Measurement of the ratio of scalar to vector transition polarizabilities for the 6s→7s transition in atomic cesium PURDUE Jonah Quirk^{1,2}, Amy Damitz^{1,2}, Carol E. Tanner⁴, Daniel S. Elliott^{1,2,3} **UNIVERSITY** ¹School of Electrical and Computer Engineering, Purdue University, ²Department of Physics and Astronomy,

Background

Precision measurements of weak optical interactions in atoms can provide a sensitive means of probing the weak force between nucleons and electrons at low momentum transfer.

- arrows).
- modulated.
- Stark amplitude.

Field Configuration

- We will measure the ratio of the scalar to vector transition polarizability by alternating the electric field between parallel and perpendicular to the 540 nm polarization.
- Using 8 electric field rods in the configuration to the right, we will be able to quickly alternate fields without moving our field rods.
- In the figure to the right, the cesium beam would be traveling from left to right and the optical beam would be going into and out of the figure.

Electric potential around the electric field rods

Stark transition amplitude: **E** Applied electric field, *\varepsilon* polarization

 $A(F', m_{F'}; F, m_F) = \alpha \mathbf{E} \cdot \boldsymbol{\epsilon} \, \delta_{F'F} \delta_{m_{F'}m_F} + i\beta (\mathbf{E} \times \boldsymbol{\epsilon}) \cdot \langle F', m_{F'} | \boldsymbol{\sigma} | F, m_F \rangle^{[1]}$

Purdue University, ³Purdue Quantum Science and Engineering Institute, ⁴University of Notre Dame

The extent to which atomic parity non-conservation (PNC) measurements agree with standard model predictions can provide constraints on conjectures of `beyond standard model' physics.

• Using a coherent control technique, we will excite the 7s²S_{1/2} state of atomic cesium through two interfering optical pathways; these transitions are Stark-induced one photon (green arrow) and two photon excitation (red

By varying the relative phase between these two transitions, the resulting signal will be

• The depth of the modulated signal will be twice the product of the 2-photon amplitude and

Motivation

- Measurements of the weak moment E_{PNC} must be carried out relative to another larger moment, such as the transition polarizability (vector β or scalar α) or magnetic dipole moment M₁.
- We are currently working towards a new, precision measurement of E_{PNC}/β on the $6s \rightarrow 7s$ transition of atomic cesium in our laboratory. There are currently two precise determinations of the vector polarizability β .
- - One uses a theoretical value of the hyperfine-changing magnetic dipole moment M_{1.hf}, combined with a precision laboratory measurement of $M_{1 hf}/\beta$.
 - The other uses precise E1 matrix elements to calculate the scalar polarizability α , combined with a precise laboratory
 - measurement of α/β .
- These two methods produce values of β that differ by ~0.6%, greater than their combined uncertainties. This new determination of α/β is intended to help resolve this discrepancy.

A precise measurement of the ratio of the scalar to vector transition polarizability in the $6s \rightarrow 7s$ transition in atomic cesium is a crucial step towards a more precise measurement of the parity non-conserving weak interaction

	We generate 852 nm and 1470 nm light
	via two tunable cw ECDLs. These two
k	beams are then used in sum frequency
	generation (SFG) to produce 540 nm light
	which will be beat against the 540 nm light
	generated through SHG. We then lock the
is	1470 nm light to the beat signal to phase
	lock the two optical transitions.