequency.

We collect ten scans at each electric field. The primary source of noise is the Johnson-

Nyquist noise in the large transimpedance gain (20 MΩ) of the photodiode amplifier. Each

scan is fit to a Voigt profile with the following fitting parameters: offset, amplitude, center

frequency, Gaussian width, and Lorentzian width. The line centers for the six electric fields

are then fit against the electric field squared to determine the slope (polarizability) for this

transition. This procedure is repeated ten times for the F = 3 transition. The fit for the

6s, F = 3 → 7s, F = 3 spectra is shown is Fig.  5.3 . These measurements are repeated

fifteen times for the 6s, F = 4 → 7s, F = 4 transition. The fluorescence peaks for the F = 4
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Figure 5.2. Single spectral scans of the 6s F = 3 → 7s F = 3 transition for
each electric field value applied. The frequency νbeat is the frequency difference
between the ECDL and the frequency comb tooth.

transition are smaller by a factor of 3-4. The average uncertainty for an individual peak

center fit for the F = 3 transition is 10 kHz and for the F = 4 transition is 15 kHz. The

linewidth and amplitudes do not change as the applied electric field is varied. There is no

difference in the fitted slope when the direction of the applied electric field is reversed.

The weighted average of the fitted slopes for the 6s, F = 3 → 7s, F = 3 transition is

kF =3 = 0.72267(23)stat(20)sysHz(V/cm)−2 where the stat and the sys indicate the statistical

and the systematic uncertainty. The weighted average for the 6s, F = 4 → 7s, F = 4 was

kF =4 = 0.72229(32)stat(20)sysHz(V/cm)−2. The average Stark shift slope is k = (7kF =3 +

9kF =4)/16, where 7 and 9 are the degeneracies of the F = 3 and F = 4 states. We combine the

systematic uncertainties in quadrature and have a final value for k = 0.72246(29)Hz(V/cm)−2

with a relative uncertainty of 0.04%.
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Figure 5.3. Fitted peak frequency relative to nearest comb tooth vs. applied
electric field squared. Plot a) shows each of the 10 fitted centers averaged for
each electric field for all of the runs on the 6s F = 3 → 7s F = 3 transition.
Plot b) shows the residuals of those linear fits.

Our result and previous determinations of k and the polarizability α7s are listed in Table

 5.2 . These bold entries are calculated using a weighted average of the two most precise values

for the ground state polarizability [ 77 ,  78 ]. Values above the double line are experimental

determinations and the values below the double line are theoretical. This result is ≈0.5%

smaller that that of [  76 ], a 4.7σ deviation.

Even though our value significantly deviates from that of Bennett, we have confidence in

our measurement for several good reasons. We have the benefit of working with symmetric,

near lifetime limited lineshapes whose amplitude does not change with DC electric field. The

work of Bennett [ 76 ] utilized the Stark transition and a power-build-up cavity to excite this

transition at 539.5 nm. Their lineshapes varied significantly as a function of the DC electric

field and were not symmetric. It is difficult to find the line center of asymmetric lineshapes.
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Also, we have the luxury of a frequency comb laser source to which we could stabilize our

laser. Bennett did not. At the time of their measurement in 1999, Ted Hänsch and Jan Hall

hadn’t invented the frequency comb yet. Bennett had to stabilize their laser to a Fabry-Perot

cavity and take back-and-forth measurements to subtract the sizable cavity drift.

Table 5.2. Determinations of the static polarizability of the 7s state. Calcu-
lated values are bold. Experimental determinations are above the double line
and theoretical are below. See [ 81 ] on converting units of polarizabilities.

k (Hz(V/cm)−2) α7s (a3
0)

This work 0.72246(29) 6207.9(2.4)

Bennett et al. [ 76 ] 0.7262(8) 6238(6)

Watts et al. [ 82 ] 0.7103(24) 6111(21)
Hoffnagle et al. [ 83 ] 0.7803(480) 6673 (386)

Van Wijngaarden et al. [ 84 ] 0.7140 6140
Zhou et al. [ 85 ] 0.7042 6061
Blundell et al. [ 31 ] 0.72572 6234.1
Bouchiat et al. [ 86 ] 0.7225 6208

5.4 α7s results

We use Eqn.  5.4 to calculate the contributions of each reduced E1 matrix element to

the DC Stark polarizability of the 7s state, α7s. We use the experimental matrix elements

〈7s||r||6pJ〉 [ 87 ,  88 ] and the theoretical matrix elements from [  18 ] for the higher npj states,

8 ≤ n ≤ 12. All of these contributions are added up and subtracted from the measured value

and the remaining portion is due solely to the 〈7s||r||7pJ〉 matrix elements. The relative

amplitude of the 〈7s||r||7p3/2〉 and 〈7s||r||7p1/2〉 elements are then used to calculate these

elements. A summary of this calculation is shown in Table  5.3 . The contributions to α7s are

in the 5th column (headed α7s (a3
0)) and its uncertainty in the 6th column (headed δα7s (a3

0)).

Here we see the contributions to α7s from all of the npJ where J 6= 7. This contribution

make up less than 10% of the total α7s polarizability. This small contribution allows a
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precision determination of the 〈7s||r||7pJ〉 elements from a precision determination of α7s.

The results are 〈7s||r||7p1/2〉 = 10.303(3) a0, where a0 is the Bohr radius, and 〈7s||r||7p3/2〉 =

14.311 (3) a0. Our results for these matrix elements and previous determinations are listed

in Table  5.4 . The matrix elements from this work agree well with theoretical determinations

and disagree with the experimental result of Bennett [  76 ] and Watts [  82 ].

Table 5.3. E1 matrix elements, eigenstate energies, and contributions to the
Stark polarizability α7s. This table shows our sum-over-states calculation of
the Stark polarizability α7s. E1 elements for n = 6 and 7 are experimental
values, as discussed in the text. aRefs. [  87 ,  88 ], bRefs. [  77 ,  78 ,  89 – 97 ], cRef. [  76 ]
and this work, dRef. [ 98 ]. Theory values of E1 elements 8 ≤ n ≤ 12 are from
Ref. [  75 ], while those for n = 13 and 14 are from Ref. [  49 ]. State energies
(rounded here to two decimal places after the point) are found in NIST ta-
bles [  99 ].

n d (a0) δd(%) Enpj (cm−1) α7s (a3
0) δα7s (a3

0)
〈7s||r||np1/2〉

6 −4.249a 0.094 11178.27 −179.52 0.34
7 - - 21765.35 - -
8 0.9263 0.30 25708.84 8.75 0.05
9 0.3414 0.41 27637.00 0.94 0.01
10 0.1848 0.48 28726.81 0.25 0.002
11 0.1200 0.62 29403.42 0.10 0.001
12 0.0858 0.61 29852.68 0.05 0.001
13 0.069 1.05 30165.67 0.03 0.001
14 0.056 1.04 30392.87 0.02 0.0004

〈7s||r||np3/2〉
6 −6.489a 0.077 11732.31 −452.80 0.70
7 - - 21946.39 - -
8 1.6355 0.15 25791.51 26.97 0.08
9 0.6703 0.21 27681.68 3.60 0.02
10 0.3876 0.19 28753.68 1.08 0.004
11 0.2635 0.31 29420.82 0.47 0.003
12 0.1952 0.32 29864.54 0.25 0.002
13 0.158 3.7 30174.18 0.16 0.012
14 0.129 3.9 30399.16 0.10 0.008

αn>14,j=1/2 = 0.02 0.02
αn>14,j=3/2 = 0.10 0.10

αn6=7 = −589.34 0.79

97



Table 5.4. Comparison of matrix elements 〈7s||r||7p1/2〉 and 〈7s||r||7p3/2〉.
Experimental determinations are above the double line and theoretical are be-
low. *These matrix elements were derived from the measurements of Bennett
et al. [  76 ] and reported in Ref. [  100 ].

〈7s||r||7p1/2〉 (a3
0) 〈7s||r||7p3/2〉 (a3

0)

This work 10.303 (3) 14.311 (3)
*Bennett et al. [ 76 ] 10.325 (5) 14.344 (7)

Tran Tan et al. [ 75 ] 10.292 (6) 14.297 (10)
Roberts et al. [ 73 ,  74 ] 10.297 (23) 14.303 (33)
Safronova et al. [ 80 ] 10.310 (40) 14.323 (61)
Dzuba et al. [ 101 ] 10.285 (31) 14.286 (43)

5.5 α and β results

Since the 2019 letter by Toh, we have gained new higher precision reduced E1 matrix

elements for 8 ≤ n ≤ 12 and better values for the tail and valence core contributions to

α [ 18 ,  19 ]. We use these values and the result of this work to update the sum-over-states

calculation of the Stark scalar polarizability α in [  71 ]. This sum-over-states calculation is

tabulated in Table  5.5 .

The motivation for this Stark shift measurement was to help solve the discrepancy be-

tween the two techniques for evaluating β. See Figure  5.4 for a quick summary of these

determinations. The first method uses a theoretical value for the hyperfine changing compo-

nent of the magnetic dipole interaction, Mhf
1 [ 72 ] and a measurement of Mhf

1 /β [ 35 ] to find

βM1 = 26.957 (51) a3
0, the subscript on β indicates the technique with which it is evaluated.

βM1 showed significant disagreement with the second method for evaluating β. This tech-

nique was used in [  71 ] to find βα = 27.139 (42) a3
0. With our updated matrix elements from

[ 18 ,  19 ] and this work, we calculate βα = 27.043 (36) a3
0. The reduction in βα comes from

(1) the new Stark shift measurement (∆β = −0.031 a3
0), (2) the improved theoretical values

for E1 matrix elements for 8 ≤ n ≤ 12 [ 18 ] (∆β = −0.048 a3
0), and the improved value of the
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valence-core and tail (n > 12) contributions to the polarizability [ 19 ] (∆β = −0.018 a3
0). A

weighted average of this result, βα, with βM1 yields β = 27.014 (30) a3
0

Since these two determinations originate from entirely unique sets of measurements and

theoretical determinations, correlation among these two values is minimal and the uncer-

tainty is the quadrature sum of the individual uncertainties. This assumption also relies on

the fact that β is independent of hyperfine levels. This is valid at the current measurement

precision [ 102 ].

Tran Tan and Derevianko also calculate α exclusively with their theoretical reduced E1

matrix element and combine this result with [  45 ] to get β = 26.887 (38) a3
0. Although de-

terminations of β are more consistent, further investigations are necessary to resolve the

remaining discrepancy. We propose new measurements of Mhf
1 /β and measurement of re-

duced E1 matrix elements 〈6s||r||7pJ〉. The motivation for the former is that it has only been

measured to a high precision once [  35 ]. For the latter, the 〈6s||r||7pJ〉 matrix elements vary

significantly from the calculated values of [  18 ]. See Figure  5.5 . For all but the 〈6s||r||7pJ〉

moments, their calculations agree nicely with experiment. A new measurement here could

resolve this discrepancy.

In this Stark shift measurement, we apply a large dc electric field to the atoms, and

drive a Doppler-free two-photon 6s 2S1/2 → 7s 2S1/2 transition using the output of a 1079

nm external cavity diode laser (ECDL). This transition has a symmetric, near-lifetime-

limited lineshape that does not vary with the applied dc electric field. This results in a

simple accurate line center determination that is critical to measuring high precision Stark

polarizabilities. We measure the shift in the transition frequency as a function of the applied

electric field and determine the static polarizability. We use this static polarizability to

reevaluate the reduced E1 matrix elements 〈7s||r||7pJ〉. From these elements we recalculate

α and ultimately β.

This measurement was completed in the Fall of 2024. For this measurement, Aidan

Jacobsen aided in the construction of the electric field plates as well as with writing the

Labview program for data collection. Aidan also helped with constructing and evaluating

the high precision voltage divider that we used. This work has been published in Physical

Review Letters [  106 ].
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Figure 5.4. Comparison of previous determinations of β [ 19 ,  54 ,  72 ,  76 ,  100 ,
 101 ,  103 – 105 ] with the result of this work. These determinations are identi-
fied by the first three letters of the first author’s name and the abbreviated
publication year. The blue values to the left of the dotted line are determined
using the sum-over-states technique. The orange values to the right of the
dotted line are determined by the M1hf technique. The pink horizontal line
indicates our recommended value, a weighted average of the two most precise
determinations from each technique. The two values are highlighted with an
asterisk.
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Figure 5.5. Comparison of theoretical and experimental E1 moments
〈npj||r||ms〉 for m, n = 6 and 7 and j = 1/2 and 3/2. The experimental
values are shown at zero deviation, with the blue error bars showing their rel-
ative uncertainty (ranging from 0.1% - 0.2%). The calculated results are those
of Tran Tan and Derevianko [ 75 ] (red, �).
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6. A NEW MEASUREMENT OF THE RATIO α/β

The motivation for a new α/β measurement is similar to that of the measurement of the dc

Stark shift of the 7s state. After completion of the Stark shift measurement, the difference

between the two determinations yielding the vector Stark transition polarizability, β, was

reduced. This difference is βα − βM1 = ∆β = 0.086(62), where the number in parenthesis is

the quadrature sum of the two individual uncertainties. Although reduced, this deviation is

still too large for comfort due to its importance in calculating Qw. Looking to rectify this

discrepancy, we chose to measure the ratio of the scalar to vector transition polarizability,

α/β. This measurement was actually started first. Due to two fiber amplifier failures and

having to share the vacuum system and Raman lasers with the ground state measurement,

this experiment took much longer than anticipated.

6.1 Two-pathway coherent control

To measure the ratio α/β, we chose a two-color coherent control technique to interfere the

relatively small Stark amplitude with a larger two-photon transition. When driving atoms

via two distinct coherent transitions, the total transition rate is proportional to

W ∝
∣∣∣A2p + ASt

∣∣∣2 ,

where A2p and ASt are the transition amplitudes for the two-photon and Stark transitions

respectively. If coherence is maintained, the rate can be simplified to,

W ∝ |A2p|2 + |ASt|2 +
(
A2pA∗

St + A∗
2pASt

)
. (6.1)

Here we have two dc terms for the direct two-photon and Stark transitions and we have an

interference term that can be modulated by varying the phase of the two transitions. Next,

we have the two-photon transition amplitude,

A2p = α̃εω · εωδF,F ′δm,m′e−2iφω

. (6.2)
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α̃ is the scalar polarizability for the two-photon transition. It is quite similar to the Stark

vector polarizability, but it should not be confused with α. εω is the electric field of the laser

with frequency ω. δ is the Kronecker delta function forcing ∆F = 0 and ∆m = 0 transitions.

Finally, we have a phase for the electric field of the laser, e−2iφω . The Stark amplitude is as

follows,

ASt =
{
[αE · ε2ωδF,F ′ + iβ

(
E × ε2ω

)
z

CF ′,m′

F,m ]δm,m′ (6.3)

+[±iβ
(
E × ε2ω

)
x

− β
(
E × ε2ω

)
y
]CF ′,m′

F,m δm,m′±1

}
e−iφ2ω

.

This amplitude contains the scalar and vector transition polarizabilities, α and β. Here we

see the relationship between the scalar term and the applied electric field, E · ε, and the

vector term and the applied electric field, E × ε. We also have terms that are proportional

to Clebsch-Gordon coefficients, CF ′,m′

F,m . These components are dependent on the magnetic

Zeeman sublevel. To interfere the scalar and vector Stark terms, we must select a field ge-

ometry that allows only the scalar or vector Stark transition. Since we will interfere with the

two-photon transition, the transition must not change the magnetic Zeeman sublevel, hence

∆m = 0. With a magnetic field along the laser propagation axis, ~B ‖ ~k, this condition is

satisfied. Then the interference could be switched from α to β by changing the angle between

the laser polarization and the applied electric field. This simplifies the Stark interference

term to,

ASt = Eε2ω
[
α cos θ + iβCF ′,m′

F,m sin θ
]

e−iφ2ω

, (6.4)

where θ is the angle between the laser polarization and the applied electric field. From here

we can vary the optical phase of the 2ω field relative to the ω field while switching between

α (parallel) and β (perpendicular) to get the following ratio,

R = α

βCF ′,m′

F,m

. (6.5)

This ratio can be further simplified by calculating the C coefficient. This coefficient is

proportional to the average m quantum number 〈m〉. Since m ranges from −F to F , some
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state preparation is required to observe the β interference. We must also determine the value

of 〈m〉 if we wish to measure α/β. The following ratio is what we measure when extracting

α/β.

R = 4
〈m〉

α

β
, (6.6)

The above ratio assumes the polarization of the laser is perfectly aligned either perpen-

dicular or parallel to the static applied electric field. In the presence of imperfect polariza-

tion, this ratio is modified. We write this imperfect polarization of the 540 nm (green) as

ε2ω = ŷεy +x̂ (ε′
x + iε′′

x), where εy represents the "good" polarization, ε′
x is the slight rotation

of the polarization from the intended direction, and ε′′
x represents a slight circular polariza-

tion. Even with a new α-BBO Glan-laser polarizer 

1
 carefully aligned to the electric field

axis, the effect of these slight imperfections in the polarization purity can cause significant

modifications to the measured ratio on the 0.1% level. The following equation quantifies the

effect of the imperfect polarization of the 540 nm beam on the observed ratio.

R± = 4
|〈m〉|

α

β

1 ∓ 4
|〈m〉|

α

β

ε′′
x

εy

+
(

4
|〈m〉|

α

β

)2
(ε′′

x

εy

)2

− 1
2

(
ε′

x

εy

)2
 (6.7)

The first correction term is due to the circular component of the green beam polarization

and the second term is due to both the circular polarization and the misalignment. Here

we have added a ± symbol to indicate the magnetic Zeeman pumping direction. Under a

Zeeman reversal, the second term changes sign and would average out. The third term does

not average out and must be minimized. Since 4α/(〈m〉β) ≈ 13, the ratios ε′
x/εy and ε′′

x/εy

must be kept small. We ensure this by minimizing birefringence in the optical view ports

and by carefully rotating the polarization of the green beam to align with the electric field.

We adjust ε′
x/εy and ε′′

x/εy to be less than 1 × 10−3 and 5 × 10−4 respectively, making these

corrections negligibly small. To extract the value of R we average successive measurements

of R+ and R−.
1

 ↑ If you order a Glan-laser polarizer from overseas, ask the manufacture to not place the word laser on the
outside of the box. US customs will hold it, delay delivery by a week, and require documentation from
Purdue to release it.
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6.2 Experimental configuration

Here we will discuss the experimental configuration, which is illustrated in Figure  6.1 . We

drive the 6s → 7s transition with a laser that is resonant with the two-photon wavelength at

1079 nm. A portion of the 1079 nm light is used to stabilize its frequency to a tunable Fabry-

Perot cavity. The rest of the 1079 nm light is greatly amplified in a rare earth element fiber

amplifier up to 10 W of optical power. This intense beam is then focused into a periodically

poled lithium niobate crystal for frequency doubling, second harmonic generation (SHG).

This SHG light is at double the frequency and is phase coherent with the 1079 nm light.

The 540 nm and 1079 nm light is separated and the 540 nm beam is phase shifted in a

Mach-Zehnder interferometer. The beams are recombined, well polarized using an α-BBO

polarizer, and then weakly focused on the atomic beam. A portion, 4%, of the amplified 1079

nm doubled passed through a heated vapor cell to reduce Doppler broadening. Fluorescence

through the side of the vapor cell passes through a band pass filter centered on 852 nm and

is collected on a PMT, Hamamatsu type R928. A 600 Hz dither is added to the Fabry-

Perot length to modulate the laser frequency. The PMT output is demodulated in a lock-in

amplifier to generate an error signal to stabilize the Fabry-Perot to the 6s, F = 3 → 7s, F = 3

transition.

The atomic beam is generated using an effusive oven and the beam geometry is collimated

by 1 cm long stainless steel capillary tubes packed in a 8 mm high 12 mm wide opening.

After collimation, the atomic beam is then pumped into the most extreme magnetic Zeeman

sublevel (m = ±3) of the 6s, F = 3 hyperfine ground state.

Once pumped, the atomic beam intersects the laser beams in the interaction region.

Here an electric field is applied by 8 copper electrodes that are evenly spaced in a ring

concentric to the laser propagation axis. Each electrode is 4.8 mm in diameter and the

radius of the ring is 18 mm. The electrodes are biased and switched with a homemade high

voltage switching circuit composed of several high voltage solid state relays. This circuit

varies the bias voltages on the rods to produce an electric field in any of the eight possible

directions. These potentials have been modeled and plots are show in Figure  6.2 . We find

that the electric field (430 V/cm is uniform to 20 mV/cm in the small interaction region
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where the atomic beam and weakly focused laser beams overlap. To compare the scalar and

vector Stark transition polarizability, we switch the applied electric field instead of relying

on a rotation on the laser polarization. This reduces uncertainties in the polarization due to

birefringence and in the 540 nm and 1079 nm beam overlap.

Atoms that undergo the 6s, F = 3 → 7s, F = 3 transition may decay down to the 6s, F =

4 level. These atoms are then driven in a cycling transition 20 cm after the interaction region.

This cycling transition scatters 100-200 photons for each F = 4 atom and around 10-20 are

collected on a large area photodiode. This photocurrent is amplified in a transimpedance

amplifier of gain 20 MΩ. This output voltage is then read by a lock-in amplifier. To vary

the phase of the Stark transition relative to the two-photon transition, we linearly ramp

(12 s) a window mounted galvanometer while slightly modulating (150 Hz) it. The 540 nm

beam passes through the galvanometer mounted window twice when the beams are split

inside of the Mach-Zehnder interferometer. This is to reduce the lateral shift of the green

beam relative to the 1079 nm beam. As the window is ramped, the optical phase of the

two laser beams scan at Ω =3.8 Hz. The fast 150 Hz modulation is then used as a reference

to the lock-in amplifier to mix down this interference signal to Ω. The output of the lock-

in is an ac modulation at the phase scanning frequency, Ω, that is proportional to the

Stark→two-photon interference. We record and digitally bandpass filter the lock-in output.

The bandpass filter is centered on the phase modulation frequency, Ω, and reduces noise

caused by phase fluctuations due to differing paths of the 1079 nm and 540 nm beams. For

a single ramp cycle, we scan through >36 cycles. We show an example scan in Figure  6.3 

where the blue trace is a scan of α interference and the orange trace is β interference. The

inset to the right highlights the phase shift between the α transition and the β transition.

The difference between these two scans is that the electric field was parallel to the green

laser polarization for the α interference ane perpendicular for the β interference.

The lock-in amplifier output is internally low pass filtered to reduce noise at 150 Hz. This

reduces the maximum rate at which we can scan the phase. We also must compensate for

the switch between α and β scans by removing the first 2.6 s of the collected scan. We cut

the resultant 36 cycle data set into 12 sections to avoid the effect of small phase fluctuations

that are present during long scans. We fit each section with a sinusoid to determine the
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amplitude. We record the average and standard error of the 12 fitted values in a single

scan. The α and β interference amplitudes are combined to produce the ratio shown in

Equation  6.6 . After each scan of α and β, we change the pumping direction by reversing

the handedness of the circularly polarized Zeeman beam that pumps the magnetic sublevels.

This allows measurements of R+ and R−. We make 160 ratio measurements (80 of R+ and

80 of R−). We combine these measurements to attain a final ratio and uncertainty.

6.3 〈m〉

As mentioned previously, we actually measure the quantity (4/〈m〉)(α/β) since the α

amplitude is independent of the magnetic Zeeman sublevel. This requires a precise deter-

mination of the average Zeeman sublevel, 〈m〉, when extracting the value α/β. For this

measurement, we have greatly overhauled the optical pumping and state detection tech-

niques. We have improved the pumping so that fewer than 1 atom in 2000 are in the wrong

hyperfine level and around 99% of the pumped atoms are in the most extreme magnetic

Zeeman sublevel. Although pretty good, the pumping is not perfect. Here we will discuss

the technique for evaluating the pumping efficiency and how we determine 〈m〉.

The general technique for determining 〈m〉 is described in Section  3.6.2 . Here we will

discuss the specifics and what was done to reduce systematic errors. For state detection,

we drive a ∆m = 0 Raman transition from the 6s, F = 3 to the 6s, F = 4 ground state

using Raman beams that are circularly polarized with the same handedness. We average 15

spectra and compare the observed peak areas to the calculated peak amplitudes. To avoid

saturation effects, we operate at low laser powers where the peak amplitude grows linearly

with the square of the Rabi frequency. We excite 1% to 1.5% of the atoms. The peak areas

are determined by fitting the peak locations to determine the center frequencies. Once the

peak centers are located, the data is spliced to extract single peaks. All peak splices have

the same width, are centered on the peaks, and the width of the splice coincides with the

peak to peak spacing to ensure the edges of the splice are far from the peak centers. The

vertical offset is determined by averaging the first and last few data points in the peak splice.

The offset is then subtracted from the peak amplitudes and the resultant data is integrated.
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We compare these amplitudes without Zeeman pumping but with hyperfine pumping. The

observed peak amplitudes agree with calculations to better than 7%. This is likely due to

population redistribution during hyperfine pumping, but it is difficult to be certain and we

must use this 7% when calculating the uncertainty in our technique. Although 7% sounds

terrible for a precision measurement, not all hope is lost. If all of the atoms are in the

m = ±3 states, then it doesn’t really matter how well we know the peak amplitudes. All of

the atoms are there and 〈m〉 = ±3. This is almost true since our pumping is so good. If

only a few atoms are in the m = 2 and m = 1 states, then only a small correction is needed.

With this technique, we can determine 〈m〉 to better than 0.1%.

So, we are able to pump atoms into the most extreme Zeeman sublevel of the F = 3

hyperfine level. Don’t we want to measure α/β on both the 6s, F = 3 → 7s, F = 3 and

6s, F = 4 → 7s, F = 4 transitions? Ideally, yes we would like to do that, but the Raman

detection is more complicated on the F = 4 level for our field geometry. Since there are no

m = ±4 magnetic sublevels in the F = 3 hyperfine level, we can’t drive a ∆m = 0 transition

to observe the population in the F = 4 level. This detection scheme would then have to

be modified to drive ∆m = ±2 transitions for state detection. Unfortunately, ∆m = ±2

transitions are 50-300 times weaker that ∆m = 0 transitions. Driving ∆m = ±2 transitions

requires the two Raman beams to be circularly polarized with opposite handedness. In

practice, it is not feasible to generate a high enough polarization extinction ratio between

these two crossed circularly polarized beams to reduce the ∆m = 0 transitions to smaller

than 0.1% of the ∆m = ±2. Our solution was to look to atomic theory.

Our theory friends [ 102 ] postulated a higher order Stark term, the tensor polarizability

γ. This term would produce slight difference in the α/β ratio between measurements on

the different hyperfine levels. The recent work of Xiao et al. [ 102 ], showed that this tensor

term due to hyperfine coupling is around an order of magnitude smaller than the current

measurement uncertainty. Since we can’t measure the pumping efficiency to the 0.1% level

and any differences between the ratio should be on the 0.01% level, we didn’t measure α/β

on the 6s, F = 4 → 7s, F = 4 transition. The only other measurement near this precision

was by Weiman’s group and they only measured on the 6s, F = 3 → 7s, F = 3 transition

as well [ 45 ]. It would be interesting to search for a difference and observe this γ term,
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but this would require over an order of magnitude improvement in signal-to-noise in this

measurement geometry.

6.4 Systematic contributions to the α/β ratio

For a precision measurement examining weak transitions, careful consideration of other

allowed transitions is critical. We select magnetic and electric field geometries as well as

laser polarization to only drive the interactions under study. Other transitions can still

cause systemic errors and we reduce their effects by careful alignment of magnetic and

electric fields. For instance, we wish to drive the α and β Stark transitions. By aligning

the magnetic field along the laser propagation direction, the M1 interaction primarily drives

∆m = ±1 magnetic dipole transitions that do not interfere with the 2-photon transition

since we use two photons of equal frequency. Then the only systematic contribution due

to the M1 transition comes from stray magnetic fields that are not along k̂. We null the

stray magnetic field relative to the applied field in the interaction region to around a part

in a thousand. Based on the strength of the magnetic dipole transition (M1/β ≈ 29.5 V/cm

[ 4 ,  35 ]) and the strength of the applied electric field (430 V/cm), we reduce the systematic

effects of the M1 transition to 80 ppm.

To align the laser polarization to the static electric field, we apply an electric field rotated

by ±45◦ from the laser polarization. By comparing the ratio of the ±45◦ interference ampli-

tudes, we can align the laser polarization along the electric field to 1 mrad. This alignment

error produces an uncertainty of 90 ppm in the measured ratio. We measure the polarization

extinction ratio of two crossed polarizers before and after the chamber to be 2.5×10−7. This

indicates an uncertainty in ε′′
x to be less than 0.5 × 10−3εy, where ε′′

x indicate the degree of

circular polarization. The circular polarization introduces an uncertainty on the measured

α/β ratio of 40 ppm. A summary of these main uncertainties and more is included in Table

 6.1 .

To search for systematic errors due to the applied electric field, we measure the α/β ratio

with the laser polarization rotated from vertical to horizontal as well as with the electric

field rotated by 180◦. The ratio of α/β should be the same for 0◦-90◦ ratio measurements as
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Table 6.1. Sources and magnitudes of uncertainty for the determination of
the ratio α/β. The primary sources of uncertainty originate from the fit and
the determination of 〈m〉. We add the errors in quadrature to obtain the total
uncertainty.

source of uncertainty σ (ppm)

〈m〉 670

fit 610

ε′
x/εy (polarization alignment) 90

ε′′
x/εy(circular polarization) 44

M1 80

electric field 50

Total 920

it is for 180◦-270◦ ratio measurements. This angle is the angle between the applied electric

field and vertical. We also perform ratio measurement where the field is inverted back and

forth, so 180◦-0◦ ratio measurements. This ratio should be one since it compares α to α.

Deviation here would indicate an asymmetric electric field. We see no significant deviation

for these measurement except for when we rotated the laser polarization. The deviation due

to rotation was 0.15% and could be caused by a slight ellipticity in the electrode apparatus,

or by the measurement statistics. This will be discussed further in the next section.

6.5 Results

The relative uncertainty of 160 scans (80 R+ averaged with 80 R−) is typically around

0.15−0.2%. We believe deviations in this number are caused by building noises and vibrations

that affect the phase coherence in the 540 nm and 1079 nm beams. The average reduced chi

squared (χ2
red) value among the data sets is 1.18. For any value of χ2

red > 1, we multiply the

uncertainty by the square root of χ2
red[ 107 ]. The primary uncertainty in the measurement
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was due to shot noise in the 2-photon transition and relative phase fluctuations of the 540

nm and 1079 nm beams.

We searched for effects of ac Stark shifts on the α/β ratio by varying the intensity of

the 540 nm and 1079 nm beams. No dependence was observed while varying the 540 nm

beam power, but a slight dependence was noticed when varying the 1079 nm beam power.

See Figure  6.5 . We determine the α/β ratio by extrapolating the power dependent ratios

back to zero intensity. We conduct experiments with the laser polarization vertically and

horizontally aligned and see a slight deviation between the two results, α/β = −9.894 (9) for

vertical polarization and α/β = −9.909(7) for horizontal. This deviation could be caused by

a slight ellipticity of the electrode apparatus and/or by measurement statistics. Since their

uncertainties are similar and the unknown cause of the deviation, we report the unweighted

average of the horizontal and vertical determinations as α/β = −9.902(6)stat(7)sys where

stat and sys represent the statistical and systematics uncertainties. This value agrees very

well with the value of Cho et al. [ 45 ], α/β = 9.905(11), but has slightly smaller uncertainty.

The primary contribution to the systematic uncertainty is due to the 〈m〉 determination.

Previous experimental (green points) and theoretical (blues points) determinations of

α/β are shown in Figure  6.6 . The right most portion of the figure is an expanded scale plot

of the two most precise measurements. We combine our result with that of Cho et al. [ 45 ]

using a weighted average to produce our recommended value, α/β = −9.903(6). The pink

line in the figure is our recommended value and the blue shaded region is its recommended

uncertainty.

Figure  6.6 is unfair to the theoretical calculations since they must calculate α and β

individually using a sum-over-states technique and then take the ratio. This is quite diffi-

cult since they depend on the same reduced matrix elements, but β has large amounts of

cancellation. Atomic theorists are good at calculating α and when we combine that with a

precision measurement of α/β, we have a much more precise value for β. When we combine

our value for the scalar transition polarizability from section  5.5 with the new recommended

value for α/β we get βα = 27.048(26) a3
0. The most precise value for βM1 = 26.957(51) a3

0

comes from a calculation of Mhf
1 [ 72 ], and a laboratory determination of the ratio Mhf

1 /β [ 35 ].

Figure  6.7 lists previous determinations of β using the sum-over-states approach (blue) and
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the Mhf
1 approach (green). The most precise value for βα and βM1 differ from one another

by βα − βM1 = 0.091(57) or about 1.6σ.

6.6 Conclusion

This precision measurement of α/β was conducted using a coherent control technique

to interfere a weak single photon transition with a much stronger two-photon transition.

This technique facilitated a continuously phase shifted interference signal that minimizes

uncertainties that would normally be present due to discrete phase shifts. We also further

improve on the work of Antypas [  21 ] and Wood [  20 ] in improving the optical pumping

efficiency and state read out precision. With this measurement, we confirm the results of

Cho et al.[ 45 ] and do not further reduce the deviation between the two determinations of β.

With the reduced uncertainty in our new value for βα, the relative deviation between βα and

βM1 increased from 1.4σ to 1.6σ. This indicates a need for further study of this deviation.

Our group is currently setting up a new measurement of the Mhf
1 /β ratio with a three color

coherent control technique that will allow interference measurements on all of the 6s → 7s

hyperfine transitions. This work was aided in part by Aidan Jacobsen who constructed the

〈m〉 reversal apparatus. This work has been published in Physical Review A [ 5 ].
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(a) (b) ∠E = 0◦

(c) ∠E = +90◦ (d) ∠E = +45◦

Figure 6.2. (a) Diagram illustrating the interaction region geometry and (b-
d) modeled electric potentials generated by the circular arrangement of eight
biased conducting rods. In (a) the large, orange arrow depicts the cesium beam
and the small, black arrow depicts the laser polarization. The laser propagates
into the page in each illustration (a-d). The rod assembly allows for rapid,
reproducible rotation of the static electric field (E) while the polarization (ε2ω)
remains fixed. The angle labeled in the figures (∠E) is specified relative to
vertical.
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Figure 6.3. Representative examples of the bandpass-filtered output of the
lock-in amplifier, showing the sinusoidal modulation vs. time, as the optical
phase difference ∆φ is scanned. Here atoms are prepared into the m = +3
Zeeman sublevel, so CF ′m′

F,m = −3/4. The larger (thin blue) trace demonstrates
the α interference with an electric field parallel to the static polarization and
smaller (thick orange trace) illustrates β interference. The inset plot (dotted
red section) is horizontally stretched to highlight the phase difference between
the α and β interference. This shift is consistent with a negative value for the
ratio of α/β.
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Figure 6.4. Raman spectra illustrating the effect of optical pumping of the
cesium atoms to the most extreme magnetic Zeeman sublevel. Here we plot
the detected population in the previously emptied hyperfine level versus the
difference in frequency between the Raman lasers, centered on the 9.192 GHz
ground state frequency. Atoms are pumped into the (a) m = −3 or (b) m = +3
Zeeman sublevel by driving a ∆m = −1 transition using the Zeeman laser for
(a) or a ∆m = +1 transition for (b). This reversal is facilitated by inserting or
removing a half-wave plate to change the handedness of the Zeeman beam from
right to left circularly polarized. The inset plot has been vertically stretched
to better illustrate the less extreme Zeeman sublevels.
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(a)

(b)

Figure 6.5. Ratio measurements plotted vs. the IR laser power exciting the
two-photon transition. The ratios are fitted to a straight line to determine
the zero intensity ratio. The red error bars in each plot show the average
uncertainty of the measured ratios (blue diamonds). Plot (a) shows the fitted
ratio when the polarization is vertical and (b) shows the fitted ratio when the
polarization is horizontal.
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Figure 6.6. Previous theoretical (left, blue) [  19 ,  31 ] and experimental (right,
green) [  45 ,  82 ,  83 ,  86 ] results of the ratio α/β. Theoretical results are a sum-
over-states calculations of α and β. Plot (a) includes all previous results and
plot (b) shows the two highest precision measurements on a finer scale. The
pink horizontal line indicates the weighted average of the present result and
that of Cho et al. [ 45 ], which we suggest as the recommended value, and the
blue shaded region indicates the recommended uncertainty.
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Figure 6.7. Illustrated here are previous determinations of β [ 19 ,  35 ,  54 ,  71 ,
 72 ,  101 ,  103 – 105 ] using the sum-over-state calculation of α and a measured
ratio of α/β (left, blue) and calculations of M1hf with a measured ratio of
M1hf/β (right, green). These determinations are identified by the first three
letters of the first author’s name and the abbreviated publication year. The
values to the left of ‘This Work’ use the Cho et al. [ 45 ] value for α/β. This
result uses a weighted average of the Cho et al. value and the measured value
in this work to determine β. The two values with an asterisk are the most
precise determinations of β from each technique.
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7. WORK TOWARDS A NEW PARITY VIOLATION

MEASUREMENT

In this chapter we will give an overview of the expected PNC experimental technique and

discuss the significant steps that have been taken towards a new measurement of EP NC/β.

Since 2018, we have constructed individual power build-up cavities for generating the nec-

essary laser fields for M1 reduction. We now have phase coherence between a two photon

transition using unequal photons and a single photon transition. We have also constructed

a field plate apparatus and a low noise switching circuit to bias these electrodes. We have

also significantly reduced the building noise by fixing the optical table floating system and

installing an additional vibration isolation damper on the turbo-molecular pump. There are

a few steps still to complete. Some refinement of the electric field plates may be necessary

after searching for systematic errors and we still need to construct the triple cavity system

needed for the three coherent fields. Finally, some details of which laser, combination of

lasers, or cavity will be locked to the 2-photon resonance. This last step will likely require

some trial and error after the triple power build-up cavity apparatus is constructed.

7.1 Coherent light with three fields

This section will detail the technique that will be implemented to produce three coherent

laser fields. Previously, the coherent control techniques utilized in the lab drove two-photon

transitions where the photons were each half of the excited state energy and had the same

polarization state [  2 – 4 ]. This technique relied on an intense beam at the fundamental (two-

photon) frequency to generate a second harmonic beam inside a nonlinear crystal and to

drive the fairly weak two-photon transition. This technique is limited in that it can only

drive ∆F = 0 transitions. We propose an alternative technique to drive the two-photon

transition with unequal photons, which would then permit ∆F = 0, ±1 transitions. This

technique is illustrated in Fig.  7.1 .
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We present a method with which to stabilize three mutually coherent ECDLs to two

Fabry-Perot cavities and an atomic transition. Our goals are coherence, absolute frequency

stability, and high power.

We choose to drive the two-photon transition with 852 nm and 1470 nm beams. The

852 nm light will be red detuned from the D2 line in cesium by ∼1 GHz. We already have

a resonant electro-optic phase modulator at 1 GHz, all of the necessary driving electronics,

laser, and saturated absorption spectroscopy elements. The light at 1470 nm is currently

being generated by a commercial ECDL which produces 50 mW of optical power. The 852

nm ECDL is a homemade Littrow type laser with ∼120 mW of optical power. Sum frequency

generation is used to generate 200 µW of light at 540 nm with these two sources. This light is

beat against a portion of the frequency doubled 540 nm light that has been frequency offset

in an acousto-optic modulator (driving frequency 80 MHz). This AOM driving frequency

is used as a reference in an OPLL to stabilize the beat note between the two 540 sources.

The error signal from the OPLL is used to stabilize the 1470 nm light such that the sum

frequency generated light and the frequency doubled light are phase coherent.

7.2 Power build-up cavity

The procedure we will implement to stabilize and amplify the light at 540 nm is as follows

and is depicted in Fig.  7.1 . We will amplify the light at 540 nm with a power build-up cavity

(PBC) placed inside the vacuum chamber. The PBC will be atypical in that there will be

no solid spacer between the mirrors to accommodate an atomic beam passing through the

center. To amplify the interference signal, we aim for a large cavity finesse (50 to 70k) and a

free spectral range of ∼500 MHz. This finesse will lead to an electric field build-up factor of

125 to 150, a critical amplification for observing the EP NC interference. To stabilize light to

such a narrow cavity resonance, a stable source at 1079 nm is necessary. We have purchased

a commercial ECDL with a linewidth specification of 50 kHz and a fast commercial servo

to stabilize the frequency. The frequency is stabilized and the linewidth is further narrowed

using the Pound-Drever-Hall (PDH) technique. The 1079 nm source is stabilized such that

the 540 nm light is resonant with the PBC. The PBC must be stabilized to the atomic
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resonance. First, we stabilize this PBC to a second stable invar cavity by PDH. This second

cavity is utilized due to the atypical nature of the high finesse cavity. Typically, high finesse

cavities incorporate many techniques to increase stability that are not feasible with our

geometric constraints. Without these features, our cavity transmission frequency will jump

around due to tiny mirror vibrations. By stabilizing this high finesse cavity to a lower finesse

cavity, these high frequency perturbations are dampened and produce a more stable lock to

the atomic resonance. The lower finesse invar cavity is stabilized such that the 1079 nm

light is resonant with the 6s → 7s two-photon frequency. We currently detect this by double

passing a portion of the amplified 1079 nm light through a heated vapor cell and collecting

fluorescence with a photomultiplier tube. This configuration only allows ∆F = 0 transitions

and we must switch to an unequal two-photon transition for ∆F = ±1 transitions. This is

possible since the bandwidth of the phase lock is very high (1.2 MHz) and the bandwidth of

the invar lock is quite low (<1 kHz).

Stray magnetic fields will allow M1 transitions that interfere with the EP NC and β tran-

sitions, with the same ∆m. Since the M1 transition is 20 000 times larger than EP NC , we

would need to cancel the stray fields in the interaction region to the 2 × 107 level to make

a 0.1 % measurement. Luckily, M1 transitions amplitudes are proportional to (~k × ε) and

a perfectly retroreflected beam would cancel this interaction. This perfect retroreflection is

mostly realized by coupling the beams into a very high finesse optical cavity. Thus we choose

to use intense standing waves for all three laser beams driving the 6s → 7s transition to avoid

excessively stringent stray magnetic field requirements. A simple cartoon of this geometry

is illustrated in Fig.  7.2 . We require that the 1470 nm and 852 nm beams be retroreflected

as well since this is an interference measurement. Simply retroreflecting the 540 nm beams

will not work since the phase matching condition, ~k852 + ~k1470 − ~k540 = 0 is not met for the

return beam. Here the double arrows in Fig.  7.2 indicate that the laser beams retroreflect

back on themselves. The cesium beam would them traverse the three laser fields along the

plane they generate. If the back reflector of each of these cavities has less than 100 ppm

of loss, then the stray fields need to be canceled to better that one part in two-thousand.

With a 10 G field, this equates to 5 mG. We are able to achieve such extinction ratios by

observing the broadening of the Raman spectra in the absence of an applied magnetic field.
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Mirrors with 100 ppm of loss are quite reasonable and even higher reflectivity mirrors would

result in more relaxed magnetic field cancellation. Three cavities are a significant cost in

terms of literal cost of mirror coatings, time spent stabilizing them, and physical size. Due

to the slight wavefront mismatch of the three different cavities, the modulation signal will

be reduced in size as the angle between the cavities is increased. See appendix  B . This

necessitates a tight geometry to minimize this effect.

1470

540

852

Cs

Figure 7.2. Simple geometry of the triple cavity

7.3 Procedure to measure EP NC/β

To measure EP NC/β, the PNC and vector Stark transition will be driven with a laser

field resonant with the single photon 6s → 7s transition at λ =540 nm. These transition

amplitudes will be interfered with the two-photon transition amplitude that is driven by

two other laser fields whose summed phase will be stabilized to the laser driving the single

photon transitions, Φ(t) = φ852 + φ1470 − φ540. We have shown that the three transitions

amplitudes will beat against one another when this relative phase is varied and it is this

technique with which we measure EP NC/β.

There are multiple techniques to vary the optical phase. Previously, our lab has used

a technique to interfere these weak transitions using a single intense beam and its second

harmonic. This guarantees phase coherence. Then the beams were split in a Mach-Zehnder

inferferometer where one of the beam paths was varied in length using a window mounted on

a galvanometer. This limited the length and linearity of the scan. The limited scan requires

the beat signal to be measured directly and fitted to a sine curve. The amplitudes of the sine
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curve are then recorded. This procedure requires several fitting parameters and it is difficult

to accurately determine the amplitude. A correction for the non-linearity of the scans is

required as well. This procedure can be circumvented using better control of the driving

field’s phase. When phase locking three sources, we may drive the phase locking electronics

with slightly varied frequencies. If we stabilize the 540 nm beam such that its frequency is

150 Hz away from the sum of 852 nm and 1470 nm frequencies, ν540 − ν852 − ν1470 ≈ 150 Hz,

then the weak transitions will beat against the two-photon transition at 150 Hz and will not

be limited in scan length or linearity. The primary benefit of this technique is that it allows

direct measurement of the interference signal by using a lock-in amplifier. A lock-in amplifier

can accurately mix down and filter the interference beat signal with the 150 Hz modulation

from the phase locking electronics. This 150 Hz modulation is used as the lock-in reference

and is easily derived by mixing a portion of each 80 MHz signal with a phase detector. These

80 MHz signals are used to offset a portion of the frequency doubled beam and to offset

phase lock the sum-frequency and frequency doubled beams. Instead of fitting sine curves,

the lock-in amplifier will measure and report the amplitude and phase of the interference

signal relative to the 150 Hz phase modulation.

To form the measurement, we will prepare the atoms in the proper hyperfine and magnetic

Zeeman sublevel as described in the optical pumping section. The atoms then interact with

the three laser fields driving the 6s → 7s transition. The Stark interaction requires a DC

electric field to be applied. To drive the Stark transition, we will center a pair of electric

field plates on the interaction region and vary the strength with an applied voltage. Atoms

that interact with the three laser fields decay back down to either the 6s F = 3 or 6s F = 4

ground state. Atoms that decay into the opposite hypefine level than the one they were

initially pumped are detected with a large area photo detector. This signal is amplified

in a low-noise homemade transimpedance amplifier circuit. The output of this circuit is

connected to a lock-in amplifier. As a reference to the lock-in amplifier, the two RF sources

from the phase locking setup are mixed down in a phase detector. This allows demodulation

at the beating frequency to determine the amplitude and phase relationship. The PNC

interaction and the Stark vector polarizability are 90 degrees out of phase and the observed
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combined interference varies in phase as the amplitude of the Stark transition is varied with

the applied electric field.

Weak interaction measurements suffer from systematic errors due to stray fields. We

reduce these by reversing electric and magnetic fields as well as initial m states to search

for and reduce systematic errors. After minimizing systematic errors, the measurement

proceeds by measuring the interference amplitude as a function of several different applied

electric fields. Since the two weak amplitudes add out of phase, the applied electric field

versus interference amplitude traces out a hyperbola whose vertex at zero electric field is

only the EP NC amplitude. Previously, our group has used this coherent control technique to

measure the ratio of the magnetic dipole moment to the vector Stark polarizability, M1/β

[ 4 ]. Interference curves were measured by varying electric fields and a hyperbolic curve was

traced out and fitted to determine the ratio M1/β. This curve is plotted in Fig.  7.3 . We will

measure EP NC/β using the same technique of varying the applied electric field to change the

strength of the vector Stark polarizability and trace out a hyperbola to determine the ratio,

EP NC/β. To account for ac Stark effects, we will measure EP NC/β at several different laser

intensities to extrapolate back to zero laser intensity.

Figure 7.3. M1/β interference fitting hyperbola. Image from [ 21 ]
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7.4 Steps completed

7.4.1 Phase lock

Figure 7.4. Technique for generating the beatnote between the two green
beams (SFG and SHG). We use and ADF4002 evaluation board to compare
phases and the feedback is sent to the 1470 nm laser.

The technique we use to phase lock the three lasers together is shown in Figure  7.4 .

Here we couple the SFG and SHG 540 nm beam into a polarization maintaining single mode

optical fiber. This light is directed onto a 150 MHz Si photoreceiver (PDA10 - 10 kV/A).

The beat signal output from the photoreceiver is directly fed into the ADF4002 evaluation

board. We use a two channel arbitrary waveform generator with phase coherent output to

generate a reference signal for the ADF4002. The other channel is used to offset the SHG

540 nm beam that is used for beating. This configuration allows an AOM to upshift the

beam by 80 MHz and the optical phase lock loop to shift the beam back down 80 MHz. The

output of the ADF4002 is a series of current pulses whose polarity indicates whether the

reference or the signal is advanced in phase. These current pulses are integrated on a single

pole loop filter that was simulated on ADIsimPLL software. The loop filter is unable to

drive the low input impedance servo, so the output of this loop filter is the sent to a simple

op-amp filter to buffer and slightly amplify the output to drive the FALC110 servo. The

input impedance of the FACL110 is 50 Ω, so this op-amp buffer is critical. The FALC110 is

used to servo the 1470 nm current to generate phase coherence between the SHG and SFG
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beams. We have successfully stabilized these lasers using the analog (mixer) optical phase

lock loop technique as well, but the preceding technique has been more robust.

Figure  7.5 shows the beat note between the SHG and SFG beams. A 20 db (1%) coupler

is used to pick off a portion of the beat note to view with a spectrum analyzer. We see

here an −80 dBc/Hz phase noise relative to the carrier near dc. We also see servo bumps

at around 1.2 MHz, indicating the point at which the servo increases the noise of the laser

system. Figure  7.6 shows a wide scan of the beat note between the SHG and SFG beams.

This looks horrible and it is caused by the PDH modulation that is required for stabilizing

the 852 nm (4 MHz) and 1079 nm (20 MHz) lasers to their optical cavities. We see all the

intermodulation terms between the carriers and their sidebands. With the digital OPLL

that we implement, the optical phase lock is insensitive to these extra peaks and does not

add to the phase noise in the servo loop. Essentially, they look really bad but you wouldn’t

notice them without scanning wider to find them.

Figure 7.5. Beatnote between the SFG and SHG green beams. The trace
shows the coherence between the two-photon transition (852 nm +1470 nm)
and the single photon transition (540 nm). This coherence is critical for phase
sensitive measurements.
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Figure 7.6. Beatnote between the SFG and SHG green beams. This spectra
is a wide scan to show the

7.4.2 Cavity locks

We have gotten quite good at stabilizing lasers to high finesse cavities. We see linewidths

well below 1 kHz after the power build-up cavity even with the cavity bouncing back and

forth by several tens of MHz. We are able to lock the SHG beam to the power build-up

cavity for the entire day without it coming unlocked. We use cavity ring-down spectroscopy

to quantify the mirror reflectivity. If the input beam to a Fabry-Perot cavity with circulating

power is suddenly switched off, the power in the cavity will exponentially decrease. This

exponential decrease is dependent on the cavity finesse and mirror spacing. We use the

formula

F = 2π c

L
τc, (7.1)

from [  108 ] to determine the finesse. Using an AOM to shutter the SHG beam, we record

the power transmitting from the back side of the power build-up cavity. This exponential

decay is fit and the decay constant and cavity length is then used to determine the finesse.

An example ring-down measurement is shown in Figure  7.8 . We measure finesse values in

the range of 30k-50k. We believe the lower finesse values are due to contaminated mirror

130



surfaces such as mechanical pump oil. The mirror can be restored with a lot of cleaning

wipes and patience.

Figure 7.7. Here we see an image of the intense green beam stabilized to
a high finesse Fabry-Perot cavity. A close look will reveal that the laser is
stabilized to the (1,1) Hermite-Gaussian mode of the cavity. This is actually
non-ideal since we want light in the (0,0) mode, but that makes a less interest-
ing picture. Since the cavity is near flat-flat configuration, careful alignment
is critical.

7.4.3 Two-photon locks

We plan to drive the 6s → 7s transition and observe each hyperfine transition. This

means that we cannot use the 1079 nm laser to stabilize the rest of the lasers via two-photon

spectroscopy since it will not drive ∆F = ±1 transitions. We must then use a portion of

the 852 nm and 1470 nm beams for spectroscopy. Figure  7.9 shows an overview of this

technique. We overlap the two IR beams and double pass them through a heated vapor

cell and make sure to overlap the return beams well with the forward beams. When we

observe fluorescence off to the side of the vapor cell while scanning one of the lasers, we

see spectra like that of Figure  7.10 . The blue trace is the fluorescence from the two-photon

transition and the pink trace is the transmission of a 1 GHz free spectral range Fabry-Perot.
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Figure 7.8. A measurement of the cavity ring down time for 540 nm power
build-up cavity. The green trace shows the power transmitted through the
power build-up cavity and the yellow trace shows the power reflected from the
power build-up cavity. Here the frequency of the 1079 nm laser is stabilized
to the cavity resonance and then is quickly turned off (≈ 30 ns) using an
acoustio-optic modulator. This light is turned back on after several µs to
allow the servo to begin integrating the error signal to re-lock the laser. This
process takes around 70 µs to start to re-lock. We fit the exponential decay of
the yellow curve to extract the fall time of the circulating power in the cavity.

The slope in the baseline signal is due to scattered light from the intensity variation in the

852 nm beam. The slight peak asymmetry is due to having the retroreflected beam slightly

tilted. We see large etalon effects from the cell otherwise. The dip in the center is caused

by a similar process as saturated absorption spectroscopy. When on resonance, the forward

and reverse beams interact with the same velocity group of atoms which reduces the overall

fluorescence signal. Much like saturated absorption spectroscopy, we modulate one of the

lasers (852 nm) at a low frequency and demodulate this signal to generate an error signal

that we use to lock to this dip in the resonance.
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Figure 7.9. A simple image to illustrate the two-photon spectroscopy we will
use to stabilize the three lasers to the 6s → 7s transition.

7.4.4 Electric field generation

The electric field requirements for this measurement are quite stringent since we wish

to apply fields on the order of 1.6 mV/cm. This requires precisely spaced plates and low

noise voltage sources. The plates are constructed of 10 cm by 15 cm polished copper plates.

Flatness of these plates is better than 12 µm over the plate surface. We space these plates by

precision machined ceramic spacers whose length (4 cm) is known to ±12 µm. The spacers

are tapped on the end for 8-32 thread. This allows the field plate to be assembled using

nylon screws. An image of the field plates is shown in Figure  7.11 .

To generate the precision voltages, we designed the circuit shown in Figure  7.12 . Here we

generate three high precision voltages using extremely low noise (0.21 ppmRMS from 10 Hz

to 1 kHz) voltage references, LTC6655LN. These references come in two styles, a regular and

a lower noise variant. The circuit is designed to accept both with a slight change in which

components are populated. These voltages are then multiplexed to apply several different

electric fields with both positive and negative polarity. The circuit takes either a signal from

the computer or from physical switches on the front of the circuit case. A monitor pin has

been included to measure the voltage across the plates using a floating digital multimeter

such as a Keithley 2001. A voltage division circuit will be placed on the plates in the vacuum

to lower the voltage down to the mV level required for the measurement. This will reduce

noise injected onto the plates since the division will take place at the plates and not external
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Figure 7.10. A measurement of the two-photon transition using two unequal
photons in a vapor cell. The dip in the center is caused by a similar process as
saturated absorption spectroscopy. When detuned from resonance, the forward
and reverse pair of two-photon beams interact with different velocity groups
in the vapor cell. When on resonance, the forward and reverse beams interact
with the same velocity group which reduces the overall fluorescence signal.

to the vacuum chamber. The voltage division resistors are Caddock UFS-340 resistors with

a 5ppm/◦C temperature coefficient. Since the resistors will be coupled to the electric field

plates, their ratio stability will be even better than 5ppm/◦C. This is already well below

the measurement uncertainty. All we must do is measure the division ratio using two well

calibrated digital multimeters. Then we can just monitor the applied field across the plates

before the divider for the measurement.

7.4.5 Noise reduction

We have taken several steps to reduce the noise in the detection system. When stabilizing

the 1079 nm lase to the power build-up cavity, the laser has a very large bandwidth and is

easily able to keep up with the cavity. When trying to stabilize this cavity to the invar cavity

or the atomic resonance, the power build-up cavity struggles to keep up due to the finite

bandwidth of the cavity piezo. Mechanical vibration from the turbomolecular pump (800 Hz)
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and from the ground causes noise on the power build of cavity to resonance lock. We have

been working to minimize this mechanical noise coupling into the cavity by changing the

cavity mount (now a Newport VIB100 isolator). We have also purchased and installed a new

table leg. Due to the vacuum system weight, the table would not float on one corner. This

new fifth leg passively damps vibration from the room and allows the entire table to float.

We have also purchased a second vibration damper to place between the turbomolecular

pump and the vacuum chamber. One manufacturer suggested that adding a second damper

would increase damping by a 2.5 times.

7.5 Next steps

There are a few steps left for the EP NC/β measurement. The three cavity configuration

must be constructed and the entire laser system has to be stabilized to the atomic transition.

The first step is hard and the second is not so difficult but must happen after the first. The

triple cavity configuration is difficult due to size limitations and we will need some creative

thinking in order to surpass this hurdle. Figure  7.13 shows the current state of locking and

highlights what else is necessary to complete before the PNC measurement.
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Figure 7.11. An image of the test power build-up cavity and electric field
plates. The triple cavity apparatus for the PNC experiment will require three
cavities that are overlapped on the atomic beam.
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Figure 7.13. A high level diagram depicting the current state of locking.
Items to the left are being locked to the right and the green color indicates a
successful stable lock. The yellow lock is works for the two-photon transition
for two equal photons, but must still be completed for unequal photons. The
red box indicates that these three green locks have been completed for the
triple cavity configuration. The black box is a lock that may be unnecessary
if the PBC can be locked directly to the two-photon resonance.
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8. SUMMARY

8.1 Contribution to atomic parity violation

In this thesis we have shown an improved measurement of the ratio α/β as well as an

improved measurement of α7s. This second measurement, along with improved atomic theory

[ 19 ,  75 ], allowed us to calculate an improved value for α. We combine this new value of α

with our new ratio of α/β to attain a more precise value for β = 27.048 (26) a3
0. This value

has a 40% smaller uncertainty than the previous best determination [  22 ]. This is due to

reducing the uncertainty of α/β by about half and the uncertainty of α by 30%. This new

value for β is a critical component in the determination of the weak charge of the cesium

nucleus, see equation  8.1 .

Qw = kP V
Im(EP NC)

β

β

α
α (8.1)

With this updated value for β, we can recalculate Qw. Using our new suggested value

for β = 27.048 (26) a3
0 and the Wood measurement of Im(EP NC)/β = −1.5935 (56) mV/cm

[ 1 ], we get Im(EP NC) = 0.8382 (31) × 10−11 |e|a0. This value must be combined with an

atomic theory value for kpv. There are two high precision determinations that disagree with

one another. Porsev et al. [ 109 ,  110 ] determined

Im(EP NC) = 0.8906 (24) × 10−11 |e|a0 (−Qw/N) . (8.2)

Here N is the number of neutrons in the nucleus and a0 is the Bohr radius. With this value

for kpv we get Qw = −73.41(27)expt(20)theo. Dzuba et al. [ 111 ,  112 ] determined

Im(EP NC) = 0.8977 (40) × 10−11 |e|a0 (−Qw/N) . (8.3)

When we combine this value with our new determination of Im(EP NC), we get Qw =

−72.83(27)expt(32)theo. A summary of these results and past results are illustrated in Figure

 8.1 . There have been enough determinations of Qw using the results of Wood et al. [ 1 ] to give

researchers whiplash and it is for this reason we have not published a new value for Qw in
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our article on α/β or in our Stark shift letter. Really what is needed is a new determination

of EP NC/β and a more precise value for kpv. We are working quickly towards the former

and Andrei Derevianko at University of Nevada, Reno is working towards the latter. We

hope to attain 0.1% uncertainty in EP NC/β and Derevianko believes 0.2% is attainable for

kpv. These two contributions would be a huge step forwards for atomic parity violation and

could elucidate new physics.

In addition to the work that directly affects the value of Qw, we have also produced high

precision measurements of hyperfine spacings on the 8p1/2, 8p3/2, 12s1/2, 13s1/2 , 11d3/2, and

11d5/2 levels. The ns1/2 and np1/2 levels are of particular interest to atomic theorist who aim

to calculate kpv.

Figure 8.1. A summary of past results for Qw of the cesium nucleus. Each
determination uses a calculated value for kpv and the measurement of EP NC/β
[ 103 ,  104 ,  109 – 113 ]. The first three letters and the publication year indication
the work cited. The orange results use the sum-over-states calculation of α to
determine β and the two most precise values for kpv. The last value (green) is
the standard model prediction [  25 ].
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A. ELECTRIC QUADRUPOLE

We mentioned previously that the electric quadrupole transition will not affect the PNC

measurement. Here we will discuss this in further detail. We will start with the general phe-

nomenological transition operator that Bouchiat and Piketty introduced [ 32 ]. This operator

is as follows,

T (n, n′) = −2M1S · (E × k) − i(Mhf
1 /2) (S × I) · (E × k)

−i(E2/2) [(S · E) (I · k) + (S · k) (I · E)] .
(A.1)

The first and second terms represent the hyperfine invariant magnetic dipole moment and the

hyperfine changing component of the magnetic dipole moment. The last term is the electric

quadrupole moment caused by off-diagonal hyperfine mixing of |nD〉 and |nP 〉 states [  32 ].

Figure  A.1 shows the field geometry for the PNC measurement. When only considering the

E2 amplitude with the PNC applied field geometry, equation  A.1 simplifies to

T (n, n′) = −i(E2/2) [SxIy + SyIx] Exky. (A.2)

Ez, Bz

ky

Ex

Figure A.1. Geometry for analyzing the electric quadrupole transition.
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We can rewrite these products of spherical tensor operators as another tensor operator

using the technique described in Zare (5.44)[  114 ],

X(2, ±2) =
[
A(1) ⊗ B(1)

](2)

±2
= 1

2 [(AxBx − AyBy) ± i (AxBy + AyBx)] . (A.3)

Then the difference of X(2, 2) − X(2, −2) is,

X(2, 2) − X(2, −2) = 2i(SxIy + SyIx). (A.4)

We can substitute this into equation  A.2 to find,

T = −E2

4 [X(2, 2) − X(2, −2)] Exky. (A.5)

We can use Zare (5.64) to evaluate the reduced matrix element,

〈7sS ′I ′F ′m′||T ||6sSIFm〉 = −E2

4 (−1)F −m


 F 2 F ′

−m 2 m′

−

 F 2 F ′

−m −2 m′




×〈7sS ′I ′F ′||X(2)||6sSIF 〉Exky

(A.6)

For the Wigner- 3-j symbol to be nonzero, the bottom row must sum to zero. This implies

that we will only see a contribution from ∆m = ±2 transitions. Since we will be interfer-

ing a ∆m = ±1 transition when measuring EP NC/β, the E2 moment will not affect this

measurement.
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B. PHASE MATCHING CONDITION FOR CROSSED BEAMS

Careful alignment of the three Fabry-Perot cavities driving the PNC interaction is critical

for preserving phase matching. If the crossing angle is too sharp or if there is no overlap,

the interference signal will be reduced. Here we will discuss the angular alignment necessary

for the PNC experiment. We must ensure that the wave vectors of each beam do not "slip"

a cycle over the interaction region. If they do, a portion will be in phase and another out

of phase. This reduces or can even fully average away the interference amplitude. The

requirement is then,

∆~k · ~r < π (B.1)

where ∆~k is the wave vector mismatch and ~r is any vector within the interaction region.

B.1 Experiment geometry

Figure  B.1 shows the alignment of the triple cavity setup. With the angles labeled here,

we will evaluate equation  B.1 . Here we have,

∣∣∣[~k1470 + ~k852 − ~k540
]

· ~r
∣∣∣ < π, (B.2)

1470 nm

540 nm

852 nm

θ1470

θ852

Figure B.1. Geometry for analyzing the crossing angle of the three Fabry-Perot cavities.
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where ~kn is the nth laser’s wave vector. We can now split this equation into an x and

y component. The x component is along the laser beam, so its interaction length is around

1 mm. The y component is along the atomic beam and is characterized by the diameter of

the laser beams, 2ω =1 mm. Here ω is the waist radius. The x and y components are as

follows,

∣∣∣[k1470 cos(θ1470) + k852 cos(θ852) − k540
]

· ~r
∣∣∣ < π, (B.3)

∣∣∣[k1470 sin(θ1470) − k852 sin(θ852)
]

· ~r
∣∣∣ < π. (B.4)

This second equation is linear in angle for small angles, so we would like to suppress this

term by appropriately choosing θ1470 and θ852. This is accomplished by setting the angles

to,

θ1470

θ852 = λ1470

λ852
. (B.5)

We ensure k1470 + k852 − k540 = 0 with our locking scheme. Then the upper equation

simplifies to,

[
(θ1470)2

λ1470
+ (θ852)2

λ852

]
dx <

1
2 , (B.6)

where dx is the length of the interaction region along the laser beam, 1 mm. When we

use the angle ratio from equation  B.5 , we can further simplify and solve for one of the angles.

We solve for the angle between the 852 nm beam and the 540 nm beam and get,

(θ852)2 <
λ852

2dx (1 + λ1470/λ852)
. (B.7)

With dx =1 mm, we get θ852<12.5 mrad. If we suppose that there is an error in set angle

such that equation  B.4 does not perfectly cancel, then we can manually add in an error (δ)

to θ852.

This modifies equation  B.4 to,
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∣∣∣∣[ 2π
λ1470

θ1470 − 2π
λ852

(
θ852 + δ

)]
dy

∣∣∣∣ < π. (B.8)

Here, dy spans the interaction region along the cesium beam (laser beam diameter). This

length is 1 mm. Equation  B.4 then places the constraint in the precision we must set for the

angle.

δ <
πλ852

2dy

(B.9)

With dy =1 mm, the error in the angle must be less than 1.3 mrad. This should not be so

critical since a pair of machined pin holes could be used to fixed this distance, 0.2 mm for a

35 cm cavity.

B.2 Conclusion

Proper phase matching in the interaction region will not be easily attained and will

require careful design and planning. The crossing angle becomes less restrictive as the atomic

beam is apertured down, but this method reduces the overall signal strength. Unfortunately,

the maximum angle increases as 1/
√

dx, so halving the interaction size only increases the

tolerable angle by 41%. A 12.5 mrad crossing angle between the 540 nm and 852 nm beams

for a 35 cm length cavity only gives a beam distance of 2.2 mm. Some creative construction

inside the vacuum chamber may allow longer beam paths.
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