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ABSTRACT 

 

 

Antypas, Dionysios. Ph.D., Purdue University, December 2013. Measurement of a 

weak transition moment using Coherent Control. Major Professor: Daniel S. Elliot.  

 

          We have developed a two-pathway Coherent Control technique for                                             

measurements of weak optical transition moments. We demonstrate this technique 

through a measurement of the transition moment of the highly-forbidden magnetic 

dipole transition between the 6s
2
S1/2 and 7s

2
S1/2   states in atomic Cesium. The 

experimental principle is based on a two-pathway excitation, using two phase-

coherent laser fields, a fundamental field at 1079 nm and its second harmonic at 539.5 

nm. The IR field induces a strong two-photon transition, while the 539.5 nm field 

drives a pair of weak one-photon transitions: a Stark-induced transition of controllable 

strength as well as the magnetic dipole transition.  Observations of the interference 

between these transitions for different Stark-induced transition amplitudes, allow a 

measurement of the ratio of the magnetic dipole to the Stark-induced moment. The 

interference between the transitions is controlled by modulation of the phase-delay 

between the two optical fields. Our determination of the magnetic dipole moment is at 

the 0.4% level and in good agreement with previous measurements, and serves as a 

benchmark for our technique and apparatus. We anticipate that with further 

improvement of the apparatus detection sensitivity, the demonstrated scheme can be 

used for measurements of the very weak Parity Violation transition moment on the 

Cesium 6s
2
S1/2→7s

2
S1/2 transition.  
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1. INTRODUCTION 
 

      

1.1 Motivation for this work 

            The use of two-pathway Coherent Control as a means to detect a weak atomic 

transition was demonstrated in our lab a few years ago [1,2],  in an experiment carried out 

in Cesium, where    amplification and detection of the signal of a weak atomic transition 

was achieved. In that work, a measurement of the weak transition amplitude depended on 

experimental parameters that are difficult to calibrate, such as laser intensities, optical 

beam overlap conditions, etc. An extension in the analysis of the experimental principle 

that followed, suggested that with a proper selection of the experimental conditions, it 

should be possible to employ the two-Pathway Coherent Control scheme for making 

measurements of  weak transition moment ratios, therefore removing the need for careful 

calibration of nearly all of the factors involved in measuring a single weak moment. This 

possibility is of interest to the field of Atomic Parity-Non-Conservation, in which 

experimenters attempt to measure the amplitude of an extremely weak Parity-Violation 

transition that occurs between atomic states of the same parity. The measurement is 

always calibrated against another (known) transition moment.  These experiments are 

never easy and almost always limited in measurement precision by the various systematic 

contributions to the extremely weak PNC signal. Out of more than a dozen PNC 

measurements performed to date, using one of two weak signal amplification techniques, 

only a few have reached the level of precision necessary to test Physics Models. The 

possibility of making PNC measurements with a new technique, that involves different 

(and potentially smaller) sensitivities to systematic errors, is a very interesting one.  

            In the work presented in this thesis, we demonstrate the applicability of the two-

pathway Coherent Control scheme for weak transition moment measurements, through a 

precision measurement of the moment of the highly-forbidden magnetic dipole transition 
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(M1) in the Cesium 6S1/2→7S1/2 transition. The size of the M1 moment is not as small as 

the size of a PNC moment, but the project will ultimately be headed towards a PNC 

measurement, and in this developmental stage of our scheme and apparatus, the M1 

measurement serves as an important intermediate benchmark. We selected to work with 

the  6S1/2→7S1/2 transition in Cesium, because our group aims at performing a PNC 

measurement on the same transition.   

1.2 Overview of Parity Non Conservation in atoms 

            Parity Non Conservation (PNC) experiments in atoms are low energy tabletop 

experiments, complementary to high energy experiments. They attempt to measure the 

strength of the weak interaction between the electron and the atomic nucleus, an 

interaction mediated by the weak neutral boson Z0
 
and described by the Standard Model 

of particles [3]. These measurements are sensitive tests of the Standard Model, as well as 

tests of potential extensions of the Standard Model. Although the weak interaction takes 

place inside the nucleus, it can be probed outside of it in atomic physics experiments, 

because it is responsible for slight perturbations to atomic eigenstates. These 

perturbations correspond to mixing of opposite parity eigenstates into electronic states of 

a particular parity.  As a result, an optical transition between two atomic states of the 

same parity (e.g. the 6S1/2 and 7S1/2 states in Cesium), that is forbidden by selection rules, 

can become weakly allowed due to PNC-induced mixing. Figure 1.1 illustrates this 

mixing for the case of the 6S1/2 and 7S1/2 states.  A measurement of the extremely small 

Parity-Violation-induced transition moment EPNC between these states provides 

information about the weak interaction. The Hamiltonian of the interaction has a large 

contribution that is nuclear spin-independent and characterized by the so-called weak 

charge of the nucleus Qw, and a smaller contribution that depends on spin, which is 

largely due to the nuclear anapole moment κ [4]. This Hamiltonian is given by:  

                                       w 5(r)Q (r)
8 8

w

G G
H I      


                                    (1.1) 

  where G is the Fermi constant, ρ(r) is the nuclear density, γ5 is a Dirac matrix, 0i i    

is a product of Dirac matrices, and I


  is the nuclear spin.  
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Figure 1.1: Mixing of an nP state into the 6S and 7S states in Cesium, occurring due to the weak 

Hamiltonian Hw. The perturbation is responsible for a small transition dipole moment EPNC 

between the same parity eigenstates.  

 

           A laboratory determination of the transition moment EPNC, combined with 

precision atomic structure calculations, provides an overall determination for the weak 

charge Qw. EPNC =kQw, where k is a form factor,  that needs to be precisely calculated to 

obtain Qw.  The Standard Model has a prediction for the weak charge and a comparison 

between the two values serves as a test of the Standard Model.  Potential deviations 

would suggest the existence of higher order effects, referred to as Physics beyond the 

Standard Model. In addition, a determination of the nuclear-spin dependent PNC effect, 

due to the nuclear anapole moment, provides important constraints to weak meson 

coupling constants of the Standard Model, which are currently far from being reliably 

established [4].  

          The size of the EPNC transition moment is too small to be directly measured. For Cs 

it is on the order of 10
-11

 e·αB, where e is the electron charge and αB is the Bohr radius. In 

comparison, the electric dipole moment of an allowed transition is ~ 1 e·αB.  

Measurements of EPNC are possible using transition amplitude interference techniques, in 

which the weak transition amplitude is interfered with the amplitude of a much stronger 

transition. A detection of the interference term results in an effective amplification of the 
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PNC signal. So far, PNC experiments have been performed using two types of 

interference techniques.  In one of these, the PNC amplitude is interfered with the 

amplitude of an allowed magnetic-dipole transition (M1). The experiment takes place in 

an atomic vapor, and the measured quantity is optical rotation of linearly polarized light 

passing through the vapor.  The left-right asymmetry due to the PNC effect causes the left 

and right circularly polarized components of light to be absorbed differently by the 

atoms, inducing the optical rotation. The rotation angle is proportional to the ratio 

EPNC/M1, i.e. the experiment yields ratios of transition moments. An independent 

determination of M1 is required in order to extract EPNC from the measurement.  In the 

other interference technique, the PNC interaction interferes with a much stronger-Stark-

induced interaction. The experiment takes place in a region of crossed electric and 

magnetic fields that define the handedness of the coordinate system. A change in this 

handedness (usually done by an electric or magnetic field reversal, or change in the sense 

of ellipticity of the optical field driving the transition) causes the Stark-PNC interference 

signal to modulate. A measurement of the amplitude of this modulation, normalized to the 

much stronger signal due to the Stark-induced transition, yields the ratio EPNC/EStark, 

where EStark is the Stark-induced electric dipole transition moment. As in the optical 

rotation experiments, the Stark-PNC interference scheme too measures ratios of 

moments.  In this thesis, we demonstrate a third, alternative transition amplitude 

interference technique for determining weak transition moments, also through 

measurements of moment ratios, based on two-pathway Coherent Control.            

          Over the last three decades several atomic PNC measurements have been 

performed in the following elements: Bismuth, Lead, Thallium, Cesium, Dysprosium and 

Ytterbium.  The PNC effect in Bi, Pb and Tl was measured through optical rotation 

experiments, while the Cs, Dy and Yb measurements were carried out using the PNC-

Stark interference technique.   Table 1.1 lists all atomic PNC experiments with an 

accuracy < 5%, along with the corresponding accuracy level in most precise theoretical 

calculations available for the form factor k=EPNC/Qw. As it can be seen, the overall 

accuracy in the weak charge determination (excluding Cesium, where both measurement 

and theoretical accuracy at the sub-1% level), is limited by the precision of theoretical 



 5 

calculations. Of all the PNC experiments, the latest Cesium experiment [5] is the only in 

which the experimental precision reached the necessary level to the measure small spin-

dependent effect due to the nuclear anapole moment. The simple electronic structure of 

Cs (one valence electron outside a closed core) allows for very precise calculations of its 

wavefunctions, which permitted a sub-1% determination of the weak charge Qw. We also 

note that an upper bound for the anapole moment of Thallium was placed by the Seattle 

group [6].  

 

Table 1.1: Atomic PNC experiments with an accuracy < 5% in the measured ratio of transition 

moments.  The associated uncertainty of the most precise theoretical calculations for k=EPNC/Qw 

is also listed. Data taken from ref. [3].  

 

 

1.3 Why a new PNC measurement in Cs is interesting 

                         Of all the PNC measurements to date the one in Cs, carried out by the Boulder 

group, has been the most successful. The measurements yielded a 0.35% determination 

of the PNC moment, which, combined with theoretical calculations, provides a value for 

Atom Transition Group Year 

Transition 

moment ratio  

accuracy (%) 

Atomic structure 

precision(%) 

209
Bi 

4
S3/2 − 

2
D3/2 Oxford, ref[7] 1991 2 11.5 

208
Pb 

3
P0 − 

3
P1 Seattle, ref[8] 1993 1.2 7.1 

  Oxford, ref[9] 1996 3.4  

205
Tl 6P1/2 − 6P3/2 Oxford, ref [10] 1995 2.9 3 

  Seattle, ref[6] 1995 1.2  

133
Cs 6S1/2 − 7S1/2 Boulder, ref[11] 1988 2.2 0.27 

  Boulder, ref[5] 1997 0.35  
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the electroweak charge Qw which is in very good agreement with the Standard Model 

prediction.  The precision the experimenters reached allowed a measurement of the 

anapole moment of the Cs nucleus, a 14% determination. Though this was the first 

observation of an anapole moment, its value was much larger than predicted and in 

disagreement with weak meson coupling constants measurements performed in  various 

high energy scattering experiments. This disagreement has generated a long lasting 

puzzle within the nuclear physics community.  An Effective Field Theory [12] was 

developed a few years after the Cs Boulder experiment, as an effort to fit the Cs anapole 

moment within the existing model of nuclear forces. new measurement of Parity 

Violation, which will be based on the weak measurement moment scheme we 

demonstrate, will serve primarily as a check of the Boulder group anapole moment 

result. Since our Coherent Control technique will involve different systematics, an 

agreement with the Boulder measurement will further enhance the confidence in  the 

anapole moment magnitude.   

                       A major advantage of the Cs atom as a candidate for a PNC experiment over 

other atoms, is its simple atomic structure (single valence electron). This has allowed for 

precise calculations of its wavefunctions  which over the years have kept increasing  in 

accuracy and which, in conjunction with  PNC measurements, have resulted in 

increasingly more accurate determinations of Qw.  In a recent work [13], the theoretical 

uncertainty reached 0.27%, which is below the 0.35% experimental uncertainty. This 

result provided a new, improved determination for the weak charge Qw, which is in 

excellent agreement with the Standard Model. Since the determination of Qw is now 

limited by the experimental uncertainty,  the possibility of an improved determination of 

the Qw through new laboratory measurement of the PNC amplitude would serve as a 

new and more precise test for the Standard Model.  

                      

1.4 Using Coherent Control for weak signal amplification   

             The field of Coherent Control, as developed in the last two decades, has found 

various applications with regard to the manipulation of the quantum dynamics in atomic 

and molecular systems. One of these applications is the ability to coherently control the 
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excitation rate in an atomic transition, by employing multiple excitation pathways for the 

transition, with each of these being driven by a different laser field. The inherent 

coherence of transition amplitudes, when combined with mutual phase-coherence for the 

optical fields driving the different pathways, results in quantum mechanical amplitude 

interference present in the net excitation rate that can be modulated by controlling the 

relative phase between the different optical fields.  This was first shown by Chen and 

Elliott [14] in a one-photon vs. three-photon ionization experiment in Mercury, where 

modulation  of the ionization rate of the atom was demonstrated by controlling the phase-

difference between the one-photon and three-photon fields. This work followed a 

proposal by Brumer and Shapiro [15], that suggested exploiting the quantum interference 

of multiple excitation pathways as a means to control product ratios in molecular 

reactions 

           Aside from its use as a method to control the transition rate in an atomic system, 

multiple pathway excitation using coherent fields can also be employed for the 

amplification and detection of a weak transition amplitude. This is possible in a two-

pathway excitation scheme, by taking advantage of the ability to modulate the excitation 

rate, which is accomplished by coherently controlling the amplitude of the interference 

between the two pathways of the transition. This amplitude is essentially the product of 

the two pathway amplitudes, and it is therefore larger in magnitude than the contribution 

of the weak pathway to the overall transition rate. In this sense, the amplification is 

similar to the Stark-PNC or M1-PNC interference techniques, described in section 1.2.   

In what follows we introduce the experimental principle of the two-pathway scheme for 

amplifying a weak one-photon transition.  

          Let’s assume that we seek to detect the amplitude Aw of a weak one-photon 

interaction between states i  and f , for which the excitation rate is so low that direct 

detection is unpractical. This could be for instance an electric-dipole forbidden transition.  

In order to amplify the weak amplitude, we introduce another, strong two-photon 

transition pathway between the same states, with amplitude A2P.  The two transition 

pathways are shown in Figure 1.2.      
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Figure 1.2: One photon vs. two-photon excitation of an atomic transition between the same initial 

and final state.   

 The amplitudes for the one-photon and two-photon pathways have the form:                            

                                            
2

2PA                                   (1.2) 

                                                  2 2
wA                                                                      (1.3) 

where  μ
ω
 and μ

2ω
 are the one-photon and two-photon transition moments, and ε

ω
 and ε

2ω
 

are the optical fields driving the ω and 2ω  transitions respectively. These fields are 

phase-coherent with each other, as required in order to obtain interference between the 

two amplitudes. The total transition amplitude is the sum of Aw and A2P:  

                                           
22

2

i i

P wA A e A e
                                                         (1.4) 

            We have retained in (1.4) the phase factors 2ie
  and 

2ie
  that represent the phase 

delays we can impose on the ω and 2ω fields, respectively. For single pathway excitation, 

these phase factors do not have a physical meaning, but in our case they are relevant in 

the interference of the amplitudes of (1.4). The transition rate W is proportional to the 

modulus squared of the net amplitude of (1.4):     
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2 22
2

2

2 2

2 2

~ (1.5)

2 cos(2 )

i i

P w

P P w

W A A e A e

A A A

  

  

 

  


                                                 

In the above expression we have dropped the term 
2

wA  since it was assumed that the 

one-photon rate is much smaller than the two-photon rate. As it can be seen in (1.5), the 

transition rate W, aside from the large two-photon rate, contains an additional 

contribution due to the A2P and Aw interference. This contribution is a sinusoidal function 

of the weighted phase-difference 22       .  This dependence of the cross- term on 

  justifies the requirement for phase-coherence between the ω and 2ω fields in order to 

observe the multiple pathway interference. In its absence, the cross-term averages to zero.  

If phase-coherent fields are used,   Δφ is well defined, and it can be swept by delaying the 

phase of either field. This allows one to modulate the excitation rate and detect the 

interference term, which, as being the product of A2P and Aw, is much larger than 
2

wA . 

Therefore, the two-pathway excitation scheme can serve as an amplifier for the weak 

signal.   

1.5 Earlier demonstration of Coherent Control for weak signal amplification 

              The use of Coherent Control for the amplification and detection of a weak 

atomic transition has been recently demonstrated by Gunawardena and Elliott [1,2]. This 

experiment was the first demonstration of Coherent Control with CW lasers, and forms 

the basis for the work presented in this thesis. The experiment was carried out on the 

6S→8S transition in Cs, with a pair of phase-coherent optical fields (an 822 nm 

fundamental field and its 411 nm second harmonic) driving the 6S→8S transition through 

two different pathways: a strong two-photon transition   and a much weaker (but 

controllable in strength) Stark-induced transition.   The measurements are performed in a 

Cesium vapor cell, fitted with electric field plates for the creation of a controllable DC 

electric field. The 6S→8S excitation rate is detected through fluorescence collection from 

atoms decaying to the ground state. The interference of the one-photon and two-photon 

pathways is controlled by sweeping the phase difference between the two optical fields, 
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which is accomplished by delaying the path on the second harmonic field in a Mach-

Zehnder interferometer. Figure 1.3 shows a layout of the experimental apparatus.  The 

transition amplitude interference results in a modulation in the net excitation rate, which 

lies on top of the large DC background due to the two-photon rate. Figure 1.4 shows a 

plot of the modulating signal as a function of the 822 nm and 411 nm phase difference. 

The amplitude of the observed modulation, measured as a means of detecting the weak 

Stark-induced amplitude, was as much as two orders of magnitude greater than the Stark-

induced rate on its own. The weak amplitude detection in the experiment reached the 

shot-noise limit for the largest of the electric fields applied to the atoms.   

 

                        

      Figure 1.3: Schematic of the apparatus in Gunawardena’s experiment. Figure taken from [1].  

             In the experiment just described, the weak signal is dependent upon quantities 

such as the Cesium beam density, the 822 nm and 411 nm field intensities, the two-

photon amplitude, etc. In order to extract the weak transition amplitude from the 
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measurement, a careful calibration of these quantities is required, which is not an easy 

task. In chapter 2 we show how it is possible to use the two-pathway excitation scheme in 

a way that allows us to measure ratios of weak transition moments, so that the 

dependency on such parameters in removed. 

 

                                              

 Figure 1.4: Modulation of the excitation rate for the 6S→8S transition in Gunawardena’s 

experiment. Figure is from [1].  
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2. TWO-PATHWAY COHERENT CONTROL SCHEME FOR MEASURING 

WEAK TRANSITION MOMENTS 

 

 

             In this chapter we describe the principle of the two-pathway Coherent Control 

method that allows us to measure ratios of weak transition moments.  First, we discuss 

the 6S→7S transition in Cesium, along with all the possible optical interactions through 

which the transition can occur.  This is the transition on which the measurement of the M1 

transition moment is performed. Then, we describe how the two-pathway excitation 

through a strong two-photon transition and a combination of two weak transitions, a 

Stark-induced and an M1, can be used to measure the ratio of the M1 to the Stark-induced 

moment.  Afterwards, we discuss the application of the same scheme, this time for 

measuring the ratio of the extremely small PNC moment to a Stark-induced moment on 

the 6S→7S transition.  

2.1 The 6S→7S transition in Cesium 

             The 6S→7S transition in Cs has been studied extensively, both at the 

experimental and theoretical level, primarily due to its relation to the atomic Parity 

Violation studies. Figure 2.1 shows a partial energy level diagram of 
133

Cs  with  the 6S 

ground state and the 7S level. The 7S state natural lifetime is 48.5 ns [16], which 

corresponds to a transition natural linewidth of 3.3 MHz. The 6S and 7S states are 

separated by (on average) 277,841 GHz, corresponding to a wavelength of approximately 

539.5 nm. Each of the states has its own hyperfine structure, owing to the nonzero spin 

(I=7/2) of the Cs nucleus. The ground state is split into two levels with F=3 and F=4, 

separated by  9.19 GHz, and the 7S state into two components F=3 and F=4, spaced by  

2.18 GHz. Each of the hyperfine levels is 2F+1 degenerate. F=I+J is the total angular 

momentum of the atom, where J=L+S is the total electronic angular momentum. The 
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2F+1  Zeeman sublevels corresponding to each F level, labeled mF, are degenerate in a 

magnetic field-free region, but upon application of B, the degeneracy is lifted  and the 

levels are shifted in energy by ΔE=gFmFμBB, where is gF is the Lande-factor, and μB is the 

Bohr magneton.        

 

Figure 2.1:  Partial energy level diagram of 
133 

Cs with 6S1/2, 7S1/2 states, hyperfine and Zeeman 

structure.  

          The 6S7S transition, as an L=0L’=0 transition, is to first order electric-dipole 

forbidden.  It can be driven however, through an allowed two-photon interaction, as well 

as four weakly-allowed one-photon interactions: the Stark-induced interaction, the 

magnetic dipole interaction, the electric-quadrupole interaction, as well as the extremely 

weak electroweak-induced interaction.  The amplitude of the two-photon interaction is 

second order in the optical field(s) driving the transition, whereas the amplitudes of the 
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latter four are linear in the optical field.   Figure 2.2 illustrates the coupling of the 6S and 

7S states through the above mentioned interactions.  

 

                              

         Figure 2.2 - The five possible transition pathways for coupling of the 6S and 7S levels of Cs  

         

 2.2 The five interactions coupling the 6S and 7S levels 

           In this section we discuss the five interaction pathways by which a 6S→7S 

excitation can be induced.  We   introduce the relevant transition amplitudes that are 

essential to the analysis of our Coherent Control scheme. It is the interference of such 

transition amplitudes that we use to amplify and detect the weak amplitude of interest. In 

each case, we consider a transition from a 6S F, m state to a 7S F', m’ state. 

2.2.1 The  Stark-induced interaction 

            Consider a Cs atom in the region of an optical field of amplitude ε
ω1

 of frequency 

ω1 and phase φ
ω1

. In the absence of an external static electric field, an SS transition is 

to first order forbidden. The presence of such an electric field  ESt (Stark field) induces  

mixing of opposite parity states |nP> into the |S> states through the Hamiltonian of the 

interaction St StH D E  
 

,  thus allowing the optical transition to proceed. D er
 
   is the 

dipole operator. We show this mixing process pictorially for the Cs 6S and 7S states in 

Figure 2.3.  
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  The electric dipole transition amplitude 1( , ; ', ' ) 7 6StA F m F m S D S


    , where 6S  

and  7S  are the perturbed 6S1/2(F,mF) and 7S1/2(F’,mF’)  states, is given in the notation 

of Gilbert and Wieman [14] by:                        

                   




1 1

1
1 1

', '
, ' , , '

', '
, , ' 1

( , ; ', ' ) ( ) (2.1)

( ) ( )

F m
St F F z F m m m

F m i
x y F m m m

A F m F m i C

i i C e


 

  

     

    

Ε Ε

Ε Ε 

     

      

   

                         

                                                  

Figure 2.3: Stark-mixing of an |nP> state into the |6S> and |7S> states, occurring due to the 

Hamiltonian St StH D E  
 

 .  

The coefficients ','

,

mF

mFC  in (2.1) are proportional to the Clebsch-Gordon coefficients and 

are tabulated in ref. [17] and [18]. For transitions between same F states,  ,
, / 4F m

F m FC m   

for F=3 and ,
, / 4F m

F m FC m   for F=4. α and β  are the scalar and vector ac-Stark 

polarizabilites of the transition. They determine the amplitude of the Stark induced 

transition for an optical field 1  parallel and perpendicular to the Stark field, 

respectively. Explicit forms for α and β are given in ref. [19]. These quantities have been 

studied extensively, due to their relation to the Parity-Violation experiments on the 

6S→7S transition. In particular, the calibration of the most precise PNC measurement to 

date, that made on the Cs 6S→7S  in Cs [5], relies on accurate knowledge of  β, since 
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what was  determined in the experiment is  the ratio of the PNC transition moment EPNC 

to β. There have been two very accurate β determinations. Of these, one comes from a 

measurement of the α/β ratio (-9.905±0.011) [20], combined with an accurate 

determination of α [21,22]. α is determined using known values of matrix elements 

related to the Stark-mixing process and the dipole couplings between the perturbed 6S 

and 7S states, induced by the optical field.  This method yields β=27.11(5) 3

oa .  We note 

that β can also be computed (similarly to α), but this calculation is not as stable and 

precise as that of a.  The second (and most accurate) β determination comes from a 

measurement of the ratio of the off-diagonal magnetic dipole moment in the 6S→7S 

transition (that can be precisely calculated) to β [23]. This determination yields 

β=26.96(5) 3

oa  [22]. The two independent β determinations are combined to give a 

weighted average of β=26.99(5) 3

0a .  

2.2.2 The magnetic dipole  interaction 

          The 6S→7S magnetic dipole transition occurs due to the interaction Hamiltonian          

HM=-μM·Β
ω1

, and its amplitude is of the form: 

                                             
1

1

17 6i
MA e S S

  μΜ                        (2.2) 

where  L S IL S Ig g g     is the magnetic dipole moment and  Β
ω1 

is the magnetic 

flux density  of the optical field driving the transition.  L, S, and I are the orbital angular 

momentum, the electronic spin, and the nuclear spin respectively. gL, gS, gI are the 

corresponding gyromagnetic ratios. For the 6S and 7S states, the orbital angular 

momentum L=0. In addition, the nuclear magnetic spin contribution to μM is much 

smaller than that of the electronic spin, and so the corresponding term can be dropped in 

the expression for μM, leaving S as the only contribution:  SSg  . Due to the 

orthogonality of the spatial part of 6S and 7S states, the matrix element of (2.2) is to first 

order zero. However, configuration interactions and relativistic corrections relax this 

somewhat, allowing a small moment for the 6S→7S transition [24,25,26]. The amplitude 

of (2.2) can be written as: 
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                 
1

1 1 1

1

', '
, ' , ' 1 ,( ) ( ) ( ) i F m

M z m m x y m m F mA k k i k e MC
        

        
 

               (2.3 )          

1 1ˆ / k k k  is the unit wave-vector of the optical field and 7 / 6zM S c S  is the 

magnetic dipole transition moment. This moment has been measured in a series of 

experiments, primarily due to its relation to the PNC measurements [23,27,28,29,30]. The 

most accurate of the existing determinations is M1 = - 4.241(10) x 10
-5

 |μΒ/c| [23]. The 

authors of [31] have shown that M depends on the particular initial F and final F’ states of 

the transition. M can be expressed as: 

                                                  M=M1 + Mhf (F-F’)                                                      (2.4) 

 Mhf  is the off-diagonal amplitude which contributes to the overall moment for ΔF≠0 

transitions and it is due to mixing introduced by the hyperfine interaction. The most 

precise determination of the vector polarizability β (a quantity used in the interpretation 

of the Parity-Violation measurements of the Boulder group), comes from a measurement 

of the ratio Μhf /β [23]. Due to this, several calculations of Μhf have been reported [31, 32, 

33]. Of these, the most accurate is at the 0.2% level:  Mhf  = 0.8094(20) x 10
-5

 |μΒ/c| [31]. 

In this thesis, we make a new determination of the magnetic dipole moment M1 by 

employing ΔF=0 transitions. The particular selection rule implies that our measurements 

are not sensitive to Mhf..  

2.2.3 The electric–quadrupole interaction 

The electric-quadrupole interaction is to first-order forbidden, but due to hyperfine 

mixing, it becomes weakly allowed, with transition amplitude given by [34]:              

                         
1

1 1

2 2
ˆ ˆ7 6 / 2iA e S S E

     S I k S k I       
 

                    (2.5) 

E2 is the electric-quadrupole moment, which has an estimated value of 0.05Mhf [34]. The 

interaction only contributes for ΔF=±1, Δm=±1 transitions. In our experiment, we employ  

ΔF=0, ΔmF=0 transitions, so the E2 does not contribute to our signal.  
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2.2.4 The PNC interaction      

        The electroweak interaction between the nucleons and electrons in the Cs atom is 

responsible for a very small dipole  transition moment between the 6S and 7S states, as 

discussed in (chapter 1).  This moment arises from mixing of opposite parity eigenstates  

( P states)  into the 6S and 7S states due to the electro-weak Hamiltonian Hw. The mixing 

process is illustrated in figure 1.1.   

The amplitude the PNC-induced dipole transition has the general form: 

                                          17 6PNCA S D S  
 

                                                        (2.6) 

where  D er
 
   is the dipole operator and 1


the optical field driving the transition. 6S  

and 7S  are the 6S and 7S states respectively, perturbed by the weak interaction.  APNC 

can be expressed as:  

 

1
1

1
1 1 1 ', '

, ' , ' 1 ,

7 ( ) 6 (2.7)

( )

i
PNC PNC

i F m
z m m x y m m PNC F m

A e S i Im E S

i e iIm E C







   



     

  

    
 


   

7 6zS D SPNCΕ   is the purely imaginary dipole transition moment, arising from the 

electro-weak interaction. It has been measured in a series of experiments, the most 

accurate of which is the one by the C. Wieman group [5], a determination   ( reported in  

terms of the vector polarizability β) that reached the unprecedented level of 0.35 % 

accuracy:  Im(EPNC) /β = - 1.5935(56) mV/cm. This corresponds to a PNC transition 

moment ~ 0.9·10
-11

 e·αB. In comparison, the transition moment for an electric-dipole 

allowed transition is approximately 1 e·αB. The PNC induced moment is much smaller 

than all other moments that are relevant in the M1 measurements (approximately 5·10
-5

 

times smaller than M1), and   we therefore do not need to consider its contribution as a 

systematic effect in the M1 experiment.  
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2.2.5 The two-photon interaction 

          The last 6S→7S excitation pathway we discuss is through an allowed two-photon 

interaction. It is the interference of this large transition amplitude with the weak 

amplitude that we exploit in order to amplify the weak signal in our measurements. In the 

experiment presented in this thesis, we use degenerate photons to drive the two-photon 

pathway. Since the intermediate level of the two-photon process is not real, the transition 

has a modest strength, but its amplitude can be made to be (for the available laser power 

and beam focusing conditions) many orders of magnitude greater than the Stark–induced, 

the magnetic-dipole, and the PNC transition amplitudes.  

        The 6S→7S two-photon transition amplitude, in the general case of non–degenerate 

fields 2  and 3 with frequencies ω2 and ω3 respectively can be shown to be [35,36,37]: 

              

3 32 2

2 3
31 32 2

', '
2 , ' , , '

', ' ( )
, , ' 1

( , ; ', ' ) { ( ) (2.8)
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The form of the A2P is similar to that of the Stark-induced amplitude, as it can be seen by 

comparing (2.8) with (2.1). The scalar term   and  vector term   are real quantities that 

characterize the two-photon amplitude for  polarizations of the fields 2  and 3  parallel 

and perpendicular to each other respectively.  Since a single laser field is used to drive the 

two-photon transition, 2 = 3  and the two photons are degenerate in frequency.  Only 

ΔF=0, ΔmF=0 two-photon transitions are allowed in this case. The transition amplitude 

takes the simple form:   

                                                    
2

2
2

(2 )
2

i
PA e

                                                        (2.9) 

            ΔF=±1 two-photon transitions are   possible if the two photons have different 

frequencies and polarizations. With the use of the F=3→F’=4 and F=4→F’=3 transitions, 

we could make  measurements of the off-diagonal component of the magnetic dipole 

moment Mhf (equation) as well as measurements of the  spin-dependent PNC effect on an 

alternative set of transitions.  This possibility of employing ΔF=±1 transitions, would add 
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to the complexity of the experiment however, since two laser fields would be required to 

drive the two-photon transition, and these fields would also need to be phase-coherent 

with the field driving the one-photon transition. The degenerate two-photon process 

offers an additional advantage, because only ΔmF=0 excitations are allowed for the two-

photon interaction in this case. Since the multiple-pathway interference than we employ 

for the weak transition measurements can  only occur between the same initial and final 

states, the presence of ΔmF=±1 contributions to the net one-photon transition amplitude 

does not affect the measurements, since these contributions do not interfere with the two-

photon amplitude. This is a major advantage of the two-pathway Coherent Control 

scheme, compared to the Stark-PNC interference scheme.  

 2.3 Two-pathway Coherent Control for measuring weak transition moment ratios  

             In Chapter 1 we introduced the two-pathway Coherent Control technique as a 

tool to amplify and detect weak transition amplitude. We now show that the two-pathway 

excitation with a combination of a strong transition and two weak transitions (such as the 

Magnetic dipole and Stark-induced amplitude) can be used for measurements of the ratio 

of the two weak transition moments. We have demonstrated the applicability of this new 

scheme, through a precision determination of the ratio of the magnetic dipole transition 

moment M1 to the vector-polarizability β in the 6S→7S transition, presented in chapter 4.  

In the following sections, we discuss the specifics of the technique for the M1/β 

measurement and   afterwards its future application to measurement of the ratio EPNC/α.  

2.3.1 Application in measurements of M1/β           

             Let's assume that a Cesium atom is in the presence of two phase-coherent optical 

fields, a fundamental field of frequency ω2 at 1079 nm, which drives a   ΔF=0, ΔmF=0  

6S→7S two-photon transition  (i.e. either the F=3→3 or F=4→4) , and its second 

harmonic ω1 (ω1=2ω2) at 539.5 nm, which can drive  one-photon transitions between the 

same states. These one-photon transitions can be the Stark-induced, the magnetic dipole 

or the extremely weak PNC transition. We can neglect contributions of the latter 

interaction in our model, since its magnitude is much smaller than all other contributions 

(~ 5·10
-5

M1). In addition, we do not need to consider electric quadrupole transitions, 
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since these only occur between ΔF=+/-1 states.  The weak pathway that is going to 

interfere with the strong two-photon pathway is a combination of the Stark-induced and 

the M1 transitions. As we will show, the presence of the Stark-induced amplitude (the “β” 

term in particular) serves as a convenient means of calibrating the M1 amplitude, i.e.  it 

allows us to measure the ratio of M1 to β.  

             The interaction of the laser fields with the Cs atoms takes place in a region of 

crossed DC electric and magnetic fields, which along with the direction of propagation of 

the optical beams, define the coordinate system of the apparatus.   The electric field is 

needed to induce Stark-transitions, and the magnetic field defines the quantization axis of 

the system. With a proper choice of the orientation for the DC fields and the polarization 

of the field driving the weak transitions, we can select the transition amplitudes required 

for the measurement, while at the same time unwanted contributions to the net transition 

amplitude are suppressed. Without loss of generality, we define the optical beam direction 

of propagation as the y-axis. With this definition, a Stark-field Ey (i.e. parallel to the 

optical fields) and a magnetic field Bz, combined with linear polarization along the x-axis 

for the ω1 field driving the one-photon pathways (i.e. 1
x
 ),  will induce an  M1 as well as 

a “β” Stark-induced transition. These interactions will interfere with the two-photon 

transition. We show in figure 2.4 the orientations of all the relevant optical and DC fields 

present in the interaction region. The orientation of the ω2 field polarization (collinear 

with the ω1 field) is not shown in the figure, since this does not affect the interference of 

the transition pathways.  

The one-photon amplitudes for the field geometry of figure 2.4 are: 

                                     1 1

1

,
1 ,

iF m
x F mC e                                                                  (2.10) 

                                     1 1,
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                  Figure 2.4:   Experimental field geometry for measurements of Μ1/β 

 

        At this point we must note that the terms (2.10) and (2.11) are the only contributions 

to the total one-photon amplitude, under the assumption of perfect DC field  and optical 

field polarization alignment with the coordinate system of the apparatus. Field 

misalignments will introduce additional terms in the total amplitude that could create 

complications in the experiment.   Fortunately, with the exception of a Stark contribution 

1

xxaE   that we can handle easily in our data analysis (as discussed in chapter 4), all these 

terms are products of two or three misalignments, and therefore their contributions are 

insignificant at the level of the measurement accuracy we achieve in the M1/β experiment 

(~0.3%).  

The (2.10) and (2.11) amplitudes interfere with the two-photon amplitude: 

                                      
22
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 The transition rate is the modulus squared of the net amplitude:   
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Terms which are second order in the ε
ω1

 field have been omitted from (2.13) since their 

contribution is negligible. The interference of the one-photon and two-photon pathways 

appears in the excitation rate through the cross-term in (2.13). This term has an Ey-

dependent amplitude: 

                                        1
2, 2

2 , 1( ) 2 F m
y P x F m yK E A C M E                                       (2.14) 

The phase of the cross-term consists of the weighted phase-difference between the two 

optical fields 122       as well as an Ey-dependent phase: 

                                                  1

1

tan
y

y

E
E

M


   

  
 

                                                  (2.15)                  

 

Figure 2.5: Amplitude (left) and phase (right) of modulation in the net transition rate as a function 

of the Stark field Ey.  

               The amplitude of the cross-term has a convenient form which we exploit in 

order to determine the magnetic dipole transition amplitude. K(Ey) is a hyperbolic 

function of the electric field Ey.  We show a plot of K(Ey) ( normalized to K(0)), vs. Ey in 

Figure 2.5. Observations of this amplitude for different electric field values, allow us  to 
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compare the M1 moment to the Stark-moment  βEy, and obtain the ratio 1 /M  . The 

ability to measure M1 in terms of β, justifies the selection of  a dual (M1 and “β”) one-

photon excitation pathway.  The advantage of this approach is that knowledge of 

parameters such as the two-photon amplitude or the optical field intensities is not 

required. We only require that these parameters remain stable during the course of the 

measurements.  As discussed in chapter 4, the interference term in the excitation rate in 

(2.13) can be modulated by sweeping the phase difference Δφ, as a means of determining 

the amplitude K(Ey).  

            In addition to measuring the 1 /M   ratio, it is possible to determine the sign of  

M1/β. This requires observations of  the phase-shift δ(Ey) of (2.15) vs. Ey. Figure 2.5 

shows the expected dependence of δ(Ey) vs. Ey.  

           One might ask why we choose to measure the M1 moment in terms of β instead of 

the scalar polarizability α.  The primary reason for this is because in the first case the two 

weak amplitudes (M1 and βΕy) add in quadrature, as (2.13) shows. This feature reduces 

the measurement sensitivity to stray electric fields present in the interaction region. In the 

presence of a stray electric field ΔEy, the amplitude of modulation (2.14) becomes: 

    1
2, 2 2

2 , 1( ) 2 F m
y P x F m y yK E A C M E                                 (2.16) 

The effect of the stray field is to shift the vertex of the hyperbola of figure 2.5. However,   

the value of M1/β, which can be determined as the ratio of the limit of K(Ey) for large Ey 

to Kmin, is unaffected by the presence of ΔEy. If instead we wanted to measure M1/α, we 

would choose a  field geometry that activates the α-Stark and M1 amplitudes (DC electric 

field in the z-axis, and optical polarization 1 1 1ˆ ˆ
x zx z      ). The M1 and α-Stark 

amplitudes add in-phase, resulting in amplitude for the interference term:   

               ,
2 1 ,( ) 2 F m

z P F m x z zK E A M C aE                                                  (2.17) 

This amplitude increases linearly with Ez. A determination of M1/α is possible by making 

measurements at different Ez values. M1/α is obtained as the ratio of the slope of K(Ez) to 
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K(0). In the presence of a stray field ΔEz, K(0) would shift by z za E  . Therefore the 

measurement is sensitive to stray fields.   

          A second reason why measuring M1/α is more challenging, is because the scheme 

just described would actually yield ,
1 , /F m

F mM C  . ,
,

F m
F mC  is a  factor proportional to mF. We 

would have to measure precisely the atomic population distribution among the different 

mF levels, in order to obtain M1/α. This is not necessary in the M1/β scheme, since as it 

can be seen in (2.14), the ,
,

F m
F mC  is factored-out in the K(Ey) amplitude. However,  

considering that the population among Zeeman sublevels is generally uniform, it follows 

that no interference signal between the two-photon and the M1 and β-Stark amplitudes 

can be observed without some spin-polarization, since atoms in opposite mF states 

contribute with opposite signs to the amplitude of (2.14). In Chapter 3, we discuss the 

state-preparation we perform to the atoms, which allows us to transfer more than 90% of 

the atoms to an extreme mF state.  

 

2.3.2 Application in measurements of Im(EPNC)/α                    

            In the final section of this chapter, we illustrate how the two-pathway Coherent-

Control scheme can be used for future measurements of the extremely weak PNC 

moment.  The experimental principle is very similar to the one presented for the M1/β 

determination.  The combination of a PNC and Stark-induced amplitude (the α-Stark in 

this case) interfere with the strong two-photon amplitude. These two weak amplitudes 

add with quadratures phases, which is necessary, as explained in the previous section, in 

order to reduce sensitivity of the measurement to stray electric fields. Measurements of 

the amplitude of modulation in the overall excitation rate allow a determination of the 

ratio of Im(EPNC) to a.   

           The field geometry which induces the α-Stark and PNC excitations, while 

suppressing other contributions, is shown in figure 2.6. The optical fields propagate in the 

y-direction, and the DC electric and magnetic field point along the z-axis, as does the  εω1  

optical field driving the weak transitions. Owing to the extremely small size of the PNC 
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moment (~5·10
-5

M1), careful control of the various field orientations and uniformity 

becomes critical, since very small imperfections can introduce large (relative to the PNC 

moment size) systematic contributions to the overall one-photon transition amplitude.  

The hardships involved in characterizing and controlling the various systematic 

contributions to the signal, largely explain the long term character of  Atomic PNC 

experiments.   

                                

              Figure 2.6:   Experimental field geometry for measurements of Im(EPNC)/α 

  For the field geometry of figure 2.6, the Stark-induced and PNC amplitudes are given 

by:  

                                            1 1i
St z z e                                   (2.18) 

                                          
1

1 ,
,( ) F m i

PNC PNC z F mA iIm E C e
                                                (2.19) 

These weak amplitudes interfere with the two-photon amplitude, resulting in an overall 

transition rate: 
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The amplitude and phase of the modulating part of the transition rate are given by:  
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Similarly to the method discussed in section (2.3.1), observations of the amplitude K(Εz) 

for various  electric fields, can yield the ratio ,
, ( ) /F m

F m PNCC Im E  , and observations of 

the phase-shift δ(Ez) vs. Ez yield the sign of ( ) /PNCIm E  .  Figure 2.7 shows plots of the 

expected K(Ez) and δ(Ez)  vs. Ez.    

                                         

   

Figure 2.7: Amplitude (left) and phase (right) of modulation in the net transition rate as a function 

of the Stark field Ez.  
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3.  THE APPARATUS FOR THE M1 EXPERIMENT 

 

 

3.1 Overview of the experimental apparatus 

            The Coherent Control scheme we demonstrate in the measurements of the 

magnetic dipole transition amplitude as well as its future extension to the PNC 

measurements makes use of a beam of Cs atoms. An atom beam is  a convenient platform 

for the weak transitions experiments, because we benefit from employing a  proven 

detection scheme of the 6S→7S excitations (developed by the Colorado group in their 

PNC experiments) which is much more efficient  than the more commonly used scheme 

of  fluorescence detection  through imaging. In addition to this, our Coherent control 

scheme requires atoms prepared to a particular (F,mF) component of the 6S1/2 ground 

state.  The atom beam provides a nice environment for the state preparation, in which 

preparation can be done in a location remote from the 6S→7S interaction region, and so 

the various static field requirements for both the preparation and interaction region can be 

met without significant difficulty.  Alternative platforms for the weak transition 

experiments could be a Magneto Optical Trap (MOT), or a vapor cell, but in these, state 

preparation and subsequent detection of the 6S→7S excitations would not be possible to 

implement with the ease that the atom beam permits us to do.  In addition, in these 

platforms it would be much more challenging to satisfy the static field requirements, 

especially in the interaction region of the atoms with the optical fields.  

           The Cs beam is housed in a vacuum chamber, and along its path it intersects 

multiple laser beams in three different regions: The preparation (or optical pumping), the 

interaction, and the detection region. We show a schematic layout of the apparatus in 

figure 3.1.  

           In the optical pumping region, the atom beam crosses a pair of two laser fields at 

852 nm, which optically pump the atoms into a single (F,mF) hyperfine component of the 
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6S1/2 ground state. This can be either the (3,3), (3,-3), (4,4) or (4,-4). Preparation to a 

single mF level is necessary in order to observe interference between the two-photon 

transition amplitude and the weak amplitude (M1, β-Stark or EPNC), since the transition 

amplitudes for Zeeman sublevels of opposite mF have opposite signs. In the absence of at 

least some mF polarization, the interference would vanish.  

 

         

      Figure 3.1: Schematic layout of the experiment for the M1 measurements  

    

             After state preparation the atoms travel downstream and enter the interaction 

region. In this region, atoms intersect two overlapping laser beams, one at frequency ω1 

(λ1=539.5 nm) and another at frequency ω2=ω1/2 (λ2=1.079 μm).  The component at ω1 is 

produced via frequency doubling of ω2, so the two laser fields are phase-coherent. The ω2  

component excites a  strong (in relative terms) two-photon transition between the 6S and 
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7S states, and the ω1 component drives a weak  one-photon transition between the same 

states, which can be a Stark-induced, a magnetic dipole, a PNC transition or a 

combination of these. We are able to select which of these weak interactions are active by 

appropriately setting the DC electric field and magnetic fields, present in this region, as 

well as  the laser polarization ε
ω1

  (see section 2.3.1).   

             The Coherent control scheme we introduced in chapter 2, and we employ for the 

weak transition measurements, relies on the ability to modulate the quantum mechanical  

phase-difference between the strong and weak amplitudes, by modulating the optical 

phase-difference of the two mutually coherent lasers fields driving the two transitions 

pathways.  We modulate this optical-phase difference in our apparatus, by splitting the 

green and IR beams in a Mach-Zehnder interferometer, phase-delaying the 540 nm beam, 

and then recombining them. The delay is imposed by double-passing the beam through a 

galvanometer-mounted plate. By sweeping the phase of the green beam, we create a 

modulation in the  6S→7S excitation rate, synchronous with the 540 nm phase 

modulation, which allows us to separate the two-photon and weak amplitude interference 

from the (much stronger) two-photon rate through phase-sensitive detection in the 

6S→7S transition rate.  

           The detection of the 6S→7S excitation rate is done with a scheme developed by 

the Colorado group for their PNC experiment [5]. In this scheme, further downstream 

from the interaction region, atoms intersect another laser beam at 852 nm.  This laser is 

tuned to excite atoms which, after undergoing the 6S→7 S transition, have decayed down 

to  the hyperfine component of the ground state which was depleted during the optical 

pumping process. The detection laser puts these atoms into a cycling transition of the D2 

line, thus scattering many photons and making the detection of the 6S→7S transition very 

efficient.  A large-area photodiode placed in proximity to the detection region collects 

some of the emitted fluorescence. With this scheme, the collection efficiency (percentage 

of 6S→7S excitations we are able to detect) approaches unity, whereas in the case of 

fluorescence detection from the interaction region, the efficiency would likely be at least 

an order of magnitude smaller.  
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      3.2 Laser instrumentation for the M1 transition experiment 

            In this section we describe the laser systems we have constructed for the Cs weak 

transition measurement apparatus. These are four External Cavity Diode Lasers (ECDL) 

at 852 nm and another ECDL system at 1079 nm. A pair of 852 nm lasers are necessary 

for state preparation of the Cs atom beam, a single  laser is needed for detecting the atoms 

undergoing 6S→7S excitations, and another is used for the Raman Spectroscopy 

employed to determine the quality of the state preparation. The 1079 nm laser is used to 

induce the 6S→7S two-photon transitions, and it is also the source for the second 

harmonic generation of the 540 nm, driving the 6S→7S one-photon transitions. We 

discuss the required specifications for these lasers and we provide details regarding their 

construction.  We also present the optical setups and design of electronics necessary to 

control and frequency stabilize these lasers.  

 

3.2.1 The 852 nm External Cavity  Diode Laser systems   

           The state preparation of Cs atoms into a single hyperfine component of the ground 

state, as well as the detection of atoms undergoing 6S→7S transitions, require CW  lasers 

at 852 nm. Two lasers are necessary for preparing atoms and another for detecting the 

6S→7S transitions. We need to be able to tune and frequency stabilize each of these 

lasers to one of the components of the D2 line (6S1/2 F=3→ 6P3/2  F=2, 3, 4 and 6S½ 

F=4→ 6P3/2  F=3, 4, 5). The three lasers must generate sufficient power to saturate the 

transitions they excite. In addition, the frequency noise of the lasers, when stabilized to a 

reference resonance, has to be low enough so that the noise introduced by the lasers to the 

detection of 6S→7S transition rate does not affect the detection significantly.   

         The above requirements can be satisfied by ECDL systems [38,39].  ECDLs are 

easy to construct, requiring   a minimal number of mostly readily available components 

and are therefore very economical compared to other alternatives (such as Ti:Sapphire or 

Dye lasers). In addition, they are very easy to operate and require very little maintenance. 

The main feature of  an ECDL is the use of optical feedback from a diffraction grating in 

order to enhance the spectral characteristics and tunability of a laser diode. In what 

follows we give a brief introduction to  the Littrow ECDL, which is the most common 
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type of an ECDL and the type that we have implemented for our experiment. An 

alternative, but less common external cavity design is the Littman-Metcalf design, which 

offers narrower linewidth, but has a somewhat more complicated setup. Another 

interesting approach to enhancing the tunability and spectral purity of a laser diode, is  

the use of optical feedback provided not by a grating, but instead by an optical cavity 

[40]. It is known to provide very narrow linewidths (20 kHz or less), but compared to a 

Littrow design, it allows  limited wavelength tunability and it is more costly than an 

ECDL, since a separate optical cavity is required for each laser system.  

             In a Littrow laser, light from a laser diode is directed to a diffraction grating, 

aligned such that the diffracted light is injected back to the diode. When subjected to 

optical feedback, the laser diode is forced to oscillate at the frequency at which the 

feedback is maximum. This has two important consequences. First, the  laser diode 

linewidth is reduced from about 30 MHz to ~ 1 MHz, i.e. from a value greater than the 

typical atomic resonance linewidth to one which is lower  than the resonance linewidth. 

Second, it is possible to use the grating to substantially enhance the laser diode tunability. 

By rotating the grating, the spectral component of the diode’s gain profile fed back to the 

diode can be swept, resulting in a laser frequency which can be “pulled” by as much as 

several nm away from the diode’s free running wavelength (coarse grating tuning). In 

addition, fine wavelength tuning is possible   by changing the external cavity length, 

defined by the grating and the back facet of the diode chip. This is accomplished with a 

piezo-ceramic element (PZT) that both rotates and translates the diffraction grating (PZT 

tuning). The PZT tuning range is a fraction of the external cavity free spectral range 

(FSR).  Additional wavelength control is obtainable by tuning the laser diode injection 

current and temperature. In fact, in order for the laser to run in a single mode of the 

external cavity, a proper combination of injection current, temperature and PZT cavity 

length adjustment is necessary. The light reflected from the grating is the ECDL output.    

            We have constructed three nearly identical Littrow lasers at 852 nm.  These 

systems use  a  Thorlabs non AR-coated laser  diodes (L850P030) and  output 15-20 mW.  

A schematic of the design is shown in figure 3.2.  The diode laser can is placed   inside a 

commercial collimation tube containing a lens that collimates the highly diverging beam 

http://www.thorlabs.com/thorproduct.cfm?partnumber=L850P030
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emitted from  the diode chip.  The tube is housed in an aluminum rectangular holder, 

which is mounted on an aluminum baseplate. The diffraction grating (1800 lines/mm), 

providing optical feedback to the diode, is mounted on a ½” mirror mount which is also 

mounted on the same aluminum baseplate as the diode holder. A PZT stack properly 

placed on the mirror mount allows fine grating rotation and tuning of the external cavity 

length. Injection current to the diode is provided by a Thorlabs laser diode controller. The 

laser diode temperature is actively stabilized with  a Thorlabs  temperature controller, 

along with a AD590 temperature sensor mounted on the laser diode holder, and a 

thermoelectric cooler (TEC) placed under the aluminum base plate. This latter feature 

results in a temperature stabilized external cavity. This is significant because frequency 

drifts associated with temperature changes in the lab are virtually eliminated, leaving 

humidity drifts as the main cause for frequency changes. When properly tuned, the 

unlocked lasers never mode-hop (except during some summer days with large humidity 

changes).  

 

                              

              Figure 3.2:  A drawing of the 852 nm External Cavity Diode Laser system  

 

              Lasers are in general very sensitive to external perturbations, and good acoustic 

and mechanical isolation from their environment is required to avoid unnecessary 

conversion of environmental noise to frequency noise.  The 852 diode laser systems are 

housed inside ½ “ thick aluminum boxes for acoustic isolation. Isolation from mechanical 
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vibrations coupled through the table, is provided by a layer of sorbothane placed between 

a massive aluminum block onto which the laser baseplate sits (also serving as a thermal 

heat sink for the TEC) and the aluminum enclosure.  The mechanical and acoustic 

isolation is sufficiently good so that the lasers, when frequency stabilized, will remain 

locked even when objects are dropped on the optical table.  The use of sorbothane creates 

a slight pointing instability in the lasers. With the optical table floated, the laser baseplate 

center of mass can shift, and change the beam direction, which is a major cause of 

concern. We have not needed to float the table however, and so this slight instability has 

not been an issue.  

    It is worth discussing the particular external cavity length chosen for our 852 nm 

lasers.    The cavity length is approximately 2.5 cm corresponding to an FSR of ~ 6 GHz. 

This FSR is a convenient choice which is neither close to  9.2 GHz nor 4.6 GHz. This is 

the separation (or  ½ the separation respectively) between the two hyperfine components 

of the Cs ground state. As discussed in [18], an ECDL operating on a particular single 

external cavity mode may have some power present in adjacent external modes. For 

lasers used to optically pump the Cs atoms, if the external mode spacing were close to 9.2 

GHz (or close to a multiple of 4.6 GHz) the laser’s slight multimode behavior could 

induce unwanted transitions that tend to cancel the pumping process. A similar issue can 

arise with the detection laser. In that case, transitions related to spectral impurity tend to 

add an unwanted background to the detected signal.  

 

3.2.2 The 852 nm laser frequency stabilization scheme 

         The weak transition experiments require that the frequency of the  852 nm lasers be 

well stabilized to the peak of the transitions  the lasers excite in the atom beam. This 

requirement is particularly important for the detection laser, since the frequency noise 

present in this laser is directly observable in the 6S→7S detection noise. Frequency 

stabilization involves three things: a resonance that provides a reference frequency, a 

scheme  to obtain  an error signal between the reference frequency  and the laser 

frequency and an electronic feedback loop filter that uses the error signal to stabilize the 

laser frequency to the given resonance frequency.  We have implemented saturated 
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absorption spectrometers in order to obtain Cs D2 line resonances that serve as our 

reference resonances, and we have used frequency modulation spectroscopy to obtain the 

necessary error signals. A simple loop filter is used to stabilize the laser frequency by 

applying the feedback signal to the laser PZT and the laser injection current.  

 

 

Figure 3.3: The optical setup for obtaining a saturated absorption spectrum and simplified 

schematic of the frequency modulation spectroscopy employed to obtain an error signal as well as 

the feedback loop that frequency stabilizes the  852 nm  lasers.  

 

            Saturated absorption spectroscopy is a type of pump-probe spectroscopy that 

provides nearly Doppler-free spectra of atomic and molecular transitions in a vapor.  In 

this straightforward-to-implement scheme (Figure 3.3) two counter-propagating beams, a 

strong beam that saturates a given transition called the pump, and a much weaker one, the 

probe, overlap inside cell containing an atomic vapor. Due to the opposite Doppler shifts 

seen by the atoms for the two beams, atoms only absorb from one beam or the other.  The 

exception to this is the class of atoms with a velocity corresponding to small Doppler 
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shifts, within the natural linewidth of the transition. Although these atoms can in 

principle absorb from both beams, since the pump is saturating the transition, little probe 

absorption can occur. Therefore, as the laser frequency is scanned, a probe absorption 

measurement will show a Doppler broadened resonance with a decreased absorption at 

the center frequency of the transition. This dip in absorption represents the (nearly) 

Doppler-free resonance, and in the absence of power and pressure broadening, its width 

should be simply  the resonance natural linewidth. The absorption signal from a second 

probe beam (not overlapping the pump) is subtracted from the probe signal, to provide a 

spectrum free of the Doppler broadened background. A typical saturated absorption 

spectrum for the F=4→F=3, 4, 5 component of the D2 line is shown in figure 3.4 a).  

                  

 

Figure 3.4: Saturated absorption spectrum obtained for the 6S1/2 F=4 → 6P3/2 F=3,4,5 transitions 

(a), and the corresponding error signals (b). The intermediate resonances, labeled c.o., are 

crossover resonances. 
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            To obtain an error signal from the saturated absorption spectra, frequency 

modulation spectroscopy is employed [41]. The laser injection current is dithered at a 

frequency v of approximately 30 kHz, which imposes a small modulation on the laser 

frequency with an amplitude of a few hundred kHz. This modulation appears as a 

modulation in the saturated absorption signal when the laser frequency is on the side of a 

resonance. With the use of an electronic mixer, this signal is mixed with the same dither 

signal used to modulate the laser frequency. The mixer output has a component near the 

DC and a component oscillating at 2v. The DC component, which is proportional to the 

derivative of the resonance, serves as the error signal. Figure 3.4 b) shows the 

corresponding error signal of the spectra of Fig. 3.4 a).                   

 

Figure 3.5: Simplified schematic of the circuit used to obtain an error signal from the saturated 

absorption spectrum and the loop filter used to stabilize the frequency of the 852 nm lasers. All 

op amps shown are OPA227.   
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          A feedback loop filter is employed to lock the laser frequency to the peak of the 

saturated absorption resonance. The loop consists of two paths: a fast path, which applies 

the feedback to the injection current, and a slow path which provides feedback  to the 

PZT. The fast path is essentially the error signal, has a bandwidth of 500 Hz and corrects 

for higher frequency excursions. The slow path consists of an op-amp integrator. The 

integrator has a very high gain at DC (equal to the open loop gain of the op-amp) which 

is needed for tight locking to the peak of the resonance.  Figure 3.5 shows a schematic of 

the circuit used to derive an error signal as well as the loop filter that stabilizes the laser 

frequency  

          The performance of the 852 nm locking scheme has been evaluated by 

heterodyning two of the 852 nm lasers on a fast photodiode. These lasers were locked to 

adjacent saturated absorption peaks (frequency difference of 80 MHz). From the width of 

the peak in the photodiode’s power spectrum at 80 MHz, and assuming equal linewidths 

for the nearly identical lasers, we estimate an individual linewidth of ~ 1.5 MHz on  the  

1 sec scale.    

 

3.2.3 The 852 nm laser for Raman spectroscopy 

           As discussed in section 3.10, there is a need for measuring the population 

distributions among the various mF levels of the F state to which the atoms are optically 

pumped. For this purpose we perform off-resonant Raman spectroscopy between the two 

components of the 6S1/2 ground state, and measure the relative mF populations. We have 

constructed an 852 nm ECDL whose injection current is modulated at 4.6 GHz to provide 

frequency sidebands that serve as our two Raman components, needed for the 

spectroscopy. Alternative methods to produce a pair of coherent sources, detuned by 9.2 

GHz from each other, would be either by use of a microwave-frequency Electro-Optic 

Modulator (EOM) at 4.6 GHz, or by phase-locking of two independent lasers,   

          Laser diodes are known to have significant frequency modulation capabilities, 

which extend to as far as a few GHz in frequency [38]. However, the modulation depth of 

a typical laser diode at the required frequency of 4.6 GHz is very small. Fortunately, it is 

possible to take advantage of the optical feedback in an ECDL in order to enhance the 
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effect of the modulation and obtain appreciable laser sidebands in the microwave regime. 

The requirement to achieve this is that the external cavity FSR matches the desired 

modulation frequency.  In this case, the small amplitude sidebands produced by the laser 

diode, are fed back to the diode and get amplified since the corresponding fields can 

resonate inside the external cavity, and because of the inherent sensitivity of the laser to 

optical feedback. The laser can be thought of as lasing in three adjacent external cavity 

modes (carrier and the two 1
st
 order sidebands), and these modes are phase locked to each 

other.          

 

                                       Figure 3.6: Schematic of the Raman laser design 

  

               The 852 nm Raman laser is similar in design to the 852 nm ECDL described in 

(3.2.1). There are two distinctive differences however. The first is the longer external 

cavity length, ~3.3 cm, that corresponds to the required FSR of 4.6 GHz. The other 

difference is a change that enhances the temperature stability of the laser diode. In 

particular, the holder that houses the tube containing the laser diode and the collimating 

lens is mounted directly on the TEC, which is in turn in contact with the cavity baseplate 

(figure 3.6). This way the feedback loop that stabilizes the diode temperature can respond 

faster and handle temperature shifts better. The shifts are caused by small changes in the 

microwave power coupled to the diode, occurring as the microwave frequency is 

scanned.  The drawback of this approach is that the cavity baseplate now acts as the TEC 

Aluminum baseplate 

Grating 

TEC 

Copper holder 

Invar bar 

Screw 
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heat sink, and so to improve long term stability, the grating mount is mounted on a small 

invar bar, such that temperature drifts of the aluminum baseplate have little effect on the 

external cavity length.  

          The microwave electronics used to produce the 4.6 GHz sidebands consist of a 

tunable voltage controlled oscillator (VCO) of this frequency, followed by three 

consecutive amplifiers, and a bias-tee which combines the DC injection current and the 

microwave signal. The microwave power at the output of the bias-tee is ~ 16 dBm.  The 

actual power coupled to the diode is not known, and is most likely only a small fraction 

of the 16 dBm. Most of the power is expected to reflect back, due to impedance 

mismatching. This does not seem to matter though.  As it can seen in the Raman laser 

spectrum of figure 3.7, slightly more than 50% of the total power can be put into the 1
st
 

order sidebands, which is sufficient for the Raman spectroscopy.   

             

Figure 3.7: 852 nm Raman laser spectrum. The largest amplitude peaks correspond to the laser 

carrier, the intermediate amplitude peaks are 1
st
 order frequency  sidebands at 4.6 GHz  and the 

smallest amplitude peaks are 2
nd

 order sidebands. The total fraction of power in the 1
st
 order 

sidebands is ~ 50%. The spectrum was obtained with a 300 MHz scanning Fabry-Perot spectrum 

analyzer.  
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          The off-resonant Raman spectroscopy requires that the frequencies used to transfer 

the mF populations from one component of the ground state to the other be off-resonant 

from the 6P3/2 transition, so that population is not excited to the 6P3/2 state. In the scheme 

we have implemented, the high frequency  1
st
 order sideband  of the Raman laser is 

frequency stabilized to a frequency 160 MHz below the F=3→F=2 transition frequency 

(see figure 3.22).  To achieve this, the laser output is passed through an AOM and the 

frequency up-shifted beam is sent to a saturation absorption setup, where the high-

frequency sideband of the laser is locked to the F=3→2 transition. The loop filter used for 

locking the laser is identical to the one described in (3.2.2). The un-shifted beam is used 

in the actual experiment. We show a schematic of the Raman laser system in figure 3.8.  

 

 

 

Figure 3.8: Schematic of the setup for obtaining frequency sidebands at 4.6 GHz from an 852 nm  

ECDL, with a 160 MHz frequency offset from the D2 line resonance frequencies.   
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3.2.4 The 1079 nm ECDL system  

          The two-photon 6S→7S excitation in the weak transition experiments requires a 

laser at 1079 nm.  The available source needs to output as much power as possible, in 

order to obtain a large  SNR in the 6S→7S rate, and also a high efficiency for the second 

harmonic generation at 540 nm. Advances in rare earth doped fiber amplifier technology 

have made high power IR amplifiers commercially available, with outputs that may reach 

as much as 50 W in the IR range. We have acquired a Keopsys fiber amplifier, capable of 

outputting ~ 12 W at 1079 nm, and we have constructed an ECDL at 1079 nm to seed the 

amplifier. The option of purchasing a commercial laser system to seed the amplifier was 

also considered, but the homebuilt approach is considerably less expensive and offers 

greater versatility than a commercial system.  

            The 1079 nm laser is of the Littrow type and its design is very similar to that of 

the 852 nm lasers described in (3.2.1). The laser diode is from QPhotonics, capable of 

producing about  80  mW of light in the external cavity configuration. The diode has an 

AR-coating on the front facet, with a specified 2% reflectivity.  There are two features of  

the 1079 laser that differ from the 852 nm design:  the grating resolution (1200 lines/mm 

instead of 1800 lines/mm) and the cavity length (4 cm, compared to 2.5 cm for the 852 

nm lasers).  It is desirable to use a grating with as high a resolution as possible, since the 

larger the resolution, the narrower the laser linewidth [42],  but the 1800 lines/mm grating 

of the 852 nm lasers  has  a very poor diffraction efficiency at 1079 nm, so a lower 

resolution grating had to be used.  The longer cavity length was chosen because it is 

known to result in a lower ECDL linewidth. This can be explained in terms of the higher 

spectral purity for light fed back to the laser diode, obtained for a larger diode-grating 

spacing. The narrow 1079 nm linewidth is needed in order to reduce frequency noise in 

the 6S→7S excitation rate. A very long cavity length on the other hand reduces the 

tunability and thus the 4 cm cavity length is a compromise between the competing 

requirements for low linewidth and decent tunability. The ECDL free spectral range is 

about 3.5 GHz with a single mode frequency scan range of ~ 1.5 GHz.  
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3.2.5 The 1079 nm laser frequency locking scheme 

          The 1079 nm ECDL needs to be frequency locked to the Cs 6S→7S resonance, and 

the lock has to be tight enough so that the frequency noise on the laser does not add 

substantially to the 6S→7S transition frequency noise. The error signal required for 

locking can be obtained from either the atom beam, or from a Cs cell. If the laser is to be 

locked directly to the resonance, in order to obtain an error signal, the frequency needs to 

be dithered in the acoustic region, typically between 5 and 50 kHz (~30 kHz for the 852 

lasers). Due to bandwidth limitations of the 6S→7S detection scheme in our atom beam 

apparatus, (see section 3.14), detecting a kHz-type modulation on the resonance is not 

possible. This leaves the Cs cell as the only option for locking. However, there are quite a 

few advantages for using this.  First, the two-photon transition in the cell can have a very 

narrow linewidth (narrower than that of the atom beam). This is possible by employing 

counter-propagating laser fields to drive the two-photon transition. In this configuration, 

atoms can absorb a single photon from each beam and become excited with the same 

probability, regardless of their velocity class. This occurs since the net Doppler shift 

( )k v k v   
  

 in the atom frame is zero. Doppler broadening is thus eliminated and the 

resonance width is nearly natural linewidth limited.  For the purpose of locking, a narrow 

resonance is desired, since it results in an error signal with a steep slope, which is an 

obvious requirement for a tight lock. In our apparatus, the linewidth in the cell is two 

times smaller than that of the atom beam (7 MHz and 14 MHz, respectively).   In addition 

to a steeper error signal, a cell allows a higher SNR to be obtained  for the error signal, 

since the available atom density can be much greater than that of an atom beam, and also 

because of the higher optical intensity available (due to the ability to focus the beams 

tighter).            

         The frequency modulation technique and electronics used to derive an error signal 

from the cell and lock to the 6S→7S resonance peak have been described in (3.2.2). We 

show a schematic of the relevant setup in figure 3.9. Compared to the 852 nm locking 

scheme, the main difference is the method by which the resonance is obtained, the two-

photon Doppler-free spectroscopy in this case.  A small fraction of the fiber amplifier 

output (~4% or ~ 450 mW) is picked off by a beam sampler and is directed to the vapor  
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Figure 3.9: Simplified schematic of the 1079 nm setup for obtaining an error signal and locking to 

the 6S→7S two-photon transition. Abbreviations: OI: Optical isolator, FC: Fiber coupler, PBS: 

polarizing beam splitter, PMT: photomultiplier, AP: Anamorphic prisms.  

 

        

      Figure 3.10: The 6S1/2 F=3 → 7S1/2 F=3 two-photon resonance, obtained by scanning the 1079 

nm laser.   
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cell. The beam is focused using a 15 cm lens, resulting in a ~ 60 μm waist (radius) at the 

center of the 8 mm long cell, housed inside an aluminum enclosure. Upon exiting the cell, 

the beam passes through a second lens, and gets focused on a retro-reflecting mirror, 

retracing its path back to the cell. The beam retro-reflection results in a Doppler-free 

resonance. A spectrum of this resonance is shown in figure 3.10.  A photomultiplier 

(PMT) collects (through a lens) some of the 852 nm fluorescence, emitted by atoms 

decaying to the ground state through the 7S1/2→6P3/2 channel (~67% branching ratio). An 

852 nm interference filter placed in front of the PMT cathode, blocks any unwanted light. 

The cell has a cold finger which is heated at  ~ 70 
o
C (with the main body heated at a 

higher temperature),  enough to produce a very large PMT photocurrent.           

 

 

3.3 The 1079  nm second harmonic generation 

           The one-photon pathway of the 6S→7S excitation is driven by light at a frequency 

which is twice the frequency of the 1079 nm field driving the strong two-photon 

pathway. In order to be able to control the interference of the two pathways, phase 

coherence between the two fields is required. To ensure phase-coherence, the 540 nm 

field is produced by second harmonic generation of the 1079 nm light, which is a 

coherent process. In addition to the coherence requirement, the available 540 nm power 

has to be as high as possible, in order to obtain a strong modulation in the 6S→7S rate. In 

our apparatus, we use a Magnesium-oxide doped, periodically-poled LiNbO3 crystal 

(MgO:ppLN), to perform second harmonic generation with quasi-phase matching [44]. 

With a single-pass of ~ 11 W of IR through the crystal, we generate ~ 1 W of green 

power. This level of power is adequate for the M1 experiment. The observed conversion 

efficiency level agrees with an estimate based on the theory of Boyd and Kleinman [43].  

               The ppLN crystal (purchased from Covesion) is 20 mm long and contains five 

periodically poled sections, each with a different poling-period, so that quasi-phase 

matching can be achieved in the range 1058-1080 nm. The crystal is housed in a 

commercial oven assembly, which allows active temperature stabilization of the crystal in 

the range of 20 to 220 
o
C. The crystal faces are AR-coated with a specified residual 
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reflectivity of less than 0.5 % for both the IR and green light. With temperature tuning at 

~210 
o
C we achieve quasi phase-matching conditions at 1079 nm. Because of the narrow 

cross-section of the periodically-poled region (0.5 x 0.5 mm), proper alignment of the 

fundamental beam through the crystal is necessary. For this, the crystal is mounted on a 

rotation stage, which is mounted on a mirror mount, and the mirror mount is in turn 

attached to an X-Y-Z translation stage. With so many degrees of freedom, alignment is 

easy. Using a 12.5 cm lens, the 1079 nm beam is focused to the crystal, with a waist of 

approximately 45 μm at the crystal center. A tighter focus yields higher conversion 

efficiency, but this is not without trouble for our experiment. We believe that heating in 

the crystal is responsible for slight instabilities in the modulation measured on the 

6S→7S rate, as discussed in section X, and therefore a higher IR intensity in the crystal 

would probably increase the level of these fluctuations. Upon exiting the crystal, the 

green and IR beams are incident on a collimating silver-coated mirror.  We show a 

schematic with the relevant optical setup in figure 3.11.  

 

 

Figure 3.11: Optical setup for frequency doubling of the 1079 nm beam with the ppLN crystal.  

 

             Careful optimization of the alignment is required in order to obtain the optimum 

conversion efficiency and at the same time retain a nice circular beam shape for the green 

and IR beams at the crystal output. It was observed in several  instances that while 
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tweaking the crystal position, the two-photon signal level in the atom beam can drop by 

as much as a factor of two, while at the same time the  fundamental power directed to the 

atoms remains unchanged. We attribute this to IR beam distortion due to poor alignment 

through the crystal. The alignment optimization is as follows:  Initially, the crystal is 

aligned such that the produced second harmonic beam, when observed far away from the 

crystal location, looks circular (a dichroic reflector can be used to separate the green 

output from the fundamental). This can be done at low IR input. Then, the IR power is 

increased to the maximum level available. This will create a slight thermal lensing effect 

in the focusing lens, which changes the position of the focus in the crystal, making it 

necessary to translate the crystal closer to the lens to re-optimize the focus position. In 

addition, the increased IR intensity in the crystal causes some heating, and so the crystal 

temperature needs to be reduced slightly to obtain optimum power. With proper 

alignment, the conversion efficiency remains high for long periods of time (weeks), and 

only a slight temperature optimization may be necessary from day to day.  

 

3.4  Vacuum chamber construction 

             The vacuum chamber that houses our Cs beam was designed with a few key 

considerations. First, it is large enough to fit all the necessary magnetic field coils, 

electric field plates, cryo-baffles  and other components that may be required for the 

future PNC experiments. Its dimensions are 55x50x40 cm. Second, unlike most vacuum 

chambers, it was made from aluminum, as part of an effort to maintain stray magnetic 

fields in  the interaction region to as low a level as possible. This requirement is  more 

stringent for the PNC measurements. Third, several pairs of optical windows were 

included  that allow passage of multiple beams through the chamber. In total, there are 

four  pairs of 2” windows with AR-coating at 852 nm and one pair of 1” windows with 

dual-AR 1079-540 nm coating. Lastly, it was designed with a (heavy) lid at the top that 

can be removed easily, so that whenever needed, access to the chamber interior can be 

easy and quick. A long o-ring running along the top of the chamber walls forms a 

vacuum seal between the lid and the chamber.  A drawing of the vacuum chamber is 

shown in figure 3.12.  
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Figure 3.12:  A drawing of the vacuum chamber for the weak transition experiments 

 

 

 

             The chamber is pumped by an Edwards STP-451 turbopump (pumping speed 480 

L/sec) which is magnetically levitated and advertised to have very low levels of vibration. 

The DC and AC magnetic fields produced in the pump that reach the interaction region 

are negligible. The pump is backed by a 200 L/sec roughing pump. A pneumatic gate-

valve installed between the turbopump and the chamber allows venting the chamber to 

atmosphere (e.g. when work needs to be done in it) without having to stop the pump. This 

avoids frequent acceleration/breaking of the pump that tend to decrease its life time. The 

system has a base pressure of 2.5·10
-6

 Torr. This level is low enough so that the fraction 

of atoms in the Cs beam that collides with background gas and is lost from the beam is 

small (~2%).  After initial pumping to the tens of milliTorr range with the roughing 
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pump, the turbopump can  be allowed to pump the chamber. It takes approximately 24 

hrs for the system to reach its base pressure, but this time can vary, depending on how 

long it has been left exposed to atmosphere.   

             A pair of Liquid Nitrogen-cooled baffles is installed in the chamber to reduce Cs 

clouding that could otherwise create issues in the optical pumping and detection of 

Cesium atoms. In addition, the baffles act as secondary pumps for the chamber, 

contributing a reduction of the pressure by ~(0.2·10
-6

 Torr).  Each baffle is a large copper 

plate with a small stainless steel tank attached to its surface. The baffles are placed on 

opposite chamber walls. The first is close to the Cs oven, and has an aperture 10 mm 

wide x 3 mm high) that defines the shape and dimensions of the atom beam. The other is 

at the end of the atom beam path. A resistor-based temperature sensor inside one of the 

tanks provides an estimate of  the nitrogen level. It takes approximately 60 minutes for 

the LN2 to completely evaporate, once the tanks have been filled. Refilling is done from a 

large LN2 tank, through a vacuum feedthrough, when a relay-controlled pressure valve is 

switched on. Due to the slight pumping capability of the cryo-baffles, refilling needs to 

be done within ~ 30 minutes after LN2 has completely evaporated, or else the pressure 

will slightly rise, and cause a small (but observable) reduction in the beam density.  

 

   3.5 The Cesium Oven 

            The Cs beam of our apparatus effuses from an oven constructed of (mostly) 

readily available vacuum components, and mounted on one of the vacuum chamber 

walls. As with many other oven designs, this oven consists of two sections, one 

containing a Cesium ampoule and another maintained at a higher temperature and fitted 

with a nozzle through which the atoms effuse and form a beam. The atom density in the 

beam is primarily determined by the temperature of the coldest section of the oven, and 

the atomic velocities of the beam by the temperature of the nozzle section. Figure 3.13 is 

a drawing of the oven.  
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Figure 3.13:  A drawing of the Cesium oven  

 

         The oven design was adapted from [45]. It consists of a CF 2.75” tee which holds a 

Cs ampoule and is held at ~120 
o
C, and an all-metal bellows valve which forms the high 

temperature section of the oven (~150 
o
C). The two sections are heated with rope heaters, 

covered by aluminum foil layers. A 2.75” CF blank flange attached on one end of the 

valve,  machined with a rectangular-shape bore (~ 1.2 cm wide, 8 mm high), is fitted with 

~100 stainless steel hypodermic needle tubes (1 cm long, 0.8 mm inner diameter),  that 

form the oven nozzle. Atoms effusing from the oven form a dense and relatively 

collimated beam. The authors of [45] report a density of 10
10

 cm
-3

, with a very similar 

nozzle and the same oven temperature as ours. A pair of cartridge heaters placed into 

bores in proximity to the nozzle, help maintain the nozzle hotter (~170 
o
C) than all other 

oven sections, in order to prevent clogging with Cs. For the same reason, some heating is 
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applied to the nozzle even when the system is not operated.  After one year of operating 

the system, no signs of nozzle clogging have been observed.   

           The Cs oven was designed so that the Cs ampoule can be broken safely under 

vacuum. This is done with the bellows valve and a stainless steel rod placed inside the 

oven. When the valve is rotated clockwise (i.e. tends to shut), the rod presses against the 

ampoule and breaks it. With the ampoule broken, the valve can fully shut and isolate the 

oven from the vacuum chamber, which is useful whenever it is necessary to open up the 

chamber. If the chamber is to be left un-pumped for long times, in order to prevent Cs 

oxidation, the oven can be pumped with another roughing pump through an auxiliary vent 

valve.  

            Power is supplied to the oven heaters from a pair of DC power supplies.  Once the 

supplies are on, it takes about two hours for the Cs density to stabilize. After this point, 

the density remains quite stable, with drifts of  ~ 1-2 %/hour, which are low enough so 

that  active temperature stabilization of the oven is not necessary.   

 

  3.6 Magnetic fields for the optically pumped Cs beam 

          The state preparation of the Cs beam, the 6S→7S excitation and the subsequent 

detection of interacting atoms require different DC magnetic fields in their respective 

regions. A comprehensive discussion of  the magnetic field requirements for the optically 

pumped beam can be found in C. Wood’s thesis [18].  We have followed his approach 

and have constructed several pairs of magnetic field coils which produce the desired 

fields for our experimental conditions. The field requirements for our experiments are 

quite similar to the ones of the Boulder PNC experiment.   

               In the optical pumping region (OP), the field is approximately 2 G, parallel to 

the direction of the pumping beams (y). This orientation is necessary in order to induce 

either ΔmF=+1 or -1 transitions and drive the atomic populations to an extreme mF with 

the Zeeman laser.  Then, as atoms travel downstream, the field slowly rotates and 

increases in magnitude, until the atoms reach the interaction region, where the field is 7G 

in the z-direction. This field defines the quantization axis in the region.  Then, as atoms 
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approach the detection region, the field quickly decreases and reaches a smaller value 

(approximately zero or ~ 2 G)  in the detection region.  

 

   Figure 3.14:  A drawing of the magnetic field coils inside the vacuum chamber 

 

          We have used a total of seven pairs of magnetic field coils in order to obtain the 

required fields. Three of these pairs are external to the chamber and are primarily used to 

cancel the Earth’s field as well as the field from the optical table. These coils are centered 

on the interaction region, and due to the chamber size, their respective fields exhibit a 

variation between this and the other regions of interest. This however does not create 

issues.  The other four pairs are inside the vacuum chamber, centered on the optical 

pumping, interaction or detection region. Fig 3.14 is a drawing of these coils.  In the OP 

region, a  pair creates a field in the y- direction. A second pair is used to cancel the 

leakage of the interaction region coils into the OP region. Around the interaction region, a 

large coil set produced the 7 G field in the z-direction. Lastly, the detection set of coils is 

used to cancel the field leaking into this region from the interaction region pair,  and also 

to apply an additional field if necessary.  These coils are narrow in the x-direction, in 

order to limit the extension of the produced field into the interaction region.  
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         The interaction region coils are  as large as possible with a spacing which is also 

large. The coils are 25x25 cm squares, spaced by 25 cm. This size requirement follows 

from the need for a slowly varying field (and free of zero-crossings) that the spin-

polarized atoms experience as they travel from the OP to the interaction region. Under 

such conditions, their spin precession axis adiabatically follows the magnetic field 

rotation, and spin polarization is preserved. The optimum field then, has to extend as far 

away as possible from the interaction region, and even leak into the OP region, which 

leads to a choice of  large size coils.   

 

                 

 

Figure 3.15:  Computed z- and y- components of the net magnetic field produced by the coils 

inside the vacuum chamber 
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             We show a simulation of the net  z- and y- field components, produced by all 

coils internal to the chamber, in figure 3.15. The field was evaluated at different points 

along the atom beam path (around which all coils are centered), using a Mathematica 

code that computes the Biot-Savart law integral. The field simulations also provide an 

estimate for the expected variation of Bz within the ~ 1.5 cm interaction region, which is 

~ 1% or better. There is a small (~40 mG) By field in the interaction region, as shown by 

the simulations (and as measured), produced by the OP coils, which is nulled using the 

external y-pair of coils. The measurements of the B-fields are performed with a 

laboratory Gaussmeter.  

 

3.7 Electric field plates for the M1 experiment 

            The M1 as well as the future PNC experiment employ a Stark-induced transition 

in order to calibrate the magnitude of either the M1 or the PNC transition. A DC electric 

field is therefore required in the interaction region. For the experimental geometry of the 

M1 measurements, this field is applied along the y-axis, parallel to the propagation 

direction of the 1079 and 540 nm beams, driving the two 6S→7S transition pathways. Its 

magnitude is variable between zero and several times the equivalent M1/β electric field   

(~ 30 V/cm).  The electric field plate geometry has to be such that the Ey field is uniform 

in magnitude along the interaction region length. In addition,  small off-axis components 

(x- and z-) present due to field non-uniformity need to be kept below the 10
-3

 level.  

         We have constructed a field plate assembly that provides the required electric field.  

Figure 3.16 is a drawing of the plate geometry. Each plate is a square aluminum plate, 

with a very flat surface (surface variations ~ 25 μm).  The plate inner surfaces are coated 

with Aquadag, as an effort to reduce stray fields, that can result from charge 

accumulating on the plate surface.  A small hole at the center of each plate allows 

passage of the 1079 and 540 nm beams through the plates. A circular basin machined on 

the external plate surface, concentric with the laser beam hole, helps to decrease the field 

fringing in the vicinity of the holes, and therefore to increase the field uniformity in the 

interaction region. Since the vacuum chamber surfaces (which are the boundary 

conditions for the electric field)  are grounded, in order to avoid possible asymmetries in 
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the field, the voltage between the plates is applied symmetrically (± V/2).   The plate 

separation is large enough such that the ~ 1.5 cm wide Cs beam propagating in between 

the plates along the x-direction does not coat the plates.  We do not use spacers to set the 

plate separation. A prior plate assembly with nylon spacers resulted in large stray fields, 

observed through two-photon and Stark-induced interference at zero plate voltage! We 

attributed the unwanted signal to charge accumulation on the spacer surfaces, because 

after removing the spacers from the assembly, the zero-field interference signal did not 

reappear.  

 

                Figure 3.16: A sketch of the electric field plates used in the M1 experiment 

 

            A uniform plate separation is essential in order to obtain a uniform electric field. 

In order to align the plates and ensure spacing uniformity, each plate is mounted on a 

JILA-type optical mount, with a glass insulating spacer between the plate and mount. The 

mount knobs allow precise adjustment of the plate orientation.  The spacing uniformity is 

achieved by iteratively adjusting the individual plate orientation, until the plate spacing 

(measured at four different points with a caliper) reaches the desired uniformity. With 

this procedure, the plate separation was set to 5.338(7) cm, with the uncertainty including 
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the caliper tolerance (~ 50 μm).  After the end of the M1 experiment, the plates were 

removed from the chamber and the spacing was re-measured with the same caliper and 

found to be consistent with the initial measurement to within 5 μm.  

 

 

Figure 3.17:  Contour plot of the x-component of the electric field produced by the field plates, 

due to fringing. The main electric field component is Ey=40 V/cm.   

 

                 We have studied the possible electric field non-uniformity due to the presence 

of the two laser beam holes in the plates or due to fringing owing to the finite ratio of 

plate size to plate spacing. This was done with COMSOL simulations of the electric field 

between the plates.  The region of particular interest in the field plate model is the 

interaction region, which is the central 1.5 cm section between the holes. The grounded 

vacuum chamber is included in the simulation, serving as the boundary surface for the 

model. We show a contour plot of the x-component Ex, arising from field-fringing. The 

primary field is Ey=40 V/cm for this model (with the voltage applied symmetrically to the 
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plates) and we can estimate a value of 0.01 V/cm for Ex in the interaction region, that 

corresponds to a ratio Ex/Ey of approximately 2.5·10
-4

.  This non-uniformity level is well 

within our tolerances for the M1 experiment. The actual Ex/Ey (and Ez/Ey) ratio is 

determined by the orientation precision of the 540 nm beam (which defines the y-axis of 

the coordinate system) relative to the field produced by the plates.  

 

 3.8 Optical pumping of atoms             

        The interference of the two-photon and the weak (M1, EPNC or β-Stark) amplitude for 

particular (F,mF)→(F, mF) transition results in a cross-term in the overall transition rate, 

whose amplitude and sign  depend on the value of the particular mF value (this is because 

the weak amplitudes themselves are proportional to mF, see section 2.3.1 ).  This means 

that with a uniform distribution among the Zeeman sub-levels, there will be no 

interference observed, because transitions involving opposite mF states contribute with 

opposite signs to the overall 6S→7S excitation rate. It is therefore necessary to spin-

polarize the atoms.  For this, we pump atoms to the extreme Zeeman sublevel, which is 

the mF =+3/-3 for the F=3 component, and  mF =+4/-4 for the F=4 level.   

           The detection scheme we use for the 6S→7S excitation detects atoms which, after 

undergoing the (F, mF)→(F, mF)  excitation have decayed to the other hyperfine F’ 

component of the ground state. These atoms are made to cycle through a cycling 

transition of the D2 line (see section 3.9 for detection through cycling transition).  It 

follows from this, that in addition to pumping atoms of the F level to the extreme mF,  

atoms must also be pumped out of the F’  level or else their  contribution will dominate 

our detection signal. The level of depletion must be low compared to the fraction of the 

population undergoing the 6S→7S excitation (~ 0.5 %).   

          In our atom beam apparatus, we perform the state preparation and satisfy the two 

requirements mentioned above, following the work reported on ref. [46]. We use a pair of 

ECDL lasers at 852 nm, crossing the path of the beam at right angles approximately 10 

cm after the beam enters the chamber from the oven section. One of these lasers (the 

hyperfine laser)  is linearly polarized and tuned to pump the atoms out of one hyperfine 

component, and the other (the Zeeman laser)  is  circularly polarized (and collinear to  2 
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the G magnetic field in the y-direction)  and used to gradually drive  the atoms to the 

extreme mF of the other hyperfine component.  Figure 3.18 shows an energy level 

diagram with the particular selections of transitions used to populate the (F=3, mF =+/- 3) 

or the (F=4, mF =+/- 4) Zeeman sublevel.  For pumping to the (3,+3) level for instance,  

the hyperfine laser excites the F=4→3 transition and the Zeeman laser is right-circularly 

polarized and tuned to the F=3→3 transition, inducing   ΔmF =+1 transitions. Atoms 

undergoing the ΔmF =+1 transition decay to the ground state with a selection rule ΔmF =0 

or +/-1, but on average, at the end of the cycle they have shifted by ΔmF =+1 and after 

many cycles they accumulate in  the extreme mF. At that point the pumping is completed 

and atoms stop absorbing. In case they decay to the F=4 component, they are pumped out 

this state by the hyperfine beam until they return back  to the F=3 level. In order to 

achieve this re-pumping by the hyperfine beam, the two beams have to overlap each other 

in the optical pumping region.  

               Fluorescence re-absorption by the atoms is the limiting factor to the optical 

pumping quality.  Atoms in the OP region as well as atoms moving downstream from the 

OP region, can absorb light scattered in the region, and either decay to the nominally-

depleted hyperfine component (F=4 in our example) or decay to the F=3, mF=+2 level. 

The particular selection of transitions for the hyperfine and Zeeman laser is made such 

that the average number of cycles the atoms go through until they reach the extreme 

Zeeman sublevel is minimal. This results in the least amount of fluorescence produced 

during the process. Since fluorescence is proportional to the atom density in the beam, its 

re-absorption places a limit on the density of the beam we can work with, and therefore to 

the signal size in the weak transition measurements. This is a significant constraint in a 

shot-noise limited experiment. The authors of ref. [46] have done comprehensive studies 

of the optical pumping process, including pumping efficiency dependence on beam 

density, laser intensities and magnetic field strengths.    
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            Figure 3.18:  Sets of transitions used in the state preparation of the atom beam 
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                            Figure 3.19:  Optical setup for the optical pumping of atoms 

 

             In order to achieve as high a spin-polarization as possible, and to minimize the 

remaining population in the nominally-depleted hyperfine state, we have taken several 

steps. First, the hyperfine and Zeeman beams are double-passed through the optical 

pumping region.  The two beams are combined in a non-polarizing beam-splitter, passed 

through a λ/4 waveplate (which changes the polarization state of the Zeeman beam to 

left- or right-circular and that of the Hyperfine beam to nominally linear) and then sent to 

the chamber. Upon exiting the chamber the beams are retro-reflected, retracing their 

original path. A layout of the relevant optical setup with the optical pumping beams is 

shown in figure 3.19.  Second, we send another portion of the hyperfine beam to the 

atoms (about 7 cm downstream from the OP region), as a means of improving the 

depletion level of the depleted hyperfine level. This beam is also double-passed. Third, 

we have installed LN2-cooled cryo-baffles in the chamber (see section 3.4), which catch 



 

 

61 

stray Cs atoms that would otherwise form a background vapor in the chamber and spoil 

the pumping efficiency, by emitting fluorescence which the atoms in the beam re-absorb. 

We have seen an improvement of ~ 5 times in the fraction of atoms in the depleted F 

level after installing the baffles.  

          Proper alignment of the hyperfine and Zeeman beams in the OP region is required 

in order to achieve good pumping efficiency. The alignment is performed while 

observing the Raman laser spectrum, which reflects the population distribution among the 

mF levels (see section 3.10), and periodically measuring the leftover population in the 

depleted hyperfine level. The (dual) objective is to adjust the beam orientation in order to 

maximize the percentage of atoms in the extreme mF level while at the same time 

minimizing the population remaining in the depleted level. It was observed in several 

instances   that it is possible to optimize the former but not the latter, and some effort is 

usually needed to achieve both objectives.  The two beams are circular with a 6 mm 

diameter, fully overlapping the 3 mm high atom beam. The hyperfine beam intensity is ~ 

5 mW/cm
2
, while the Zeeman beam intensity is ~ 1 mW/cm

2
 (saturation intensity for the 

D2 line ~ 1.5 mW/cm
2
). Higher beam intensities did not improve the pumping efficiency. 

In fact, due to diode laser beam spectral impurities, power at the frequency corresponding 

to the opposite hyperfine component to the laser is tuned, induces unwanted transitions 

and affects the pumping process. This is discussed in C. Wood’s thesis [18]. We have 

observed this behavior for intensities of the Zeeman laser higher than 1 mW/cm
2
.   

            For the typical Cs beam conditions of the M1 experiment (oven temperature at 120 

o
C, nozzle at 170 

o
C) and with optimum OP beam alignment, more  than  92% of the 

atom population is driven to the extreme mF level and about 0.15-0.2% of atoms remain 

in the depleted F-level and contribute to the detection signal as a DC (with its noise) 

background.  This latter value corresponds to a 6S→7S signal to background ratio of 

about 3 (~ 0.5-0.6 % of the atoms in the beam undergo the 6S→7S transition).  Both the 

degree of spin-polarization and the degree of the hyperfine depletion are somewhat lower 

than the ones achieved by the Boulder group (~ 97% in the extreme mF with 0.03% in the 

depleted level).  We feel that this is primarily do to the fact that our beam density (and 

therefore the fluorescence from the OP  region)  is higher than that of the Boulder 
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experiment. We have worked with a density ~  5-10·10
9
 cm

-3
, whereas the Wieman group 

reported a value of 3·10
9
 cm

-3
. In addition, the large size electric field plates required in 

the M1 experiment block the optical access close to the interaction region, not allowing 

use of a second hyperfine cleanup beam. This will not be an issue in the PNC experiment, 

because of the different plate geometry required by that experiment.    

                 

3.9 Detection of the 6S→7S transition rate 

             The scheme introduced in (3.1)  allows for a very efficient detection of the atoms 

undergoing 6S→7S transition. It detects the fraction of the atomic population, which after 

decaying back to the ground state, ends up in the hyperfine component which was 

depleted during the initial state preparation. For instance, in the case of the 6S→7S 

transition between the F=3  components, the scheme will detect atoms that decayed to the 

F=4 component of the ground state after the transition. This component was initially 

emptied by the hyperfine laser, and has almost no population at all in the absence of 

6S→7S transitions.  A wide laser beam at 852 nm, locked to the  F=4→5 component of 

the D2 line, puts the atoms into a cycling transition, with many photons scattered per atom 

during the transit-time through the beam.  A large-area photodiode placed very close to 

the detection region collects a fraction of the emitted fluorescence (~10 %), yielding a 

large photocurrent. This way, all the atoms decaying to the F=4 component of the ground 

state are detected, and the detection efficiency for the 6S→7S transition rate is essentially 

the branching ratio for the 7S1/2 F=3 → 6S1/2 F=4 decay ( of order ¼). For the F=4→4 

component of the 6S→7S transition, the optical pumping depletes the F=3 ground state, 

and the detection laser cycles atoms through the F=3→2 component of the D2 line.  

              The detection region is defined by the intersection of the 1.5 cm wide (y-

direction) atom beam and the ~ 2 cm wide detection laser beam (x-direction).  The 852 

nm beam is linearly polarized, and double-passed through the region. Double-passing 

helps increase the amount of fluorescence emitted, since the atoms are more saturated. 
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      Figure 3.20:  Geometry of the detection region. The atom beam propagates into the page(+x).  

 

 

The height of the atom beam is greater than that of the 852 nm beam, so there is only 

partial beam overlap in the z-axis (figure 3.20) but this does not decrease our 6S→7S 

signal, since the height of the interaction region (defined by the  1079 nm beam diameter) 

is only about 400 μm, and so all 6S→7S atoms are  detected.   A pair of coils (detection 

coils) centered on the detection region, produces the required magnetic field in the 

region. The coils primarily cancel the ~ 3G z-field leaking from the interaction region 

coils, but are also used to apply an additional field in order to optimize the detection 

signal when the  F=3→2  cycling transition is used.  The large area photodiode, placed 

approximately 11 mm below the detection region, collects a fraction of the emitted 

fluorescence (~10%).  An f=1 cm gold-coated concave mirror placed symmetrically 

above the detection region, helps increase the collected signal. An interference filter on 

top of the photodiode transmits light at 852 nm and blocks unwanted frequencies, such as 

scattered light at 1079 and 540 nm, room light, etc. The filter has a quite wide bandwidth 

(50 nm FWHM) which provides a decent angular-acceptance bandwidth of the 852 nm 

fluorescence. Due to the limitation in the latter bandwidth, most of the collected light 

(about 75%) comes from a (roughly collimated) reflection from the gold-coated mirror, 

and not directly from the detection region.  
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           Figure 3.21: Schematic of the circuit used to amplify the detector photocurrent  and 

distribute the amplified signal among different instruments 

  

         The large area photodiode is a Hamamatsu (#S3204-08) with an 18 x18 mm
2
 active 

area. It is operated in the photovoltaic mode (i.e. no reverse bias is applied to it). The 

produced photocurrent is amplified in a transimpedance amplifier with a gain of 40 ΜΩ 

and a 1.1 kHz bandwidth (figure 3.21).  The gain can be switched to a reduced value of ~ 

1 MΩ, whenever the signal of the un-pumped beam needs to be measured. This is useful 

for probing the atom beam density, and also for measuring the detection laser noise 

(section 3.12). The transimpedance op-amp is an OPA 132 with a low input bias current, 

which is needed for our high gain system. The noise output level in the absence of any 

light incident on the photodiode of the detector and circuit is only  ~ 1.5 μV/√Hz, which 

is a negligible contribution to the overall noise of the 6S→7S excitation. The output of 

the preamp is sent   to a lock-in amplifier for phase-sensitive detection of the two-photon 

& weak amplitude interference in the 6S→7S excitation rate. The same output is also 

sent to an oscilloscope with FFT analysis capability (Tektronix TDS 3032B), the data 

acquisition system and another scope for signal monitoring. In order to avoid unwanted 

ground competition that could introduce noise in lock-in detection output and the FFT 

spectrum, instrumentation amplifiers are used to isolate the grounds of different 

instruments in the setup.   
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             Spectral impurity in the 852 nm laser combined with a high optical intensity in 

the detection region can create issues in the detection. As seen in the Boulder experiment, 

and also experienced in our setup (both in the Zeeman beam, and in the detection beam), 

a high  diode laser intensity tends to induce unwanted transitions, because of a small 

amount of power at frequencies ~ 9.2 GHz away from the transition frequency to which 

the laser is locked. For instance, when the detection laser is locked to the F=4→5 

transition, some power at a frequency that corresponds to a F=3→F’ component of the D2 

line, can induce such transitions and promote atoms to the F=4 ground state, resulting in 

an increase of the F=4 background. This is obviously unwanted since it increases the total 

noise in the 6S→7S excitation. In order to reduce this effect, the detection laser intensity 

is kept at a level for which the repopulation of the depleted state does not contribute 

significantly to the overall background. In our experiment, this intensity is ~ 4 mW/cm
2
, 

which is a few times above saturation.  

              There is a difference in the amount of fluorescence emitted between the F=4→5 

and F=3→2 transitions.  Unlike the 4→5 transition,  the 3→2  transition is not truly 

cycling. In the presence of the detection laser field, as discussed in Wood’s thesis, the 

atom can evolve into a dark state that stops absorbing light. We have observed in our 

apparatus that under the conditions of the F=4→5 detection (linear polarization and 

detection region magnetic field ≈ 0) the F=3→2 signal is only about 10% of the F=4→5 

level. In order to remedy this situation, when the   F=3→2 detection is used, a ~ 2G field 

(+z-direction) is applied in the detection region. This creates conditions that prevent the 

system from evolving into a non-absorbing state, and results in a ~ 5  times increase in 

the emitted fluorescence. Since the detection field leaks slightly into the interaction 

region, the different field requirement for the detection of the F=3→3 and F=4→4 

component of the 6S→7S transition means that the net interaction region field is also 

slightly different for the two measurements. This leakage however, is relatively small 

(~100 mG) and in the same direction (+z) as the 7G field created by the large interaction 

region coils. The Μ1/β measurement does not depend on the particular Bz value. In 

addition, systematic contributions to the measurement related to magnetic field 
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misalignments, involve ratios Bx/Βz and By/Βz. Varying the detection region field does 

not introduce Bx or By components, which would result in systematic errors.   

 

3.10 Measuring the Cs beam population distributions 

           For the purpose of optimizing the quality of the optical pumping of atoms, 

described in the previous paragraph, we need to be able to  probe the distribution of the 

populations among the different mF sublevels of the populated F state. Maximizing the 

fraction of atoms in the extreme mF level is desired in the M1 experiment, since the 

interference signal is proportional to the average mF. Furthermore, in the PNC 

measurements, the measured observable (~ <mF>EPNC/α) depends directly on < mF >, 

therefore an accurate measurement of < mF > is essential.  

In the scheme we use to measure the population distribution among the sublevels 

of the populated F state, we   stimulate off-resonant Raman transitions between the F 

component and the one depleted by the optical pumping process, and use the 6S→7S 

detection scheme to measure the occurring population transfer for each mF level.  This is 

the scheme of the Boulder experiment as well.  It requires light at two frequencies, 

separated by the hyperfine splitting of the ground state (9.192 GHz).  The two frequency 

components need to be phase-coherent.  We have  constructed an 852 nm ECDL whose 

injection current is modulated at 4.6 GHz to provide frequency sidebands that serve as 

our two Raman frequencies. The laser construction and its characteristics are described in 

(3.2.3).  C. Wood’s thesis provides a great deal of information regarding the off-resonant 

Raman spectroscopy  employed in the Boulder experiment, including  a detailed 

description of their methodology  for accurately determining the mF populations. In this 

section we will only give a brief description of the method, as we have applied it for 

probing the mF populations in the M1 experiment 

              We show in figure 3.22 an example of an off-resonant ΔmF=0 Raman transition, 

which is employed in order to probe the distribution among the mF components of the 

6S1/2 F=3 state. The higher Raman frequency component is locked with a 160 MHz 

detuning from the 6P3/2 F=2 state, in order to minimize unwanted population of the F=4 

ground state. Atoms are stimulated from a given mF level  of the F=3 state to the same mF 
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level of the state F=4. The 6S→7S detection scheme, which in this case will detect 

population increase in the initially empty F=4 state, can be used to probe the particular  

Raman transition. By scanning the Raman laser sideband frequency a few tens of MHz 

around 4.6 GHz, we sweep the frequency difference of the two laser sidebands and 

stimulate Raman transitions corresponding to all different mF levels of the F=3 state. The 

F=4 population probing then, reflects the mF population distribution in the F=3 state.  The 

ΔmF=0 selection rule (valid when the Raman laser polarization is parallel to the magnetic 

field) makes it possible to probe the population of each mF level separately.                

                   

 

       Figure 3.22:  Example of off-resonant Raman transition that transfers atoms from the 

6S1/2(3,mF) state to the 6S1/2(4,mF) state.   
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            It is desired to probe the populations at the same location where the 6S→7S 

excitation occurs. For this reason, the Raman beam passes through the same field plate 

holes through which the 1079 and 540 nm beams also enter the interaction region. Due to 

the small size of these holes, the beam is   moderately focused in the interaction region 

(using a 1 m lens).  This results in a transit-time broadening of the Raman transitions        

(~0.5 MHz linewidth), which should otherwise be very narrow, since the excited state of 

the transition is a ground state. This however does not create any complications.  

           We show in figure 3.23 a typical ΔmF=0 Raman spectrum, from which we 

determine the quality of the state preparation of atoms in the F=3, mF= +/-3 state.  When 

the alignment of the optical pumping beams is optimized, about 92% of the atoms can be 

pumped to the extreme mF level.  This fraction is somewhat lower than the Boulder group 

efficiency (~ 96-98%), but this can be attributed to the fact that we work at a higher atom 

beam density (maybe 2 times higher). The Cs density is a limiting factor for the pumping 

efficiency. We have observed more complete pumping to the extreme mF at  lower 

densities.   

            An issue arises when measuring the population distributions for atoms pumped to 

the F=4 component of the 6S ground state.  In this case the Raman transitions transfer 

atoms from the F=4 to the F=3 state. Since the initial state preparation pumps atoms to 

the extreme mF states, the ΔmF=0 selection rule is not suitable, since the corresponding 

Raman spectrum does not provide any information about the mF=±4 sublevels, for which 

we are most interested. To probe the populations, we switch the Raman laser polarization 

to horizontal, (perpendicular to B) and make use of the Δ mF=±1 selection rule. This 

selection rule results in pairs of different transitions which are degenerate in frequency. 

For instance the +3→+2 and the +2→+3 correspond to the same transition frequency.   

Fortunately, this excludes the transitions from the extreme levels (the         mF =+4→+3 

and mF= - 4→ - 3), which have a unique frequency. This allows us to probe the 

population of the extreme levels without significant complications.  
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Figure 3.23: ΔmF=0 Raman transitions between the 6S1/2 F=3 and 6S1/2 F=4 ground states. In a)  

there is no Zeeman pumping and the peak amplitudes are essentially determined by the line 

strengths of each transition.  In the intermediate b) and lower spectra c), approximately 92% of  

atoms are pumped to either  the (3,-3) or the (3,3) state 
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3.11 The 6S→7S two-photon transition in the atom beam 

  In this section we discuss the characteristics of the two-photon 6S→7S   

transition, induced in the atom beam by the 1079 nm laser field. The two-photon 

transition is the stronger of the two pathways in our Coherent Control scheme.  

  The two-photon excitations occur in the interaction region, which is defined as 

the intersection of the overlapped 1079 nm & 540 nm laser beams and the ~ 1.5 cm wide 

atom beam. Since the intermediate level of the transition is not real, the two-photon 

moment is weak, and a  large  amount of laser intensity is required in order to obtain an 

appreciable excitation rate.   Approximately 9 Watts of IR power is available in the beam 

and sent to the chamber, through an AR-coated window. Furthermore, the 1079 beam is 

weakly focused (using a 50 cm silver-coated concave mirror), with a ~ 180 μm waist 

(1/e
2
 intensity radius)  in the interaction region. The tighter the beam waist is, the lower 

the amount of the two-photon and one-photon pathway interference will be, since the 

requirements for overlapping the 1079 and 540 nm beams in the interaction region 

become more stringent.   The particular choice of the beam waist size is a trade-off 

between the requirement for a large two-photon signal (which requires tight beam focus), 

and the need to avoid dilution in the observed interference. In the current state of the 

atom beam apparatus, the two-photon signal is such that the 6S→7S shot noise level is 

smaller than the combined noise level due to all other noise sources in the detection of 

6S→7S atoms, and a further increase in the two-photon strength would not improve the 

SNR of the interference measurements substantially. With the modest focusing of the IR 

beam, we achieve a typical 1079  and 540 nm beam overlapping efficiency of 75% of the 

optimum.  

         The linewidth of the two-photon resonance is determined by the Doppler 

broadening in the atom beam, occurring due to the slight transverse velocity spread of the 

atoms. The Full width at Half Maximum (FWHM) linewidth is approximately 14 MHz,  

larger than the 3.3 MHz natural linewidth. Transit-time broadening of the resonance is 

negligible for our moderate beam focusing. A spectrum of the resonance (F=3→3 

transition) is shown in figure 3.24. The linewidth was measured by applying a large 

electric field that Stark-shifts the resonance by a known amount, providing a frequency 
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calibration for the laser scan. A narrow linewidth is generally desired, since broadening 

decreases the resonance amplitude. However, an attempt to further collimate the atom 

beam (using a collimator made of microscope cover slips) resulted in a loss in Cs density 

much greater than the gain in signal due to the narrower linewidth.        

 

         

          Figure 3.24: A spectrum of the two-photon F=3→3 6S→7S resonance in the atom beam 

 

          The detection of the 6S→7S transitions in the atom beam is done on top of a 

background level, as it can be seen in figure 3.24.  About 85% of  this  background is  

due to the incomplete  depletion (during the optical pumping process)  of the hyperfine 

level probed by the detection laser,  and to a lesser extent due to a slight repopulation of 

the same level, occurring due spectral impurities present in the detection laser. The 

presence of this background contributes slightly to the  6S→7S detection noise.   A 

smaller fraction of the background signal (~15%)  is due to scattered light reaching the 

large-area photodiode. The scattered light is mainly 1079 nm from the interaction region 

and 852 nm from the detection laser. This type of background however does not 
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contribute to the overall noise level, since it is small compared to the 6S→7S signal size, 

and also because the amplitude noise of the lasers is negligible.  

 

3.12 Noise in the 6S→7S detection and estimation of the 6S→7S excitation rate 

                In this section we discuss the different types of noise  present in the detection 

of the 6S→7S transition rate and we describe the measurements of noise levels of  the 

various sources we have identified in our apparatus.  

          The first (and perhaps most fundamental) type of noise we discuss is shot noise.  It 

represents the statistical fluctuations in any process that measures the mean value of a 

rate of random discrete events. If there are  N events measured on average in some time 

interval, then the shot noise in the measurement is N  and the fractional uncertainty in 

the measurement (noise/mean) is 1/ .N An interesting property of shot noise is that its 

power spectrum is uniform, i.e.  the same statistical fluctuations in the measurement of a 

rate appear for all different  frequencies.  In the detection of atoms undergoing  6S→7S 

excitations, shot noise represents the fluctuations in the rate of  6S→7S  atoms arriving in 

the detection region and being detected. The higher this rate is, the lower the relative 

fluctuations in this rate will be. The N nature  of shot noise is a distinctive  feature of 

this particular noise type, and it can be used to discriminate  shot noise from the other 

noise types present in the detection of atoms, the technical and background noise.  

          Technical noise is the type of noise that grows proportionally to the signal level. 

This implies that its contribution to the overall fractional noise in the detection of atoms 

does not depend on signal size. In the atom beam apparatus, the dominant sources of 

technical noise appear to be frequency noise on the detection laser as well as frequency 

and amplitude noise in the 1079 nm laser. Background noise is any type of noise which 

contributes by a constant amount to the overall noise level. Sources of background noise 

include noise due to scattered light in the chamber, noise in the electronics, photodiode 

dark current noise etc.  These however have a negligible contribution to the overall 

6S→7S noise.  

           The measurements of the two-photon and weak amplitude interference in the 

experiment are done by lock-in detection of the 150 Hz modulation imposed on the 
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interference term present in the 6S→7S transition rate. We have characterized to a 

reasonable extent the statistical noise sources in the 6S→7S signal and have managed to 

decrease  the level of some of these at (and around) 150 Hz in order to improve the signal 

to noise ratio of the experiment. The main sources of noise in the detection appear to be 

shot noise in the 6S→7S two-photon rate, shot noise due to the background of atoms in 

the nominally depleted F state, as well as technical noise in the 852 nm detection laser 

and the 1079 nm laser (primarily amplitude noise).  We have been able to measure the 

level of each of these contributions to the overall noise.   

             There is a simple noise measurement method that allows us to make estimates for   

the technical noise of the detection laser,  the shot noise level in the 6S→7S transition 

rate and from that, obtain an estimate for the number of the detected the 6S→7S 

atoms/sec. The method is based on the ability to discriminate shot from technical noise. 

We can write for the total fractional noise (total noise/mean signal) SF  in the detection of 

atoms, measured in a 1 sec time interval,  

 

            
2

2
21

N

BG
T

N
SF                                                       (3.1) 

 

where T and BG  are  the fractional technical noise and background noise respectively. 

The unit for the fractional noise is parts per million (ppm) per √Hz. The  background 

noise is much smaller than the other two contributions, and so the corresponding term can 

be dropped in (3.1).  Of the two remaining terms, the shot noise is the dominant term for  

small N  and the technical noise for a large  value of N.  The different behavior of SF at 

the two limits is the key fact that we exploit in these measurements: we measure the 

fractional noise of   the detection signal for different signal levels.  At high levels, the 

technical noise dominates and T  can be estimated from the asymptotic behavior of SF. 

The T measurement can be then used to establish a relationship between the fractional 

noise and the number of atoms detected per sec: 
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Figure 3.25:   Plot  of the fractional noise measured in the atom beam as a function of the 

photodiode signal (or atom beam density). The thick red line represents an   average of the 

instantaneous noise level (black line).  

 

            We show in figure 3.25 a plot of the fractional shot noise measurement SF  on  the 

F=4→5 cycling transition.  The measurement is performed at 150 Hz with the same lock-

in amplifier that is also used in the lock-in detection of the interference signal of  the 

6S→7S transition rate. The lock-in outputs a signal proportional to the measured noise 

(in √Hz). This signal is scaled (taking into account the lock-in gain), and divided by the 

detection signal level to obtain the fractional noise. The measurement is performed while 

the beam density is let to gradually decrease, after having turned the Cs oven heaters off.  

No optical pumping of the atoms is performed, and so 9/16 of the atoms in the beam 

populate the F=4 state, resulting in a  large photocurrent  from the large-area photodiode. 

The fractional noise reaches a typical plateau of T=15-16 ppm/√Hz at high beam 

densities.  This level is solely due to the 852 nm detection laser and characterizes its 

performance.  At low densities, comparable to the ones of the actual experiment, the shot 

noise of the atoms becomes significant. For the typical 6S→7S signal level in the 



 

 

75 

experiment of ~ 650 mV (F=3→F=3 transition), we can estimate a ~ 22 ppm/√Hz total 

noise level from the plot of figure 3.25. This corresponds to a shot noise 1/N = 2 222 15  

~  16 ppm/√Hz or to a detected 6S→7S rate N~ 4·10
9
 /sec .  A similar analysis for the 

detection of the  F=4→F=4 component of the     6S→7S (detection on the cycling F=3→ 

2 transition), yields a   6S→7S shot noise level of ~ 18  ppm/√Hz or a rate of detected 

atoms ~ 3.1·10
9  

/sec.  

              In another simple measurement with the lock-in amplifier we determine the 

amplitude noise of the 1079 nm light. The signal from an amplified photodiode on which 

a small portion of the 1079 nm light from the fiber amplifier is incident, is sent to the 

lock-in for a noise measurement at 150 Hz. We obtain a fractional noise of ~ 4 ppm/√Hz.  

This corresponds to a contribution to the 6S→7S rate of 8 ppm/√Hz (the two-photon 

transition rate is proportional to the square of the 1079 nm power). This level is low 

enough so that it doesn’t add substantially to the overall detection noise.  

          Table 3.1 summarizes all noise measurements and estimates we have been able to 

make. These levels are listed separately for the  F=3→3 and  F=4→4 components of the 

6S→7S transition. We note that the combined noise level of all sources is smaller than 

the level measured in the 6S→7S transition under the conditions of the actual experiment. 

The difference is greater for the F=4→F=4 transition.  This difference must be made up 

by other potentially significant noise sources that we were not able to identify. These 

could include frequency noise of the two 852 lasers used for optical pumping as well as 

frequency noise of the 1079 nm laser. Each of these potential sources on its own however 

does not appear to affect the overall noise substantially.  We determined this in a crude 

test where we looked for changes in the 6S→7S noise while switching the fast feedback 

of the laser lock (through the laser diode current) on and off. No difference in the 6S→7S 

noise level was observed. As a reference for comparison, the 6S→7S noise level drops by 

about 2 times when the current feedback to the detection laser is engaged.  
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Table 3.1: Fractional noise levels of the various sources of noise identified in the apparatus, 

combined level of known sources and actual 6S→7S noise of the experiment.  Values are listed 

separately for the F=3→3 and F=4→4 transitions.  All levels are with respect to the 6S→7S two-

photon signal (BG signal subtracted).  

 

 

 

 

 

              

 

 

 

 

 

 

Using the rate of detected 6S→7S atoms estimated for the F=3→3 transition                 

(N~ 4·10
9
 /sec), we can make another estimate, regarding the number of photons 

collected by the large-area photodiode per atom cycling through the F=4→F’=5 

transition. This is possible by comparing the rate of photons incident on the photodiode, 

to the 6S→7S rate. From the generated photocurrent and the detector spectral 

responsivity, we estimate that ~  6·10
10

 photons/sec are incident on the photodiode. This 

corresponds to 15 photons being collected per atom cycling through the 4→5 transition.  

From a similar analysis on the F=3→3 excitation and detection through the F=3→2 

transition, we obtain an estimate of  5 photons collected per 6S→7S  atom.   

             A further comparison, that of the number of photons collected per cycling atom,  

to the number of cycles each atom goes through while crossing the detection region,  

provides an estimate for the photodiode collection efficiency.  Based on the atom transit 

time through the detection region and excitation rate for the saturated 4→5 transition, we 

can estimate that each atom cycles through the 4→5 transition ~165 times. This 

corresponds to a collection efficiency of ~ 9 %.  

6S→7S transition F=3→3 F=4→4 

Detection cycling 

transition 
F=4→5 F=3→2 

6S→7S shot noise ~16 ppm ~18 ppm 

852 nm  detection laser noise ~16 ppm ~19 ppm 

Background atoms shot noise ~9 ppm ~12 ppm 

Background atoms detection noise ~5 ppm ~9 ppm 

1079 nm laser amplitude noise ~8 ppm ~8 ppm 

Combined known sources ~26 ppm ~31 ppm 

Actual 6S→7S noise ~32 ppm ~48 ppm 
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3.13 The Mach-Zehnder interferometer 

           The optical phase-delay imposed between the 1079 nm and 540 nm fields as a 

means to observe the interference in the 6S→7S transition, is done in a Mach-Zehnder 

interferometer. A drawing of the setup is shown in Figure 3.26. The paths of the co-

propagating green and IR beams are split on the interferometer’s dichroic input mirror.  

The green beam is double-passed though a rotating galvanometer-mounted plate, used to 

delay the 540 nm optical phase.  The two beams are recombined on a second dichroic 

mirror and sent to the vacuum chamber. A hot mirror in the path of the green and a cold 

mirror in the path of the IR beam are used to block leakage of one frequency component 

into the path of the other, which could otherwise create unwanted amplitude modulation 

of the fields in the interaction region.  Since the M1 experiment requires horizontal 

polarization (εx) for the 540 nm field, a λ/2 waveplate in the green beam path is used to 

switch the incoming beam’s vertical polarization.  

         The amount of two-photon and weak amplitude interference depends critically on 

the 1079 and 540 beam overlapping conditions in the interaction region. The slight beam 

motion occurring during the galvo-plate rotation needs to be kept to an acceptable level, 

or else the interference amplitude will vary during rotation, leading to a systematic error 

in the experiment. Double-passing the 540 beam through the 2 mm thick plate, solves 

most of the beam motion issues. For our particular geometry (green beam angle of 1
st
 

incidence ~ 10
o
, beam separation ~ 7

 o
) we estimate  that  in a typical 20-cycle scan of the 

green beam phase (10 cycles per degree of rotation), this shift is approximately 2 μm or 

roughly 1% of the 540 nm beam waist in the interaction region. With the double-pass 

configuration, we do not detect any variation in the 6S→7S modulation during a phase-

scan.  

        In addition to the possibility of slight beam motion, there are two more effects 

related to the galvo-plate rotation that we need to consider. The first is an etalon effect in 

the plate. The finite reflectivity of the AR-coated plate introduces a small sinusoidal 

modulation in the beam intensity, observed as the galvo-angle is swept. The amplitude of 

this modulation is measured to be ~ 0.4 % of the mean green power level. This 

modulation introduces a systematic error in the interference amplitude measurements. 
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However, as we show in chapter 4, the contribution of the effect to the measurements 

turns out to be negligible for the conditions of our experiment. The second effect is a 

non-linearity in the 540 nm beam phase-scan, occurring due to the non-linear nature of 

the path length sweep, as the plate rotates. This results in a ~ 11 % variation for the 

phase-scan rate, observed between the two extreme positions of the galvo. As discussed 

in (4.2), we are able to make measurements of this effect and include it in the data 

analysis, so this moderate amount of non-linearity does not create significant concerns.    

                   

 

Figure 3.26: The Mach-Zehnder interferometer used to delay the phase of the 540 nm laser field. 

Abbreviations: DM: dichroic mirror, HM: hot mirror, λ/2: half-waveplate, CM: cold mirror, 

CMM: concave mirror (silver-coated).  
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            The need for double-passing the green beam through the galvo-mounted plate, led 

to a choice of an asymmetric geometry for the interferometer, with different path-lengths 

for the IR and green beams.  This difference makes the system more sensitive to relative 

IR-green phase-shifts, caused by temperature and humidity variations. These drifts are 

reflected on the interference pattern, and (depending on conditions) can in some cases be 

as large as a few percent of a cycle per minute.  In our data acquisition routine however, 

the 540 nm  phase-scans are performed fast enough (~ 8 sec) so that such drifts have a 

negligible effect on the measurements. Air-currents in the room can create bigger 

problems, since they induce phase-fluctuations on a much faster scale, and so the 

interferometer (and in fact all of the optical setup close to the chamber) is covered with a 

large Plexiglas cover.  

             In order to ensure mechanical stability of the setup, all the components are 

mounted on an aluminum breadboard (12”x12”x0.5’’), which is bolted to its base with 

nylon screws. Rubber sheets between the plate and its base reduce vibration coupling to 

the setup. There are two factors which are particularly important in the mirror mount 

selection. The first is the mount mechanical robustness. The more robust the mount is, the 

smaller the phase-noise due to vibrations. The second and perhaps more important factor 

is the amount of relaxation in the mount adjusters after an adjustment has been made. As 

part of the daily use of the apparatus, the green beam orientation needs to be adjusted 

slightly to maximize the signal. This is done using one or two of the Mach-Zehnder 

mirrors. If the amount of relaxation-related drift in the beam orientation is significant, it 

shows up as a drift in the observed interference. We have used JILA-type mounts for all 

the mirrors in the setup, which are known to be mechanically stable.  

  

3.14 Lock-in detection of interference 

              The amplitude of the two-photon vs. one-photon interference is very small 

compared to the size of the two-photon signal. In the M1 experiment, the modulation in 

the 6S→7S rate is only about a few parts per ten thousand of the two-photon rate. This 

signal level is buried under the noise of the large DC background, making direct 
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detection of the modulation impractical. We have used phase-sensitive (lock-in) detection 

of the interference, in order to extract the weak signal from the much greater background.  

            Lock-in detection is a method commonly used to detect small signals on top of 

much larger backgrounds or noise. In this method, a periodic modulation at a frequency 

ωm is imposed on the signal to be extracted. Timing for the modulation is provided by a 

harmonic or square wave with a well-defined phase. This is typically called the phase-

reference. The large, noisy signal from which we seek to extract the small signal, is 

multiplied in a mixer (demodulated) with the phase-reference. The mixer output is then 

filtered in a low-pass filter (cut-off frequency ωc), followed by amplification. The result 

is a DC (or slowly varying) signal, whose amplitude is proportional to the weak signal, 

plus any other components present in the original signal, whose frequencies are within 

the ωm ± ωc range. All frequency components outside this band are filtered out. By 

making the low-pass frequency ωc smaller, the SNR in the detection increases, since 

more noise is rejected. The SNR can also be improved by selecting ωm to be within a 

quiet region of the spectrum. Based on this description, the lock-in detection can be 

thought off as a very narrow filter, placed around the signal that one seeks to measure.  

The lock-in detector detects signals which are in-phase with the phase-reference. Out-of-

phase signals are not picked up. If there is a phase-shift between the reference and the 

weak signal, the lock-in output will be diminished. Therefore, some adjustment is usually 

required in the relative phase between the two mixer inputs, in order to obtain the 

maximum output. Some lock-in amplifiers (dual phase) are capable of simultaneously 

detecting both in-phase and out-of-phase components (X and Y quadratures) of the 

modulation, which they use to compute the modulation magnitude. In magnitude 

measurements, the relative-phase shift doesn’t matter.      

           To implement lock-in detection in our apparatus, we need to impose a modulation 

on the interference signal. This is done by applying a sinusoidal dither to the galvo-motor 

at a frequency ωm≈2π·150 Hz, in addition to the ramp that slowly scans the green beam 

phase. The resulting phase-modulation shows up as a modulation on the 6S→7S rate, 

synchronous with the dither signal.  The signal from the detection region is sent to a 
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commercial lock-in amplifier for demodulation. The lock-in outputs a signal proportional 

to the interference term. This process is sketched in figure 3.27. 

 

               

 Figure 3.27:  A schematic of the lock-in detection scheme used to detect the two-photon and  

weak amplitude interference 

 

         

         The interference signal, in the presence of the galvo-plate dither, can be expressed 

in a convenient form that reveals the nature of the modulation imposed on the signal. Its 

contribution to the overall 6S→7S rate has the form: 

 

                                                 i 2p w m sW 2A A cos(φ φ )                                              (3.3) 

 

where the phase of the interference is separated into two terms: a term which corresponds 

to the phase dither (φm) and a second term (φs)  which represents the slow phase-scanning 
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of the 1079 and 540 nm phase difference. For sinusoidal modulation of the phase by an 

amplitude m, we can write:  

                                                     t)mcos(ωφ mm                                                          (3.4) 

  Using (3.4) and the following identities involving the Bessel functions Jn(m): 

                                           
n

0 2n

n 1

cos mcosθ J m 2 1 J m cos 2nθ




                         (3.5) 

                                          
n

2n 1

n 1

sin mcosθ 2 1 J m cos 2n 1 θ






                           (3.6) 

Wi can be expressed as follows: 

 

                          
         

     

w o s m s2p 1i
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W 2A A {J m cos φ 2J m cos ω t sin φ (3.7)

2J m cos 2ω t cos φ ...}

 

 
 

(3.7) is a series of harmonics in ωmt. It can be seen that the amplitude of the n
th

  harmonic 

is dependent on Jn(m), and it can be varied as a function of the scanning phase φs. With 

our lock-in amplifier, we detect the first harmonic of Wi, while slowly scanning φs (~ 2.5 

cycles/sec). The first harmonic has the largest amplitude among all non-zero order 

harmonics ( ≈ 2·J1max=1.164), that is obtained for a depth of modulation m ≈ 0.29·2π. 

This corresponds to a plate rotation amplitude ≈ 0.03
o
, much larger than the ~ 0.001

o
 

resolution of the galvo-motor. In practice, m is optimized by adjusting the galvo-dither 

amplitude, while looking at the lock-in output.  

              The selection of the particular modulation frequency requires some justification. 

We want to modulate in a quiet frequency region of the 6S→7S spectrum. Below 100 Hz, 

noise from the lasers, mechanical vibrations and 60 Hz noise, create a noisy environment 

for the modulation detection. Above 250 Hz, the modulation amplitude starts 

diminishing. This is due to the longitudinal velocity spread of the atoms in the beam. All 

atoms getting excited in the interaction region at a particular instant, contribute with the 

same overall phase to the interference term. However, owing to their different velocities, 

they arrive in the detection region (which is where the modulation is detected) at different 

times. This results in a slight phase-mixing that reduces the measured interference. To 

avoid appreciable reduction, the modulation frequency   has to be a small fraction          



 

 

83 

(< 25%) of the inverse spread in the transit time from the interaction to the detection 

region, or approximately 1 kHz. The authors of ref. [47] have made a comprehensive 

analysis of the effect in their Yb beam apparatus. In addition to the constraints explained 

above, we have found that the narrow region around 150 Hz is relatively free of 

intermittent technical noise, which is why the particular frequency was chosen. The 

interferometer galvo-system has a bandwidth sufficiently large to support this frequency 

(~ 1 kHz for small angles).  

 

3.16 Optimizing the interference amplitude 

            The amplitude of the two-photon and weak amplitude interference in 6S→7S rate 

depends on the quality of the 1079 and 540 nm beam overlap in the interaction region. 

Similar to the effort involved in optimizing the optical interference of two overlapping 

beams of the same color, careful alignment of the 1079 and 540 beams is necessary to 

obtain good results. Compared to working with collimated beams, the overlap 

requirements in the M1 experiment are more stringent, since the green and IR beams need 

to be focused in the interaction region. M. Gunawardena’s thesis [48] includes a complete 

analysis of the effect of various alignment/overlap imperfections to the amount of 

interference that can be obtained. Here we only summarize the main requirements, 

discuss the precautions taken in the design of the relevant optical setup and explain the 

beam alignment procedures followed to optimize the interference amplitude.   

          The interference in the excitation rate is of the form: 

                                               2
i 1 2ω 2p w sW 4 Ε A A sin φJ m                                         (3.8) 

where φs is the slowly swept 540 nm  phase, and η  is the overlap factor, which results 

from integrating the interference term over the volume of the interaction region. It 

accounts for non-optimal beam shapes and sizes or alignment. Under optimal conditions, 

η=1.   

         Proper beam overlapping requires that the IR to green beam waist ratio is  2 .  

This condition is satisfied for the beams exiting the frequency doubling crystal. 

Preservation of the 2  factor until the interaction region is possible if both beams are 

very well collimated while propagating towards the chamber.  This is feasible in the 
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absence of any thermally induced lenses. Collimation after the ppLN crystal is done with 

a f=15 cm silver-coated concave mirror, on which the two beams reflect upon exiting the 

frequency doubler. To optimize collimation, the beams profiles are observed at a large 

distance (~ 5 m) from the mirror, while making fine translations of the mirror position. 

Due to heating in the ppLN crystal, occurring from IR (primarily) and green light 

absorption, the two beam sizes may vary slightly, depending on the IR power going 

through the crystal. For this reason, the collimation is always done at maximum IR 

power, of same level as in actual experiment.  

           To avoid thermal lensing due to absorption of the high power IR, the number of 

refractive elements in that beam path was kept to a minimum. For the same reason, the 

window that admits the two beams in the vacuum chamber is made from UV fused silica, 

which has a lower refractive index dependence on temperature than the more commonly 

used BK7 glass.  

             Astigmatism introduced by the two concave mirrors in the path of the beams (the 

f=15 cm collimating mirror and f=50 cm focusing mirror, figure 3.26), needs to be 

minimal. For this reason, the angles of incidence on the two concave are kept small         

(~10
o
 or less). In addition, by using a mirror to focus beams to the interaction region 

instead of a lens, we avoid introducing chromatic aberrations to the beams that could 

have an effect on the beam overlap.  

              Ideal beam alignment requires that the beam axes of propagation be perfectly 

matched. Any offset or non-zero crossing angle between the axes, results in a decrease in 

η.  This requirement can be quite time-consuming to achieve, and some effort is required 

to optimize the beam overlap. Since optimizing the interference ultimately relies on 

looking at the interference signal and tweaking beam alignment, obtaining the two-

photon signal at the beginning of the process is necessary. This is why the IR beam 

alignment through the electric field plates in the chamber is done first. After this, the 

green beam needs to be nominally overlapped with the 1079 beam. This is done by 

visually overlapping the beams at two distant points (~ 5 meter away). This can be done 

at low power, or at full IR power, by picking off a small fraction of the beams. No 

repetition of this step is required, unless major changes have been made in the setup.  
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Finally, to maximize the interference amplitude, fine alignment is required. This is done 

on a daily basis before data acquisition starts. The interference signal is observed at a 

high Stark-field (~300 V/cm), for which the two-photon Stark-induced interference 

produces a large modulation. The alignment involves fine-tuning of the 540 nm beam 

using one (or sometimes two) of the Mach-Zehnder mirrors.  As discussed in section 4.3, 

it may be necessary to slightly adjust the mirror that focuses both the IR and green beams 

to the interaction region, in order to null a Doppler-shift of the 6S→7S resonance present 

in the atom beam. Since both beams are walked together, this procedure does not affect 

the beam overlap.   

               We have been able to measure the overlap factor η using an electric field 

geometry different from that of the M1 experiment. Measuring η is not possible under the 

conditions of the M1 experiment, since this requires knowledge of the weak amplitude 

rate. Even at the highest electric field obtainable, the β-Stark rate is too small to be 

directly observed. To measure η, we employed the stronger α-Stark induced transitions 

(α/β ≈ 10) along with a different set of electric field plates that produces a large Ez field 

(up to 5 kV/cm). This field, combined with z-polarization for the 540 nm beam, induces 

transitions, whose rate is ~ 2·10
4
 times stronger that of the β-Stark rate in  the M1 

experiment, allowing direct observation of the one-photon rate. From observations of the 

two-photon and α-Stark rates, and the measured interference amplitude, we determine a 

value of η ≈ 0.75.  This is adequate for the M1 experiment, with about  ¼ of the signal 

being lost.  Some variation in η is expected of course, since the value depends on the 

daily beam overlap optimization procedure.   Because of the different optical setup 

requirements in the future PNC experiments, a higher η value will likely be achieved 

there.  

        

3.17 Instabilities in the interference amplitude  

          An unwanted fluctuation in the amplitude of interference occurs due to the high IR 

intensity present in the experiment.  Measurements of the interference amplitude at 

different times (at high electric fields), showed a ~ 5% variation in the amplitude, that 

could not be explained by Cs density drifts, IR / green power fluctuations, or statistical 
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noise. This observation, along with a smaller fluctuation seen in the two-photon rate, 

also inconsistent with atom density and power drifts, suggested that there must be some 

instability in the IR-green overlap, the IR beam waist, and possibly in the green beam 

waist too.  Any of these three possibilities results in variation in the overlap factor η 

(3.8).  Such variations can lead to a systematic error in the M1 measurements, if not 

treated properly.  

              In order to characterize this effect, we have looked for variations in green-green 

optical interference, using our Mach-Zehnder interferometer. This allowed us to work 

with different combinations of IR and green power levels, something that would not 

have been feasible in atomic interference studies, due to a greatly reduced signal for low 

IR or green power. The setup used is similar to the interferometer of figure 3.26. Some 

of the optics were removed or replaced in order to allow some green light leakage in the 

IR arm (which is interfered with the main green beam on a photodiode), and in order to 

block any IR light from reaching the photodiode. In addition, different attenuators were 

used in the path the green beams, depending on power levels.  

            The measurement procedure is as follows: we record the small interference 

signal, detected with the lock-in amplifier, as the galvo-plate slowly scans the green 

beam phase (20 cycles in ~ 60 sec). This is done at different times, within a ~ 35 min 

interval.   We show a typical interference signal in figure 3.28 a) . A Fast Fourier 

Transform (FFT) of the lock-in output provides amplitude that is plotted as a function of 

time. Figures 3.28 b), 3.28 c), 3.28 d) show the normalized FFT amplitude vs. time, in 

three different cases b) high IR power through the crystal and high green power 

produced, c) high IR but low green power (the ppLN crystal is temperature detuned to 

decrease conversion efficiency), d) low IR power input to the crystal and low green 

power generated.  

           The cause of the instability, as determined from the measured variation of the 

interference amplitude, must be related to the high IR power. The fluctuations for the 

high power data are about 9 %. The instability is most likely generated in the frequency 

doubling crystal, where the ~ 10 W of IR light is focused to a ~ 45 μm waist (radius), 

resulting in a very large intensity. Another possibility is the thermal lensing present in the 
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12.5 cm lens that focuses the IR beam to the ppLN crystal.  At low IR power, the 

variation is about 4 times smaller. Based on the latter, we can eliminate mechanical 

instabilities in the optical setup as a possible cause. At high IR, but low green power, the 

variation is about 6%. This decrease observed for a smaller green power, could be due to 

a decreased Green-Induced IR absorption effect (GRIIRA), which may be present in the 

crystal at high the green power. There are two mechanisms that could be causing the IR 

power-dependent instabilities in the ppLN crystal:  thermal lensing and photo-refraction 

occurring at high power. We must note however that regardless of the nature of the 

effect, it is the variation in the strength of effect under steady state conditions that creates 

the unwanted instabilities.  

 

 

 

Figure 3.28:  Green-green interference waveform (a) and amplitude of interference as a function 

of the IR power through the frequency doubling crystal and produced second harmonic (b,c,d). 

The parameter σ in the graphs on the right represents the standard deviation of the data points.  
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            Although we have found that the high IR intensity is somehow responsible for the 

observed instabilities, we do not have a good way to reduce their level. The interference 

variations at half the IR power (~5W), did not show much improvement. Working at even 

lower IR power is inconvenient; lowering the power would decrease the SNR in the M1 

measurements considerably. Having a weaker focus in the ppLN could provide some 

improvement, at the expense of the available green power, but there is a limitation to how 

large the IR waist can be (unless the beam focus is tight, the beam gets clipped) and with 

the 12.5 cm lens used to focus the beam to the crystal, we are not far from it. The 

approach taken was to design the data acquisition routine of the experiment in such a 

way, so that the observed effect’s influence on the measurements is reduced. This is 

described in section 4.1.  
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4. M1 MEASUREMENTS AND RESULTS 

 

 

4.1 Data acquisition scheme in the M1 experiment 

              The M1/β measurement principle was introduced in chapter 2. The 6S→7S 

excitation rate consists of a large two-photon rate and a small contribution owing to the 

two-photon and one-photon interfering pathways of the transition. This contribution 

appears as a modulation in the 6S→7S rate, observed as we sweep the optical phase delay 

between the two optical fields driving the interfering pathways of the transition. The 

small modulation is extracted from the overall   6S→7S signal using phase-sensitive 

detection, and has amplitude:  

 

                                         1
2, 2

2 , 1( ) ~ 2 F m
y PA F m x yK E A C M E                                     (4.1) 

 

Measurements of this amplitude at different electric fields Ey, allow a determination of 

M1/β.  

          There is a key consideration related to the design of the data acquisition scheme. 

Interference data have to be acquired in such a way so that factors such as Cs density 

drifts, laser power fluctuations, as well as the instability in the overlap factor described 

earlier, have minimal influence on the measurements.  Although it is possible to monitor 

the 540 and 1079 nm powers, calibrate the atom density, and then apply an overall 

correction factor to the recorded modulation, the issue of the overlap factor instability 

remains.  This led us to the approach of using the observed interference itself as a means 

of calibrating the signal. To achieve this, we measured ratios of interference amplitudes, 

using sets of two interference scans, one  taken at  the electric field of interest, and 

another at Ey=0.  The measured quantity is the ratio: 
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which does not depend on laser powers, Cs density or the beam overlap factor. As long as 

the set of the two scans is recorded sufficiently fast, the influence of drifts on the ratio is 

expected to be minimal. In addition, we expect these drifts to appear as a random 

fluctuation in the ratio, and not as a systematic effect. In the experiment, each pair of 

scans requires 20 sec (10+10), and the sequence of the electric field value is random.  

 

4.2 Data acquisition routine and K(Ey)/K(0) ratio measurements 

            In this section we discuss the data acquisition routine we have implemented for 

making an M1/β determination. We describe in detail the signal processing performed by 

the program controlling the DAQ system, in order to obtain a K(Ey)/K(0) from the raw 

modulation waveforms, the time sequence for repeated measurements of the ratio 

K(Ey)/K(0), as well as the sequence of  measurements  at different electric field values 

that altogether  combine to yield  an M1/β value.  

            A determination of the M1/β ratio for a particular (F,mF)→(F,mF) transition 

consists of measurements of the ratio of (4.2) at 6 different electric field values,  ± E1, ± 

E2  and ± E3. Approximately 24 min of total integration time is required for the run (a 

total of 30 min with a ~ 80% duty cycle), corresponding to 180 interference waveforms 

recorded, half of which are at zero field and the other half at E≠0.   

          The sequence of the data acquisition routine yielding   a single Μ1/β determination 

is as follows: For each electric field value (+E1 for instance) the field alternates between 

E1 and 0 a total of 10 times, and five sets of interference waveforms are recorded, with 

each set consisting of an   E≠0 and an E=0 waveform. We call every such set an iteration. 

Every iteration yields a ratio K(E1)/K(0). The block of five iterations has an average ratio 

value, which is the ratio measurement for the particular block. Each block requires 100 

sec, of which approximately 80 sec is acquisition time (~80 % duty cycle). After a block 

is completed, the field is reversed (-E1) and acquisition of another block of data starts. 

Then, the field is switched back to +E1 and so forth. A total of 6 K(E1)/K(0) ratio 
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measurements are made, three at +E1 and another three at –E1. The above process is then 

repeated for each of the other two sets of fields, ± E2 and ± E3. In the end of the elapsed 

half hour interval, we have completed 18 blocks of iterations and obtained same number 

of K(E1)/K(0) ratios.  A least-square fit of Eq. (4.2) to the K(E1)/K(0) vs. Ey  data, yields 

the  M1/β  value for the run. The relevant data analysis is discussed in (4.3).                      

          

 

                              Figure 4.1: Timing sequence for the data acquisition routine 

 

            Timing for the data acquisition routine is provided by a TTL sync pulse, phase-

locked to the ramp that is sent to the Mach-Zehnder galvo to sweep the 540 nm beam 

phase. The ramp is produced by a function generator, and the sync TTL is produced by 

f/2 division of the function generator sync output (using a D-type flip-flop). Figure 4.1, 

shows the timing sequence of the routine. The TTL controls a set of relays that either 

ground the plates (TTL-high), or apply voltage to them (TTL-low). One DAQ channel 

(Channel 1), when triggered by the TTL falling edge, samples the lock-in output and 

records the interference scan at E≠0. Another channel (Channel 2) is triggered by the 

rising edge, and records the scan at E=0. The galvo-ramp period is 10 seconds, with an 

8.5 sec corresponding to the negative slope, which is the period over which the data is 
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acquired. The Labview program that controls the acquisition routine puts a tw=7.75 sec 

window on the recorded scans, rejecting the initial 1.25 sec of sampling. This includes 

the first 0.25 sec of the phase-scan, allowing some time for the lock-in amplifier output to 

settle, following the ramp (and green beam phase) discontinuity. Sampling is done at a 

rate of 40 samples/sec for a total of 310 samples. Approximately 20 cycles are recorded 

in each interference scan (scan rate of 2.5 cycles/sec), corresponding to 16 samples/cycle. 

The lock-in time constant is 0.1 sec (10 Hz cut-off frequency), small enough so that the 

attenuation of the 2.5 Hz modulation is not significant.  In order to cut down on noise 

picked up by the lock-in at frequencies very close to the 150 Hz of the 540 nm phase-

modulation, the program filters the sampled signal through a 1.5 Hz FWHM bandwidth 

bandbass filter, centered on the 2.5 Hz frequency of the scan.  

          The slight non-linearity in the 540 nm phase-scan, (discussed in 3.13), shows up 

as a non-linearity in the interference scans. Because of this, the scan rates between the 

two extremes of the spectrum differ by ~ 11%. Following the band-pass filtering of the 

raw interference waveforms, the program corrects for the non-linearity, by applying a 

stretching transformation to the sample # n: 

                                                  n→n’(n)=n(1-b·n)                                                        (4.3) 

n’(n) is the corrected sample # ( no longer an integer), and b is an input to the program, 

that we determine in a separate experiment, by determining the value for which residuals 

from least square fits of sine functions to high SNR interference data are minimized. 

Using the same (linearized) data, an accurate measurement of the period of the 

interference cycles is made. The values we have determined for the 310 sample scan are: 

b=1.853·10
-4

 (samples)
-1

 and T=14.729 samples.  We show a set of interference 

waveforms, recorded at Ey=0 and Ey=75.09 V/cm in figure 4.2.   

          In order to compute the amplitude K of the band-pass filtered and linearized data 

V(n’), the program performs  the Sine and Cosine Fourier Transforms of V(n’)  at the 

modulation frequency (2π/T).   

 

                                       
n

S n')·/T·n')·sin(2V(n'                                                       (4.4) 
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                                       
n

C n')·/T·n')·cos(2V(n'                                                      (4.5)   

We note that the products of equations (4.5) and (4.6)  include the Δn’ factor since, 

because of the stretching transformation of (4.3), the step size in the summation is not 

unity.                  

          The interference amplitude for a particular waveform is then computed from the 

amplitudes C and S:  

                                                    22 SCK                                                             (4.6) 

Lastly, the program uses the set of  zero and non-zero field amplitudes to compute the 

ratio K(Ey)/K(0) of a single iteration of the data acquisition routine. The sequence of 

steps performed in a single iteration is displayed in figure 4.3.  

        

Figure 4.2:  Interference waveforms, recorded for the (F,mF)=(3,-3)→(3,-3) transition after band-

pass filtering. Data shown for a) zero electric field, b) E=75.09 V/cm field. The x-axis has been 

linearized.  
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        Figure 4.3: The sequence of steps for acquiring a pair of interference waveforms (at zero 

and non-zero electric field), subsequent signal processing, and computation of interference 

amplitudes and ratio K(Ey)/K(0). 

 

4.3 Determination of M1/β  

           In this section we describe the analysis of data acquired in order to determine the 

Μ1/β ratio. We also present our analysis results and our final determination for Μ1/β.   

           We have made a total of 16 determinations of the M1/β ratio, in four different days, 

in the course of two weeks, and for all possible initial states (F,mF) of the 6S→7S 

transition. In the first two days of data acquisition, we took interference measurements on 

the F=3→F=3 component of the transition. In each of these days, we made a total of 4 

M1/β determinations, alternating the initial state of the transition between opposite mF 

levels in the following sequence: -3, +3, -3,+ 3. In the last two days of the experiment, we 

switched to the F=4 initial state, and took another 4 M1/β runs per day, with the following 

sequence for the initial state mF: -4, +4, -4, +4.  Each of the 16 runs, as already 
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mentioned, requires approximately 30 min with the uncertainty in the individual M1/β 

determination in the 1-1.5 % range. The approach of making measurements in different 

days, and under different conditions for the 1079 and 540 nm beam overlap, allowed us 

to test the stability of the apparatus by verifying agreement between results from different 

days.  

         The amplitude of the modulation in the 6S→7S rate, due to the two-photon and 

weak amplitude interference is:   

                               1
2 2ω F,m F,m

2P x F,m 1 x F,m y( ) 2η A ε C M αE /C βEyK E                           (4.7) 

 

The α-Stark term 1 xxaE  needs to be retained in the above expression, since its 

contribution, although small, is not negligible compared to Μ1. All other contributions to 

the overall weak amplitude are products of two or three field misalignments, so their 

magnitude is negligible. Our data acquisition system measures ratios K(Ey)/K(0), which 

in this case can be written in the following form:  
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 In the above ratio, we have expressed the fields Ex and Ey  in terms of the  true field E, 

generated by the field plate assembly, and  the (small) angle ξ representing the slight 

misalignment between the 540 nm beam direction of propagation (defining the y-axis) 

and E.  E=V/d, where V is the electric field plate voltage and d the plate separation.  

          The parameter ξ is expected to vary from day to day, due to two reasons. First, 

some adjustment in the orientation of both optical beams is usually required, in order to 

minimize the Doppler-offset in the atom beam resonance. This is done with the concave 

mirror focusing the two beams in the interaction region, while scanning the 1079 nm 

laser and observing the relative frequency shift between our reference Cs cell and the 

atom beam resonance. In addition, the overlap of the 540 with the 1079 nm beam needs 

to be optimized on a daily basis, resulting in a variability of the apparatus y-axis with 

respect to E.  
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         Figure 4.4: Plot of ratio K(Ey)/K(0) vs. Ey.  The data run corresponds to one of the 16 

determinations of |M1/β| made in the experiment.   A hyperbolic function least square fit to the 

data (solid red curve), yields a determination for M1/β . For the data shown: |M1/β|=29.78  ±0.29 

V/cm. 

 

           A determination of M1/β for each of the 16 runs of the experiment is obtained 

through a least squares fit of the hyperbolic function (4.8)  to the 18 K(E)/K(0) vs. E  data 

points  of the run. The two parameters to be determined by the fitting routine are ξ and 

|β/Μ1|. We note that the fit yields the absolute value of  M1/β. The sign of this quantity is 

negative, as determined in a separate experiment, described in section (4.4). The fit 

parameter mF
mFCM ,
,1/  is fixed, but its value varies between the different initial (F,mF) 

states.  
,

, / 4F m

F m FC m   for F=3 and / 4Fm  for F=4. Using our best estimate for the 

distribution of atoms among the various mF levels (92% in the extreme m, 5% in the mF-

1, 3% in the mF-2), we compute an average value: mF
mFC ,
, 0.72 for the initial (3,±3) 

states, and mF
mFC ,
, 0.97 for the (4,±4) states. In addition, we use an approximate value 
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for  M1/β≈29.5 V/cm and the known ratio  α/β≈9.9, to obtain mF
mFCM ,
,1/  0.467 for 

(3,±3) and mF
mFCM ,
,1/  0.346 for (4,±4).   An example of a set of  K(E)/K(0) ratio data 

from a single run of the experiment along with the corresponding least square fit is shown 

in figure 4.4. Figure 4.5 is a plot of all the obtained | M1/β| determinations.  

             We show in table 4.1 the average values of M1/β, as determined for each of the 

four initial states (F,mF) of the 6S→7S transition. The χ
2
 for each of these values is ~ 1, 

indicating that the four measurements of each initial state are consistent with each other. 

We obtain the value of - 29.55 ± 0.10 V/cm as our overall determination for M1/β. The χ
2
 

for this value is 1.04, which corresponds to a ~ 40% probability that the sample of 16 

M1/β measurements comes from a random distribution.  The statistical uncertainty of 0.10 

V/cm or ~ 0.3 % is larger than the combined systematic uncertainty of 0.05 V/cm. The 

average values of the other free parameter of the fit, the angle ξ, are also listed in Table I.  

The overall average value 3.2 mrad   , is indicative of the accuracy with which the 

field plate assembly is oriented with respect to the atom beam direction of propagation. 

The 1.6 mrad variation in   corresponds to a Doppler-shift of ~ 1 MHz, and reflects the 

limit of precision in the procedure of nulling the Doppler-shift of the atom beam 

resonance.  

 

 

Table 4.1: Averaged results and statistical uncertainties of the M1/β measurements for the four 

different initial states, and of the combined set. 

 

 

 

 

 

 

 

 

(F,m) M1/β (V/cm) χ
2
 ξ (mrad) 

(3,-3) -29.76 (18) 0.87 -2.41 (0.85) 

(3,+3) -29.40 (19) 0.96 -5.13 (0.97) 

(4,-4) -29.65 (25) 1.18 -0.93 (1.64) 

(4,+4) -29.31 (23) 1.12 -2.76 (1.56) 

All -29.55 (10) 1.04 -3.2 (1.6) 
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Figure 4.5: The 16 determinations of |M1/β|. The dashed line represents the weighted average, 

also indicated by the solid black circle on the far right. Open circles represent measurements on 

the (F,mF)=(3,-3) initial state and closed circles on the  (3,+3) state. Open squares are 

measurements on the (F,mF)=(4,-4) initial state and closed squares on the  (4,+4) state. The error 

bars indicate the 1ζ uncertainty.    

 

4.4 Determination of the sign of M1/β  

          The sinusoidal modulation observed in the 6S→7S excitation rate has an overall 

phase determined by two contributions. The first is the weighted optical phase-difference 

between the phase-coherent fields driving the interfering path ways of the transition. The 

second is a phase factor determined by the relative amplitudes of the in-phase and out-of 

phase component of the weak amplitude of the transition. This phase factor is a function 

of the Stark-field applied to the atoms. The overall phase of modulation is:  

 

                                                  ( )yE                        (4.9) 

where                                            122
                                                           (4.10) 
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and                                    1
( ) tan

,
/ ,1

Ey
Ey F m

M aE Cx F m









 
 
  

                                     (4.11) 

 

are the weighted optical phase difference and the  Stark-dependent phase-shift, 

respectively. Sweeping the phase-difference Δφ has allowed us to make observations of 

the modulation in the 6S→7S rate, as a means of determining the magnitude of M1/β. In 

this section we describe a supplemental experiment, in which we make measurements of 

)( yE  vs. Ey, as a means of determining the sign of M1/β.   

          The method of measuring )( yE  relies on recording sets of two interference 

waveforms, one at Ey=0 and another at  Ey≠0, and determining the relative phase-shift 

between the two. The experimental procedure is as follows: We ramp the 540 nm beam 

phase ( at a rate of ~ 0.3 Hz) and record a total of 40 waveforms, alternating between zero 

and non-zero electric field. Each waveform consists of approximately 3 cycles of 

modulation. The data acquisition program averages the 20+20 waveforms to obtain a set 

of two high SNR waveforms. We show an example of such a set in figure 4.6. The 

process is then repeated for another Ey , for a total of 13 different electric fields, of both 

positive and negative value.  

         The analysis of the recorded data is straightforward. We fit a sine function to each 

of the two averaged waveforms corresponding to a particular Ey, through which we 

determine the relative phase-shift )( yE . We show a plot of the 13 )( yE vs. Ey data 

points in figure 4.7. Based on equation (3), we expect )( yE <0 for Ey>0 and )( yE <0 

for Ey<0, if M1/β <0. Opposite signs for )( yE are expected if M1/β >0. As it is clearly 

determined from the plot, M1/β  is a negative quantity.         
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Figure 4.6: A set of averaged interference waveforms, obtained for Ey=0 and Ey≠0.  List square 

fits of sine functions to the data are used to determine the phase-shift δφ(Εy) vs. Ey.   

 

      

Figure 4.7: Plot of the measured phase-shifts δφ(Εy) vs. Ey.   The red solid curve is an inverse 

tangent fit to the data of the form of Eq. (4.11), neglecting the small αΕx term.  The dashed curve 

is a simulation of the same function for the case of M1/β > 0.  
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4.5 Final result for M1 

           In this section we compare our M1/β result to previous determinations, provide our 

result for the magnetic dipole moment and compare this to other determinations of the 

same quantity.             

          On table 4.2 we compare our M1/β measurement to previous determinations of the 

same quantity. Each of these determinations was made on the F=3→4 and F=4→3 

transitions, while in this work we employed the F=3→3 and F=4→4 transitions. With the 

exception of the value reported in [30], there is very good agreement between the existing 

measurements and ours.  

 

Table 4.2: Comparison of our  M1/β result to existing determinations. The error in our value is the 

combined systematic and statistical uncertainty.  

 

                            

 

 

 

 

 

                                         
a
Measurement of the M1/β magnitude  

 

         The value of the magnetic dipole transition moment M1 is obtained using our M1/β 

result and the known vector polarizability β=26.99(5) α0
3
. We obtain  M1=-4.251(16)∙10

-5
 

|μΒ/c|. As a comparison of this determination to previously made ones, we list in table 4.3 

all the M1 measurements obtained from the M1/β values of table 4.3. We also include in 

table 4.3, a pair of two earlier determinations, one coming from a measurement of the 

M1/α ratio[27] and another, direct (i.e. non interfering) determination of M1[30]. Table 

4.3  also lists  two  calculations for the magnetic dipole moment. The most recent of these 

predicts a value of M1= - 3.58∙10
-5

 |μΒ/c|. Since the calculation of this moment is 

challenging, this value is in reasonable agreement with the weighted average of the four 

most recent laboratory determinations (including ours), which is M1=-4.245(8) ∙ 10
-5

 

|μΒ/c|.  

Group M1/β (V/cm) 

Hoffnagle et al., ref [30]
a
 26.2 (1.7) 

Bouchiat et al., ref [29] -29.55(45) 

Gilbert et al. , ref [28] -29.73(34) 

Bennett et al, ref [23] -29.48(7) 

Present work -29.55(11) 
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Table 4.3: Comparison of the  M1 result of the present work to existing determinations. The error 

in our value is the combined systematic and statistical uncertainty.  

 

 

 

 

 

 

 

                                      

 

 

 

 

                                              

                                                a
 Determined through a measurement of M1/α 

                                    
b 
Direct measurement of M1 

 

 

4.6 Signal to Noise Ratio and statistical uncertainty of the M1/β measurement 

         The combined uncertainty in the M1/β determination (systematic and statistical) of ~ 

0.37%  is dominated by the statistical contributions (0.33%). The systematic uncertainty 

(~0.16% ) contributes significantly less to the overall error of the determination. In this 

section we make estimates for the Signal to Noise ratio (SNR) in the detection of the 

interference signal, and show that the projected statistical uncertainty for the M1/β   

determinations for the given amount of integration time is in reasonable agreement with 

the actual statistical errors of the determinations.   

         The modulation in the 6S→7S rate due to the two-photon-Μ1 interference is 

approximately 2·10
-4

 of the two photon rate. In the F=3→3 transition, the observed 

modulation amplitude is about 130 μV on top of a ~700 mV two-photon background, and 

in the F=4→4 transition the modulation amplitude is  ~55 μV with on top of  a ~ 250 mV 

two-photon rate. The ratio of this amplitude to the overall noise,  measured (in units μV/√ 

Hz) at the frequency at which the lock-in detection  of the modulation is done, is a 

Group M1 (10
-5

 |μΒ/c|) 

Laboratory measurements 

Bouchiat et al., ref[27]
a
 3.7(3) 

Hoffnagle et al., ref[30]
b
 3.77(24) 

Gilbert et al. , ref [28] -4.277(49) 

Bouchiat et al., ref[29] -4.251(54) 

Bennett et al, ref[23] -4.241(10) 

Present work -4.251(16) 

Theory 

Dzuba et al.,  ref [25] -5.6 

Sakunov et al., ref[26] -3.58 
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measure for the  SNR in one second of integration( in √ Hz). Since the detected signal is 

sinusoidaly varying, we use the rms amplitude of the modulation (amplitude/√2) for 

estimating the SNR.      

          The estimated SNR in the modulation detection can be used to make a prediction 

for the expected measurement uncertainty after a given integration time t.  The SNR 

grows as t , and therefore the projected uncertainty goes as SNR/ t .  Our apparatus 

measures ratios of waveform amplitudes at both zero and non-zero electric fields (with 

50% of integration time spent on E=0 and the other 50% on one of three different field 

values). For this reason, in the present analysis we will start with the SNR of a single 

ratio measurement, and use the n  dependence of the cumulative SNR on  the number of 

ratio measurements n, to predict the final SNR of the M1/β measurement. We will do this 

separately for the 720 ratio measurements made on the F=3→3 transition and the 720 

made on the F=4→4. The SNR of a single ratio is essentially the inverse of the 

uncertainty in the ratio: 

                           

   
2 2

0 0

1 1

1/ 1 /
Ratio

Ratio
E E

SNR
SNR SNR

 

 


                            (4.12) 

where   0ESNR   and  0ESNR    are the SNRs obtained for the measurement of the  K(0) 

and K(E≠0) amplitudes, respectively. Each of these is 8sec times the SNR obtained in 1 

sec of integration        (8 seconds is the duration of each waveform scan). We make 

measurements at different electric fields, so the value of (4.12) varies slightly, but it is on 

average 0~ 0.9 ESNR  . RatioSNR  is only slightly lower than 0ESNR  , which is reasonable, 

since the E≠0 waveforms have larger SNRs, and therefore do not contribute significantly 

to the ratio uncertainty.  

        Table 4.4 lists separately for the F=3→3 and F=4→4 transitions the predicted 

uncertainty in the M1/β measurements (estimated from the projected overall SNRs for 

these),   as well as the actual uncertainty of the measurements.  The actual error is about 

30 % greater that the prediction of our SNR analysis, which is reasonable agreement, 

considering that some drifts between the various measurements are not unreasonable to 

expect. One source of such drifts could be for instance the slight instability of the 1079 
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and 540 nm beam overlap in the interaction region (discussed in 3.17),  which is hard  to 

quantify and  include in the SNR analysis.  

 

Table 4.4: Predicted  vs. actual M1/β statistical uncertainty, listed separately for the measurements 

made on the F=3→3 and F=4→4 transitions. The estimation of the overall SNR for the two 

determinations follows the discussion of this section.  

 

             

4.7 Systematic contributions to the measurement uncertainty 

            The potential systematic contributions to the overall error of the M1/β 

measurement fall into three categories. The first includes instrumental errors, such as 

these related to the error in the determining the electric field applied to the atoms, 

instrumental uncertainties in measuring the modulation waveforms, etc. This class of 

errors contributes by the largest proportion to the overall systematic uncertainty. The 

second includes potential errors related to unwanted contributions to the amplitude of the 

modulation signal, arising from stray static fields, imperfections in the optical and static 

field alignment etc. The third includes potential contributions to the signal from a small 

amplitude modulation present in the 540 nm field, introduced by the galvo-plate. In the 

following sections we discuss the contributions of each of these categories. We show that 

Day & transition 
Day 1 

F=3→3 

Day 2 

F=3→3 

Day 3 

F=4→4 

Day 4 

F=4→4 

RMS amplitude of modulation  (μV) 90 105 39 36 

Noise level (μV/√Hz) 24 21 12 11 

Measured SNR in 1 sec (√Hz) 3.8 5 3.3 3.3 

<SNR> in 1 sec (√Hz) 4.4 3.3 

Estimated <SNR> for a ratio measurement 11.2 9.3 

Total number of ratio measurements  n 720 720 

Predicted SNR  after n measurements 303 225 

Predicted  M1/β uncertainty  0.33% 0.44% 

Actual statistical uncertainty 0.44% 0.57% 
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the errors of the second and third categories do not contribute significantly to the 

uncertainty of the M1 measurement.   Table 4.5 lists the main sources of systematic 

uncertainty in the measurements and the contribution of these to the combined systematic 

error.  

 

Table 4.5: List of main sources of systematic uncertainties and their contribution to the overall 

systematic error.  

 

 

   

 

        

 

 

 

   4.7.1 Instrumental uncertainties 

         The largest contribution of this class comes from the uncertainty in the knowledge 

of the Stark field applied to the atoms. There are two factors contributing to this: The 

finite accuracy with which the plate separation is measured, and the instrumental error in 

measuring the voltage applied to the plates. The plate spacing was measured with 

calipers, and the combined error due to the measurement variability and the calipers 

uncertainty is 0.14%. The voltage uncertainty is a few times smaller. It is mainly due to 

the slight fluctuations in the field-plate voltage (0.034 %) and also due to the error in 

measuring the voltage. The Agilent 34401A digital multimeter used for this has a 

specified uncertainty of ~ 0.01 % for the range of applied voltages in the experiment.   

           The second largest instrumental contribution is due to the error in recording the 

modulation waveforms at E=0 and E≠0. Since each of these waveforms is recorded by a 

different channel of the data acquisition system, and because the experiment measures the 

amplitude ratio of the two waveforms (K(E)/K(0)), variations in the level recorded by the 

two channels,  will introduce an error in the ratio. We have studied these variations by 

measuring with each DAQ channel the amplitude of a stable and well known DC level V, 

Source of uncertainty Relative error 

Field plate spacing 0.14% 

Voltage measurement 0.035% 

DAQ input channels 

nonlinearity 
0.07% 

All 0.16% 
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for a range of V values. This allows us to establish a calibration curve V1(V) and V2(V) 

for the channels 1 and 2 respectively. We find that for the range of voltages Vi inputted to 

channel 1 and Vj inputted to channel 2 in  the experiment, the ratio V1(Vi) / V2 (Vj) is 

always  equal to Vi /Vj to within less than 0.07%. We conservatively consider this value 

to be the systematic error in the M1/β measurement due to the relative variations between 

the two channels.  

 

4.7.2 Effect of stray fields and field misalignments 

In this section we study the systematic contributions to the M1/β measurements arising 

from stray DC electric and magnetic fields present in the interaction region, as well as 

from misalignment of the DC fields or the optical polarization ε
ω1 

with respect to the 

coordinate system of the experimental apparatus. We show that these contributions are 

negligible at the level of accuracy achieved in the experiment. In order to be systematic in 

this study, we develop a formalism that can be applied to the analysis of the systematic 

errors of the M1 experiment, as well as to the future PNC work.  

            We express the total transition amplitude in the following general  form: 

 

                                          2P R R I IA a b V i a b V                                            (4.13) 

 

To determine the coefficients αR, bR, αΙ, bI  of the total weak amplitude we need to return 

to the expressions we introduced in (2.2) for the M1, Stark and PNC amplitudes. Eq. 

(4.13) involves components depending on the voltage V that creates the Stark field 

applied to the atoms, as well as terms independent of V. The total electric field in the 

interaction region is of the form E=ΔEi +κiV/d, where i can be x,y, or z. ΔEi represent 

components of any stray electric field present (no dependence on V). This field can be for 

instance due to patch effects in the field plates. The coefficients κi quantify the 

misalignments in the electric field. For the M1 geometry, in the absence of any 

misalignments κy=1 and κx=κz=0.  Although we work with linear polarization for the ε
ω1

 

driving the weak transitions, we write the optical field (dropping the superscript) in its 
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most general form ε’+iε’’, in order to include the effect of a slight ellipticity in the beam 

polarization.  

             In the expression for the interference signal that we used in our data analysis 

(4.7,4.8), we did not consider a possible misalignment of the field Β with respect to the 

apparatus z-axis. Such a misalignment is responsible for mixing between adjacent 

magnetic sublevels, through the components Bx and By. The additional terms introduced 

to the weak amplitude are not of significant magnitude at the level of accuracy achieved 

in the M1 measurement, so the approximation of perfect B alignment is valid, but we are 

now going to include these terms in the expression for the total amplitude. To derive 

these terms, we need to consider the mixing of adjacent mF components through the 

Zeeman splitting ΔΕ= gFmFμΒΒ, induced by the  Bx and By fields:  

                   

2 2 , 1 2
1/2 1/2 , 1/2

, 1 2
, 1/2

, , , , , , 1 (4.14)
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where gF is the Lande factor and the coefficients , 1
,

F m
F mC   are defined in [17].  The above 

expression includes mixing between mF levels, but not between different hyperfine levels 

F, an approximation which is valid for the modest magnetic field present in these 

experiments.  

         The coefficients αR, bR, αΙ, bI, can be shown to be in their most general form: 
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            It is useful to place some limits on some of the quantities appearing in (4.15-

4.17). For instance, although we define the y-axis as the direction propagation of the 

optical field, we allow the wavevector k to have kx and kz components, to include the 

effect of beam divergence. It happens that kz is not present in the expressions (4.15-4.17), 

since it does not contribute for the ΔmF=0 transitions we work with. We can however 

place an upper limit on the value of kx, based on an estimate for the maximum half-angle 

beam divergence (λ/πw0), where w0 =130 μm is the beam waist at the beam focus. This 

half-angle is ~1.3 mrad, and we can therefore allow a maximum of 1.3·10
-3

 for the kx 

component. The optical field in the M1 experiment is primarily in the x-direction. But due 

to the effect of focusing, a small  εy component should be present as well. We can place a 

constraint on this, using the minimum radius of curvature of the wavefronts within the ~ 

1 cm interaction region, which we estimate to be R ~ 2 m. Based on this, we can place the 

limit  εy/εx < (w0/R)=10
-4

. The εz component of the field can be greater, since its value 

depends on how carefully the polarization axis of the  beam is aligned with the x-axis of 

the coordinate system, and we find  it reasonable to  use an estimate of εz/εx=0.01 for the 

present  analysis. In the future PNC work, more careful alignment can constrain εz even 

further. Finally, we require estimates for the coefficients κi, which represent the 

alignment between the Stark-field and the optical beam direction of propagation. Since 
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the y-axis is the beam propagation axis, κy≈1. In addition,  κx is essentially the angle ξ 

used in the hyperbolic function fits of (4.8) which we determined to be  on average -3.2 

mrad. As for the κz parameter, this cannot be determined from the data, but we can use a 

reasonable estimate of 0.01 for the present analysis.   

        The lock-in detection process in the experiment detects the interference of the two-

photon with the net weak amplitude, which has amplitude:          

                                 
1/2

2 2

2( ) P R R I IK V A a b a b V    
 

                             (4.19) 

The vertex of K(V) is at: 

                           min 2 2
R R I I

R I

a b a b
V

b b


 


 , min 2

2 2

I R R I
P

R I

a b a b
K A

b b





 

K(V) can be written in terms of Vmin, Kmin as: 

                               
1/2

22 2 2
2 min min( ) P R IK V A b b V V K    

 
                              (4.20) 

In the absence of any field misalignments or stray fields,  
2

2

1~ yK M E  and M1/β  

can be obtained as the ratio of the minimum K (for E=0) to the slope of K at high electric 

fields. In the more general case, described by (4.20), we can use the same ratio to obtain 

an approximate value of M1/β :           

                                 
 

min

2 2

lim

I R R I

R I

V

a b a bK
R

dK b b dd
dV


 


                                              (4.21) 

As intuitively expected, the smaller the contributions to K(V) due to the unwanted 

effects,  the better the approximation will be.  We can write R in the following form: 

                                   
2 2

1 /

1 /

R I R R I

I R I

a a b a b
R

b d b b

 
  

 
                             (4.22) 

αR and bΙ  include the dominant terms M1 and βΕy. A measurement of R can be precisely 

matched to M1/β as long as the secondary contributions in αR  and bΙ are negligible and 

the ratio in the bracket is unity. These conditions can be expressed as: 

     1. 2 2/ 1R Ib b    

     2. / 1I R R Ia b a b   
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     3. ' , 1

,

F m

x F mC d     all other terms in bΙ  

     4. ' , 1

1 ,

F m

x F mM C d    all other terms in αR.  

 

         We now examine the above conditions, keeping in mind that the primary field 

components are Ey, Bz, and '

x . We also assume that the optical field x  has no out-of-

phase component ( '' 0x   ).  

1. The primary contribution to bΙ  is ' , 1 ' 1

, ~F m

y x F m xC d d     and the largest term in 

bR is ' 1

x xa d   .Therefore  
2

2 2 2 2 , 3

,/ ( / ) ( / ) / 10F m

R I x y F mb b a C     . This 0.1% 

contribution of the 2 2/R Ib b  term does not contribute significantly to M1/β determination, at 

the ~0.37 % level of the overall accuracy achieved in the experiment.   

2. To make an estimate for the quantity /I R R Ia b a b , we consider the ratios /R Ib b and 

/I Ra a separately. As discussed in 1, 2 2/R Ib b ~ 10
-3

 and so /R Ib b ~0.03. Regarding /I Ra a , 

we expect that the largest contribution in αI comes from ' ,

,

F m

y x F mE C   while the dominant 

term in αR is ' ,

1 ,

F m

x F mM C . Therefore 1/ ~ / ( / )I R ya a E M  . In the discussion of 

condition 4, we use experimental data to make an estimate of ~ 10 mV/cm for stray fields 

in the interaction region.  We use this value to obtain an estimate of ~3·10
-4

 for /I Ra a . 

Combining the two ratio values we discussed, we conclude that 5/ 10I R R Ia b a b    and so 

condition # 2 is easily satisfied.  

 

3. The terms in bI with the larger potential magnitude, aside from ' , 1

,

F m

x F mC d  ,  are 

the ones proportional to α. These terms arise in the presence of a small ellipticity in the 

optical polarization, expressed by the components  ε’’. These components though are 

expected to be much smaller than the in-phase amplitudes ε’ by ~10
-4

, since we work 

with  linear polarization. Therefore the secondary contributions to bI are less than 10
-4

 in 

magnitude compared to the main term 
' , 1

,

F m

x F mC d 
and condition # 3 is satisfied.  
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4. We expect that the larger term in αR aside from the dominant ' , 1

1 ,

F m

x F mM C d   is 

'
x xE  , whose origin is a stray field ΔΕx. The amplitude of the signal detected in the 

presence of this term is    
2 2,

/ ,1
F m

E C Ex yF m       and the stray field is expected to 

shift  the apparent M1 value. Fortunately, the term switches sign under mF reversal, since 

,

, / 4F m

F m FC m   (+ for F=4, - for F=3). This allows us to estimate ΔΕx  by comparing 

M1/β measurements taken for opposite mF levels. The difference should be equal 

to ,

,2 / F m

x F mE C  . Using the data of table 4.1, we obtain ΔEx=+14(9) mV/cm for the 

F=3→3 transitions, and ΔEx=-17(17) mV/cm for the F=4→4 transitions. Combining 

these values we obtain an average of +7(8) mV/cm. This stray field is sufficiently small, 

so that it doesn’t contribute to the αR term, in comparison with ' , 1

1 ,

F m

x F mM C d  .  

            To conclude the above analysis, we have shown that the systematic contributions 

of unwanted effects to the M1/β measurements appear to be insignificant at the level of 

accuracy achieved in our experiment. Such contributions will become much more 

important and necessary to address in the PNC measurements. The type of analysis 

presented in this section will be applicable in these experiments as well.  

 

4.7.3 Effect of amplitude modulation in the 540 nm field 

            The galvo-plate sweeping the 540 nm phase in the Mach-Zehnder interferometer 

creates an unwanted amplitude modulation in the 540 nm optical field. As discussed in 

section 3.13, this is due to an etalon effect present in the plate and results in a sinusoidal 

variation of the green power level as the galvo-plate is scanned. The amplitude of this 

modulation is  0.4% of the mean power, or 0.2 % in the field amplitude. Because of the 

dither in the galvo-angle imposed as part of the lock-in detection of the interference 

signal, a slight amplitude modulation is present at the dither frequency as well. Both 

types of the amplitude modulation (slow modulation due to the galvo sweep and fast 

dither of the amplitude) could introduce a systematic error in the determination of the 

amplitude of the recorded waveforms.  In this section we study this effect and show that 

its contribution to the signal is negligible. 
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           In the presence of both phase and amplitude-modulation, the interference term in 

the excitation rate takes the form: 

 

                 0 11 cos cos cos cosi a m g p m gW K r m t t m t t                  
           (4.23)    

    

In the above expression K is an overall constant factor that includes the amplitude of 

modulation K(Ey) that we seek to measure.   r=0.002 is the fractional modulation of the 

540 nm field amplitude, ωm is the dither frequency(~2π·150 Hz) , ma and mp are the (not 

necessarily equal) depths of modulation entering the expressions for the amplitude and 

phase dither respectively,  and φo and φ1 are undetermined phases.  ωgt represents the 

sweeping phase delay in the 540 nm field, imposed by the rotating galvo plate (for our 

conditions ωg≈2π·2.5 Hz). The parameter λ is included to account for the possibility of 

unequal   number of modulation cycles in the green beam amplitude and phase for a 

given rotation of the galvo plate.  This possibility arises since amplitude modulation 

involves phase-shifts internal to the galvo-plate, while the overall green beam phase 

delay involves shifts both internal to the plate and shifts occurring due to the changing 

path around the plate. In practice, we observe approximately equal number of phase and 

amplitude cycles for a given angle sweep, so λ≈1 , but we nevertheless  include λ in the 

analysis.   It is convenient to express Wi in terms of the following two quantities: 

 

                                            cos cosp m gP m t t                          (4.24) 

                                            0 1cos cosa m gA m t t                                          (4.25) 

 

Using these, the interference term can be written as: 

 

                 1iW K rA P                                                            (4.26) 

 

In the absence of any amplitude modulation r=0, and the only modulation in Wi is the 

phase modulation, expressed by the P term. P and A can be expanded in a harmonic 
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series using expansions formulas for cos(mcos(x)) and sin(mcos(x)) that involve Bessel 

functions (Eq. 3.5,3.6).  P and A can be expressed as: 

                                                 
0

cosn m

n

P P n t




                                                        (4.27) 

                                           0

0

cos ( )k m

k

A A k t 




                               (4.28) 

The first few coefficients of the above expansions are:  

 

 0 0 1 1 2 2 3 3( )cos( ), 2 ( )sin( ), 2 ( )cos( ), 2 ( )sin( )p g p g p g p gP J m t P J m t P J m t P J m t           

and:                           

0 0 1 1 1 1 2 2 1

3 3 1

( )cos( ), 2 ( )sin( ), 2 ( )cos( )

2 ( )sin( )

a g a g a g

a g

A J m t A J m t A J m t

A J m t

     

 

       

  
 

            The lock-in amplifier mixes Wi with the phase reference cos(ωmt+φref) (so that the 

1
st
 harmonic of the modulation is detected) and low-passes their product.  φref  represents 

the relative phase between the first harmonic in the expansion of the P term, (which is of 

the form P1·cos(ωmt))  and the lock-in phase reference. To obtain optimum signal this 

phase is adjusted so that φref ≈0. We now compute the product Wi·cos(ωmt),  whose  DC 

component  is the lock-in output. Our goal is to examine the contributions present in the 

lock-in output when r≠0.  Inserting the expansions for P (4.27) and A (4.28), Wi·cos(ωmt) 

becomes:   

   

     

m m 0 m m

0 0

m m m 0 m m

0 0 0

cos( t) 1 cos ( t ) cos t cos( t) (4.29)

cos t cos( t) cos ( t ) cos t cos( t)

i k n

k n

n k n

n k n

W K a A k P n

K P n Ka A k P n

    

     

 

 

  

  

    
      

     

     
       

     

 

  

   

The first term of the sum has a single DC component (K/2)P1 or 0( / 2) ( )cos( )p gK J m t .  

This term is responsible for the observed modulation in the excitation rate, occurring as 

the 540 nm phase ωgt is scanned. The second term, proportional to r, gives rise to the 

unwanted contributions to the modulation waveforms. Calling this term SA, we have: 
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   

   

   

    

m 0 m m

0 0

m m 0 m

,

m 0 m 0

,

m 0 m 0

cos ( t ) cos t cos( t) (4.30)
4
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4
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   
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 

 

   
    

   

 

       

       

 





 

The DC terms of AS are these which satisfy the conditions 1n k   or  1n k   . The 

DC part of the series is of the form:                        





0 1 0 1 0 0 2 1 0 1 2 0

3 2 0 2 3 0

2 cos 2 cos cos cos2 (4.31)
4

cos2 cos3 ...

DC
A

Ka
S P A P A P A P A

P A P A

   

 

   

  

              

The terms of DC
AS  are products of coefficients Pi  and Aj , which are 1

st
 order harmonics of 

gt  and gt  respectively. Therefore, each of the Pi · Aj products in DC
AS  oscillates at the 

sum and difference frequencies: ( 1)g   , and since λ≈1, these frequencies are 

approximately 0 and 2 g .  We therefore conclude that the effect of the amplitude 

modulation in the 540 nm field is to introduce small amplitude (because r is small) 

harmonics (with frequencies ≈ 0  or ~ 2ωg) to the interference waveforms. These 

harmonics lie on top of the signal due to the much larger modulation at ωg.  

              There are quite a few reasons for why the effect of the amplitude modulation is 

negligible. First, since r is small, the amplitude of all the ( 1)g   harmonics will also be 

small, compared to the amplitude of the ωg=2π·2.5 Hz modulation. In addition, the signal 

processing of the recorded waveforms includes a bandbass filter than rejects frequencies 

outside the 2.5 ±0.75 Hz range, followed by a Fourier transform at 2.5 Hz, that further 

attenuates the 2.5( 1)   Hz components. Finally, any residual contribution of these 

harmonics to the Fourier transform will simply add by a small amount to an overall 
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multiplicative factor in the amplitude  
22

yM E  measured in the experiment. Since 

we perform ratio measurements K(Ey)/K(0), and  the  multiplicative factor is common to 

both amplitudes,  the measurement is unaffected.   
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5. FUTURE DIRECTIONS TOWARDS A PNC MEASUREMENT 

 

 

5.1 Introduction 

          The M1 experiment presented in the previous chapters showed that our 

Coherent Control detection technique is suitable for weak moment measurements. 

The effort initiated with the demonstration of the weak signal amplification in M. 

Gunawardena’s thesis [48], and continued here with measurement of the magnetic 

dipole transition moment, will now focus on a new determination of the extremely 

weak PNC moment in Cs. In this last chapter, we discuss the future directions of the 

project, as it moves towards the measurement of the PNC effect in the 6S→7S 

transition.  We start with a discussion of the possibilities for enhancing the apparatus 

detection sensitivity, in order to reach the SNR level required for a successful PNC 

measurement. Then, we discuss the anticipated systematic contributions to the PNC 

signal, and lay out a scheme for addressing the systematic that we expect to contribute 

the most to the measurement. Finally, we propose an alternative PNC measurement on  

6S1/2→5D3/2 transition, for which the PNC moment is expected to be larger than the 

6S→7S moment.  

 

5.2. Enhancing the Signal to Noise Ratio 

       The M1 experiment has a signal to noise ratio of about  4 √Hz. The size of the 

EPNC is ~ 5·10
-5

· M1. In its present state, our apparatus would achieve a PNC SNR of 

~ 2·10
-4

√Hz.  A substantial SNR increase is necessary for the PNC experiment to be 

feasible. In this section we present various possibilities that we have identified for 

enhancing the atom beam apparatus detection sensitivity.  

 

5.2.1 Power buildup cavity to enhance 540 nm power 

        The largest increase in the weak signal amplitude will come from enhancing the 

power of the 540 nm light in the interaction region, with the use of a power buildup 

cavity. Since the weak signal is linear in the 540 nm field amplitude, the signal 

enhancement goes as the square root of the intra-cavity circulating intensity. A large 
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power buildup is required in order to significantly enhance the PNC signal.  For this 

purpose, a build-up cavity was employed in the Cs Boulder experiments [5,11,49], as 

well as in the Berkeley Yb experiment [50]. In these experiments, the cavity was a 

standing-wave design. In our experiment, in order to be able to control the 1079 and 

540 nm phase-difference, it is necessary to work with a traveling wave cavity. 

        A power buildup cavity is a Fabry-Perot interferometer, designed specifically to 

maximize the power circulating in it.  The buildup cavity finesse F, and the associated 

power buildup factor (defined as the ratio of the power circulating in the cavity to the 

power incident to it), need to be as high as possible in order to obtain a large PNC 

signal, which is proportional to the 540 nm field amplitude. The latest Cs experiment 

incorporated a cavity with F=100,000 which corresponds to a 30,000 buildup of 

power (≈ F/π), where as in the Yb experiment, an F=9,000 cavity was used. Such 

finesse values are possible through advances in dielectric coating technology, that 

allow fabrication of mirror coatings  with reflectivities greater than 99.999%  and 

absorption and scattering losses that can be at the sub-part per million level. One 

downside of working with higher finesses is that the cavity resonance frequency is 

more sensitive to external perturbations, so an elaborate mechanical and laser lock 

design is required to obtain mechanical isolation from its environment and good 

frequency stability, respectively. Nevertheless, since a large SNR improvement is 

required in order to bring the possibility of a PNC experiment within reach, an effort 

should be made to maximize the buildup for the 540 nm light. Assuming a buildup 

factor similar to the one of the Boulder experiment can be achieved, the SNR 

enhancement factor in the PNC signal will be ~170.  

        Figure 5.1 shows the geometry of a simple traveling wave cavity that could be 

used to enhance the 540 nm laser power. It consists of two concave and a plane 

mirror. The mirrors are highly-reflective at 540 nm but not at 1079 nm, since no 

buildup of power is required for the IR. A relatively small angle of incidence for the 

540 nm beam at  the concave mirrors is necessary in order to minimize astigmatism 

which will make the beam slightly elliptical and affect the overlap efficiency with the 

IR beam in the interaction region. The angle of incidence will be limited by the 

electric field plates in the interaction region, also shown in figure 5.1.  Understanding 

the effect of the astigmatism on the green and IR overlap efficiency should be among 

the first steps in the cavity geometry design.  
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Figure 5.1: Proposed power build-up cavity for enhancing the weak signal in the PNC 

experiment.  

 

 

5.2.2 Increasing the atom beam density 

        The PNC signal to noise ratio could be increased with a higher atom beam 

density. The M1 experiment is not shot-noise limited, so increasing the density would 

not improve the SNR substantially, but assuming shot-noise limit is reached in the 

PNC experiment, then SNR would increase with density (it increases as the square 

root of density).  

        In the present experiment, the estimated density of 5-10·10
+9

 cm
-3

  is at a level 

that seems to be affecting the degree of spin-polarization of the atoms. Presently, 

about 92% of atoms can be pumped to the extreme Zeeman sublevel, a fraction that 

increases at lower beam densities. The PNC experiment using the α-Stark transition 

(see discussion in 2.3.2) relies on an accurate measurement of the average mF level of 

the population. The fewer the atoms in the extreme level, the higher the precision 

required in measuring the different mF populations, to obtain a given accuracy in          

<mF>. So, although a further increase in the beam density would help with SNR, it 

would at the same time result in an increased error in <mF>. Therefore, the possibility 

of increasing the atom beam density should be studied in parallel with efforts to 

increase the degree of  spin-polarization.  If the latter can be further improved, then 

working with higher beam fluxes is meaningful.  

        It would be interesting to investigate by how much the degree of spin-

polarization can be increased using a Zeeman clean up beam.  The Zeeman beam 

would need to overlap the hyperfine cleanup, as it does in the optical pumping region. 

The process would ideally take place close to the interaction region, as close as the 

available optical access permits. Since the Zeeman pumping (see section 3.8) requires 
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Δm=+1 or -1 transitions, the two optical beams would have to propagate in the z-

direction (vertical), parallel to the local magnetic field. No major modifications to the 

apparatus are required for this, except for adding an optical window to the chamber 

lid, through which the two beams can enter the chamber, pointing in the vertical 

direction.  

         If a larger fraction of atoms can be put into the extreme mF level, then the 

accuracy requirement in measuring the population distributions with the Raman laser 

will become less severe. This might also allow us to increase the Cs density and 

enhance the weak signal measurement. A density increase by a factor of 2, would 

result in an SNR increase (in a shot-noise limited detection) by a factor of  2 .  

 

5.2.3 Possibility of improving the atom beam collimation 

        The 6S→7S resonance width in the atom beam is approximately 14 MHz, 

limited by Doppler-broadening due to the slight transverse velocity of the Cs atoms. 

The broadening results in a decrease of the effective Cs density in the interaction 

region, since only the fraction of atoms with Doppler-shifts within the transition 

natural linewidth Γ≈3.3 MHz can undergo excitations. It is desired to increase this 

fraction, by improving the atom beam collimation.  In the M1 experiment, a more 

collimated beam would provide a resonance width closer to the natural linewidth. In 

the presence of a buildup cavity however, as the case will be in the PNC experiment, 

the gain in signal would be limited. This is because the presence of the intense 

intracavity field is going to cause broadening of the transition through the ac-Stark 

effect. Therefore, even a perfectly collimated beam, will have a resonance linewidth 

greater than Γ. In the Boulder experiment, the ac-Stark effect was a limiting factor for 

the   transition linewidth. It is not easy to predict how large the broadening will be in 

our PNC apparatus. This will depend on the intracavity field intensity. Therefore, it is 

worth considering possible options for improving the collimation of the atom beam.  

         An efficient means of beam collimation is by transverse laser cooling of the 

atoms.  This is a process similar to slowing atoms in an optical molasses, where 

repeated absorption cycles force atoms to slow down. However, due to the amount of 

fluorescence emitted from the cooling process, using on-resonant light would affect 

the spin-polarization of atoms. S. Bennett’s Thesis [51] includes a demonstration of 

the transverse cooling of the Boulder experiment Cs beam, by use of an intense 
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standing wave field at 852 nm, off-resonant from the D2 line. Most of the atoms are 

cooled to within the 3.3 MHz of the  natural linewidth. In that experiment, the gain 

due to cooling was limited due to the broadening caused by the ac-Stark effect. 

Although the optical setup involves a buildup cavity for the cooling light, this 

possibility might be interesting for our apparatus. As in the Boulder experiment, the 

overall gain in the effective density will depend on the level of the ac-Stark 

broadening. 

         The degree of beam collimation in our apparatus is primarily determined by the 

oven nozzle. A different nozzle would offer a different degree of collimation. The 

nozzle is a pack of hypodermic tube needles, which are ~ 1cm long, and ~0.8 mm in 

internal diameter. This corresponds to a 12.5 length-to-diameter aspect ratio. The 

authors of [52] reported on an experimental and theoretical comparison of the degree 

of collimation and density in a Cs beam between nozzles of different aspect ratios. 

They show that the higher aspect ratios provide tighter collimations, but lower beam 

densities (and vice versa). In order to recover the same level of beam density, an 

increase in the oven temperature is necessary, which results in a greater beam 

divergence, and so the gain from the higher aspect ratio is decreased.  Therefore, 

trying a nozzle with higher aspect ratio in our apparatus would probably not increase 

the effective density by a whole lot.  

         We have attempted to improve collimation using two different collimators.  

These collimators were made of microscope cover slips (thickness ~ 0.15 mm) and 

were placed approximately 10 cm downstream from the oven nozzle. In one of these, 

the cover slips spacing was ~0.2 mm and in the other 0.5 mm. The narrow collimator 

did provide a much narrower beam divergence (6 MHz linewidth,) but it also 

decreased the beam density by a factor of 5-6, so there was no actual gain from the 

collimation. The less narrow collimator resulted in a slight decrease in the beam 

density, without any observable improvement in the resonance linewidth. As a 

conclusion, there seems to be no gain in the effective Cs density by using a 

collimator.  

 

5.2.4 Reducing the 6S→7S detection noise 

           Aside from enhancing the weak signal amplitude, it is equally important to 

reduce the noise in the detection of the signal. In the M1 experiment, the noise level in 
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the detection has roughly the same contributions of shot noise due to the two-photon 

rate, and technical noise from the lasers (mainly frequency noise) as well as noise 

from the background of atoms in the state the detection takes place. Since the 

measurement accuracy increases as the square root of integration time, it is important 

in the PNC experiment to work with shot-noise limited detection. This will require the 

total reduction in combined noise due to the lasers and the background by a factor of 

2-3. With shot-noise limited detection, the total improvement in noise level will be a 

factor of 2.  

         The requirement for a quiet 1079 nm laser will be satisfied by locking the 540 

nm light (generated by frequency doubling of 1079 nm) to the high finesse build-up 

cavity. One convenient possibility is a triple stage lock, with optical feedback from a 

Fabry-Perot to narrow the 1079 linewidth to the ~10 kHz range [40], and electronic 

feedback to the laser current (or to an AOM that frequency-shifts the laser output), to 

stabilize the generated 540 nm field to the cavity resonance. The cavity in turn would 

be stabilized to the Doppler-free resonance in the reference cell. Since this cavity will 

have a very narrow linewidth (kHz level) and the atomic resonance is on the order of 

15 MHz, we expect that the laser frequency noise contribution to the 6S→7S noise 

will be negligible.  Already through the single stage lock of the laser to the ~ 6 MHz 

Doppler-free two-photon resonance in a cell, the lock is quiet enough, so that no 

changes in the 6S→7S detection noise are observed when the (fast) current feedback 

to the laser is disengaged. This fact permits us to be able to project that the 1079 nm 

laser noise will not contribute to the noise level. Finally, the  4 ppm√Hz 1079 nm 

amplitude noise (whose contribution to the 6S→7S noise is ~ 8 ppm√Hz), is at a level 

(1/2 of shot noise) where it probably does  not need to be addressed.  

            The 852 nm detection laser frequency noise (~15 ppm√Hz at 150 Hz) is the 

largest contributor to the 6S→7S noise identified in the M1 experiment.  A better lock 

to the saturation absorption (SA) signal is required to reduce this level. A minimum of  

a factor of 2 improvement is necessary to make the noise level small compared to the 

6S→7S shot-noise.  This will require improving the SNR in the error signal obtained 

from the spectrum, and probably a faster feedback loop too. The construction of the 

circuit used in the M1 experiment (which is almost identical for all 5 lasers), did not 

include a careful design of the loop’s overall gain vs. frequency profile. A more 

careful design, based on principles described in [53] for instance, ought to provide 
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better laser noise performance. An alternative to the direct lock to SA peaks could be 

a dual stage lock, in which the first stage is a lock to a Fabry-Perot cavity, followed 

by cavity stabilization to the SA spectrum. Since a cavity can provide much narrower 

linewidths than the ~12 MHz of the SA peaks, significant noise reduction should be 

expected with the two-stage lock.  

         Improvement in the hyperfine laser lock may be necessary as well. Although we 

have not characterized its noise performance, since the overall 6S→7S noise does not 

change depending on whether the laser lock is tight or not, it is reasonable to think 

that the laser’s contribution to the noise is small. Noise in the hyperfine laser will 

cause fluctuations in the background of atoms in the almost depleted F state probed by 

the detection laser. Since this background is a few times smaller than the two-photon 

rate, the hyperfine laser noise should have a smaller effect  than the same noise level 

present in either the detection of the 1079 nm laser. However, since improvement in 

the detection laser noise is required anyway, the changes made to the latter could be 

easily applied to the hyperfine laser as well.  

          The background of atoms in the nominally depleted F state (~0.15% of the 

atoms in the beam), contributes somewhat (mainly with its shot noise), to the overall 

6S→7S noise. A reduction in this background will help decrease the noise level 

slightly. The background is primarily due to re-absorption of fluorescence in the 

optical pumping region. Working with lower Cs densities helps decrease this 

background, but in a shot-noise limited experiment, a lower density would result in a 

smaller signal to noise ratio for the weak signal detection. In the M1 experiment, the 

large size electric field plates, parallel to the optical windows of the chamber, 

prevented us from using a second hyperfine clean up beam close to the interaction 

region, to further reduce the background. Access through this window will probably 

be possible in the PNC experiment, due to the different plate geometry requirements.  

 

 

5.2.5 Conclusion 

        In this section we conclude our discussion about the possibilities of enhancing 

the detection sensitivity of our apparatus with an estimate for the SNR enhancement 

we anticipate to achieve, in order to make the measurement of the extremely weak 

PNC moment feasible.  
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       We list in table 5.1 three sources of improvement that are likely to result in   an 

enhancement of the weak signal detection sensitivity. The first is the 540 nm power 

build up cavity. Assuming a build up factor of 30,000, the resulting weak signal (and 

SNR) enhancement is 30,000  ≈170. The second source of improvement comes 

from a reduction in the 6S→7S detection noise, that, as discussed, will result in a 

shot-noise limited detection and an overall noise reduction by a factor of 2. The last 

SNR source of improvement we assume is an increased Cs beam density. Assuming a 

factor of 2 increase, the resulting SNR enhancement will be 2 . Of course all these 

enhancements factors are simply estimates. The actual enhancement from each of the 

sources listed in table 5.1 is yet to be explored. Other potential sources, discussed in 

the previous sections but not listed here, may also contribute to the detection 

sensitivity.   

 

Table 5.1: Sources of detection sensitivity improvement and associated SNR enhancement 

factors.  

 

 

 

 

 

 

 

 

 

        Currently, the average SNR (in 1 sec) in the M1 signal detection is ~ 3.8 √Hz. 

The PNC moment is ~ 20,000 smaller than M1. The projected 480 factor improvement 

in the apparatus detection sensitivity corresponds to a PNC detection SNR of 

approximately 0.09 √Hz. At this level, a 1% determination of the PNC moment will 

require ~ 340 hours of integration time. This is a long time, but not an unrealistic 

possibility. The 1% determination is sufficient for a check of the Boulder experiment 

anapole moment result. However, for a more precise determination of the weak 

charge than that of the Boulder experiment (target accuracy <0.3%), more than 3,000 

hrs of integration is required. This is unpractical, and further enhancement of the 

apparatus sensitivity than our estimate in this section will be required.   

 

 

Source SNR enhancement 

540 nm build up cavity (30,000 enhancement) 170 

Detection noise reduction (factor of 2) 2 

Atom beam density (factor of 2) 2  

Overall enhancement 480 
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5.3 Control of systematics in the PNC signal-Build up cavity as a polarizer 

           The PNC experiment will be more challenging than the M1 experiment, with 

respect to understanding and handling properly the systematic contributions to the 

weak signal. This is due to the much smaller size of this moment, relative to M1 

(~5∙10
-5

). The systematic contributions to the signal can arise from misalignments of 

the static electric and magnetic fields present in the interaction fields, stray static 

fields, and potential misalignment of the 540 nm polarization axis, as well as potential 

impurities in the nominally linear 540 polarization. An understanding of the relative 

importance of the anticipated systematic contributions, require us to perform the same 

analysis presented in section 4.7.2 for the case of the M1 experiment. Repeating this 

analysis here is beyond the scope of this discussion, but the analysis shows that for 

reasonable field misalignments and stray fields, most of the systematic contributions, 

are of a small enough magnitude so that they do not contribute significantly.  

        There is a systematic contribution to the PNC signal however that will be 

challenging to address. It involves the M1 moment, and it arises from a 540 nm field 

polarization impurity. In the proposed EPNC measurement scheme (2.3.2), in the 

absence of any systematic contributions, the amplitude of modulation is:  

             
22' ,

2 ,( ) 2 ( ) F m
z P z z PNC F mK E A E Im E C                              (5.1) 
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1 ,
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resulting in an amplitude of modulation:  
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           (5.2) 

Addressing this systematic will require a very high degree of polarization purity. 

Since Im(EPNC) /M1 ≈5∙10
-5

 , a ratio '' '/x z  <<5∙10
-5 

will be required to render this 

systematic insignificant.  

         We can use the 540 nm power build-up cavity, discussed in 5.2.1, as a high 

quality polarizer for the 540 nm field, to obtain a highly linear polarization. The idea 

is to exploit the fact that in a traveling wave cavity, the different phase shifts upon 

reflection for the s and p modes of the field, result in different resonant frequencies 
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for the two modes [54]. When one mode is resonant, the other is not. In our case, 

locking the 540 nm field to the p mode (z-polarization) will result in a very high 

extinction for the unwanted ''

x  component, corresponding to the off-resonant s mode. 

        The degree of extinction for the unwanted polarization is related to the cavity 

transmission:              

                                  max

2
( )

2
1 sin

T
T v

F v

FSR










   

    
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                                                (5.3)      

where Tmax is the resonant transmission, F is the finesse of the mode, vΔ is the 

detuning from resonance and FSR is the cavity free spectral range. The extinction 

ratio for the electric field is ≈π/(2F). The authors of [54] have demonstrated an 

intensity extinction ratio of 59 dB using a cavity with a finesse F=3825. According to 

(5.3), the extinction ratio should increase with finesse. The PNC experiment will 

employ a finesse value of several tens of thousands, which should yield a much higher 

extinction.  We note that in the experiment described in [54],  the  polarization of the 

light incident to the cavity input coupler, is at 45
o
 with respect to the cavity plane, so 

that equal power is available to both the s and p modes. In our case, the incident 

polarization will be in the z-direction, therefore, a higher extinction than what was 

reported in [54] is expected. Assuming a Finesse of 50,000 can be achieved for the p 

mode of the 540 nm buildup cavity, and an alignment of the input polarization with 

the p mode at the 0.5% level, then the optimum extinction would be ~1.6 ∙10
-7

. This 

would bring the M1 term to within less than 1% of Im(EPNC). Of course such 

polarization purity is yet to be demonstrated, and this will be one of the major 

challenges to overcome in the PNC experiment.   

 

5.4 PNC experiment on the 6S1/2-5D3/2 transition 

         So far, we have considered extending our technique to measurements of the 

PNC amplitude on the Cs  6S1/2→7S1/2 transition. An interesting alternative to this 

appears to be the electric-dipole forbidden 6S1/2→5D3/2 transition in the same system.  

Calculations of the PNC amplitude [55,56] yield a size ~ 4 times larger than that of 

the 6S→7S  transition. A 4 times increase in the signal to noise ratio, corresponds to a 

16 times decrease in the amount of integration time required to obtain a particular 

accuracy, compared to the 6S→7S state. For an experiment that requires very long 
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integration times, this is a major factor. Since the experiment measures the ratio of the 

PNC to a Stark-induced amplitude, the larger PNC amplitude makes the measurement 

less susceptible to stray fields. Finally, a measurement of the PNC effect on a 

transition other than the 6S→7S employed in the very successful Boulder experiment 

will provide a more reliable check of the Boulder results.  

      The one-photon interactions contributing to the 6S1/2→5D3/2 transition, aside from 

the PNC, is the Stark-induced transition (ESt) and an allowed electric-quadrupole 

transition (E2). Figure 5.2 shows a relevant energy level diagram with all the 

transitions contributing to the 6S→5D transition. Unlike the 6S→7S case, there is no 

M1 contribution for excitation to the 5D3/2 state.   This is an important difference, 

because a significant systematic contribution in the 6S→7S experiment is not present 

here.  However, as discussed in A.D. Cronin’s thesis [57], the size of the E2 amplitude 

in the 6S→5D is 1000 times larger than that of the M1 in the 6S→7S transition. 

Fortunately the E2 transition does not contribute to ΔmF=0 transitions. Cronin 

proposes a PNC measurement based the Stark-PNC interference technique (also 

employed in the Boulder experiment), using the ΔF=1, ΔmF=0  6S1/2 F=4, mF=4 → 

5D3/2 F=5, mF=4 transition, in the presence of a 74 G magnetic field. The magnetic 

field splits the various mF levels enough so that the ESt∙E2 interference from ΔmF=+/-1 

transitions is largely attenuated (both the Est and E2 contribute for ΔmF=+/-1).  

 

          
Figure 5.2: Partial energy level showing the hyperfine structure of the 6S1/2 and 5D3/2 

states, and the possible one-photon transition pathways between these states.  
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       Compared to the Stark-PNC scheme, our Coherent Control scheme offers the 

advantage that the strong (two-photon) transition is (or can be made to be) active only 

for ΔmF=0 transitions [37]. The ΔmF=0 transition is the only type allowed if the two 

fields driving the transition are degenerate. In the non-degenerate case, with 

appropriate selection of the two field polarizations, we can induce ΔmF=0 transitions 

and suppress the ΔmF=+/- 1 contributions. Therefore, the A2P·E2 interference can be 

suppressed without the need for a strong magnetic field, that can cause issues through 

Zeeman mixing of the closely spaced F components the 5D3/2 state.  Potential A2P·E2 

contributions could only arise from a misalignment of the magnetic field in the 

interaction region with the coordinate system, or through stray fields present in the 

region.  

 

   
 
Figure 5.3: Two-pathway excitation of the 6S1/2→5D3/2 transition, using a) degenerate 

frequencies to drive the two-photon pathway, b) non-degenerate frequencies.  

 

          We show in Figure 5.3 two possible schemes for the two-pathway excitation of 

the 6S1/2→5D3/2 transitions. a) is a two-color experiment  employing a  single IR field 

at 1380 nm to drive the two-photon pathway. The 690 nm field required for the one-

photon transitions can be generated by frequency doubling of the fundamental. 

Currently, the available sources at 1380 nm do not meet our power requirements for 

frequency doubling and driving the two-photon transition, since the existing amplifier 

technology in the 1300-1400 nm region can only offer powers at the 100 mW level. 

We would need a power of at least a few Watts, to obtain appreciable second 

harmonic power at 690 nm and a decent two-photon signal from our atom beam. 

Figure 5.3 b) shows an alternative, three-color scheme, with two non-degenerate IR 
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fields to drive the two-photon transition. One is at 1064 nm, a wavelength covered by 

our 12 W fiber amplifier used in the M1 experiment.  The second is at 1962 nm, within 

the range of available high power 1.9-2.0 μm amplifiers. In the three-color 

experiment, the 690 nm light can be produced by sum-frequency generation of the 

two IR fields. In order to select the ΔmF=0 transitions, the two-field polarizations 

would need to be parallel.  
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