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ABSTRACT 

 

Altaf, Adeel. Ph.D., Purdue University, May 2014. Spectroscopy of ultracold LiRb molecules 

using ionization detection. Major Professor: Daniel S. Elliott. 

 

We present spectroscopic studies of ultracold LiRb molecules using ionization detection. The 

molecules are created by cooling and trapping Li and Rb atoms in overlapping magneto-optical 

traps (MOTs) and using light resonant with a free-bound transition to create weakly bound 

excited state molecules in a process known as photoassociation (PA). We explore weakly bound 

vibrational levels of LiRb with PA spectroscopy using ionization detection and, where possible, 

compare our results with earlier measurements performed in our lab using trap-loss spectroscopy. 

In addition, we also probe vibrational levels of the ground triplet electronic state and excited 

electronic states using resonantly enhanced multiphoton ionization (REMPI) spectroscopy. We 

identify several vibrational levels of the a
3


+
, (3)

3
 and (4)

3


+
 states and compare our 

observations with theoretical calculations. As LiRb is one of the least studied heteronuclear 

diatomic molecules, these studies are aimed towards exploring the molecular structure. The 

spectroscopic work is also in line with the long-term project goals of transferring ultracold LiRb 

molecules into the lowest rotational and vibrational levels of the ground singlet electronic state. 

Molecules in this rovibronic ground state possess a large electric dipole moment, which is 

essential for application of ultracold molecules in various quantum computation schemes. The 

rovibronic ground state will also be an ideal starting point for investigating molecular entangled 

states. 
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1. INTRODUCTION 

 

1.1 Why ultracold molecules? 

There has been immense interest recently in the atomic, molecular and optical (AMO) physics 

community to create and probe ultracold molecules. These are molecules with translational 

kinetic energy less than 1 mK. The versatility – and hence attractiveness – of ultracold molecules 

is seen in their application in many different areas of scientific research, such as ultracold 

chemistry [1, 2, 3], quantum information processing [4, 5, 6], novel quantum phase transitions [7, 

8, 9], coherent control [10, 11, 12] and test grounds for the fundamental forces of nature [13, 14, 

15], among others. Many of these research endeavors are fueled by the rich and complex structure 

of ultracold molecules due to various degrees of freedom, and the novel interactions that result 

from operating in the ultracold regime. 

One focus in ultracold molecules has been ultracold diatomic alkali molecules. With their simple 

electronic structure, alkali atoms offer a convenient starting point for diatomic molecular systems, 

which are the simplest type of molecules that can be created and studied. In addition, the 

technology and experimental techniques to manipulate alkali atoms are highly advanced, with 

many groups around the world regularly producing and investigating ultracold alkali atomic 

systems. 

Among ultracold diatomic molecules we differentiate between homonuclear and heteronuclear 

molecules. A brief history of work on homonuclear molecules will be presented later in the 

chapter. As the focus of this thesis is heteronuclear (LiRb) molecules, we next discuss some of 

their important features that are relevant to our research. 
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1.1.1 The appeal of ultracold heteronuclear molecules 

In our laboratory, we have been engaged in an experimental program whose goal is to create 

ultracold LiRb molecules, and to manipulate their internal states as a means of creating entangled 

states between molecules. The specific work described in this thesis, to explore the molecular 

structure of these molecules through laser spectroscopy, is an essential component of this larger 

programmatic goal. 

Heteronuclear molecules possess an important tunable degree of freedom that makes them an 

appealing and fruitful system to study: in the ground electronic state, they possess a nonzero 

electric dipole moment that can be manipulated by external fields. This characteristic 

immediately opens several avenues to utilizing the dipole moment, such as novel 

implementations of quantum computation schemes (discussed later), controlling ultracold 

chemical reactions [1], realization of quantum many-body systems [16, 17], and others. If the 

heteronuclear molecules are in the absolute rotational-vibrational-electronic, or rovibronic, 

ground state, they are in the lowest possible energy state (ignoring hyperfine energy). From an 

ultracold chemistry point of view, molecules in the rovibronic state are an ideal starting point to 

study chemical reactions that also involve dipolar collisions. Recent experiments [3] in ground 

state KRb have manipulated dipole-dipole interactions to control chemical reaction rates in an 

external electric field. Similarly, the rovibronic ground state is suitable for schemes involving 

quantum computation because decoherence effects due to interactions with the environment are 

diminished. 

While ultracold molecules in the ground rovibronic state are an excellent system to probe, 

creating such molecules is a different challenge altogether. Whereas atoms can be laser cooled 

quite easily, the rich internal structure of molecules makes it incredibly challenging to cool 

molecules to ultracold temperatures. Therefore, to create ultracold molecules, we resort to first 

cooling the constituent atoms and creating ultracold molecules from these ultracold atoms. This 

process is known as photoassociation (PA) and will be introduced in more detail later in this 

chapter. 

Having provided motivation for creating and studying ultracold heteronuclear molecules, we next 

present a brief review of early research in light-matter interactions that ultimately led to the 

creation of ultracold molecules. 
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1.2 Brief review of ultracold atoms and molecules 

At room temperature, chemical reactions that occur between two constituent atom species create 

stable, deeply bound molecules with electronic, vibrational and rotational degrees of freedom. 

Interaction between atoms and light that is resonant between the scattering state of atoms (free) 

and a molecular electronic state (bound) can also create molecules. An attempt to investigate this 

interaction between colliding atoms and light was undertaken in the early days of high-powered 

CO2 lasers [18]. But researchers quickly realized that rather than helping to control interactions 

between particles, the laser light was a heating mechanism that rendered ineffective the optical 

manipulation of particle interactions. 

Nevertheless, there were early examples of free-to-bound transitions in alkali thermal vapor [19] 

and more recent attempts at the same (Refs. 25-28 from [20]. Also refs 5-8 in [21]). The common 

feature among these findings was a broad absorption profile with a width of several nm due to the 

large initial kinetic energy of colliding particles in the thermal vapor. It was also observed that the 

colliding particles possessed substantial thermal motion that limited interactions with the light 

field [18]. 

In contrast to free-bound transitions in thermal vapor, ultracold atoms offer a significantly 

different – and much more favorable – environment for light-matter interactions. In this thesis, 

ultracold systems imply temperatures of 1 mK or less, where, unlike in thermal vapor, Doppler 

broadening is reduced to less than the natural linewidth of atomic transitions, enabling very high 

resolution spectroscopy to be performed. Laser cooling techniques and lasers with narrow 

linewidths of hundreds of kHz allow vibrational, rotational and hyperfine transitions to be easily 

resolved for ultracold systems. Free-bound light-assisted transitions in ultracold systems – known 

as photoassociation (PA) – also probe a different region of the potential energy curves. Whereas 

particle interactions in thermal vapor occur at short internuclear separation (< 20a0), and hence 

deeply bound rovibrational levels, two ultracold atoms undergoing PA do so at large (> 20a0) 

internuclear spacing and create very weakly bound molecules, close to the dissociation energy of 

the excited electronic state. 

1.2.1 Progress in homo- and hetero-nuclear molecule formation 

Giant strides made in the field of atom cooling and trapping in the 1980s heralded the study of 

ultracold atoms and molecules [22, 23, 24, 25, 26]. Researchers demonstrated the use of lasers to 
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translationally cool atoms, and trap them in a spatially varying magnetic field, giving rise to 

magneto-optical traps (MOTs). This work laid the foundation for studies of ultracold collisions 

and the interaction of trapped atoms with lasers to create ultracold molecules. The pioneering 

work of these early ‘atom trappers’ and their breakthrough techniques have been recognized with 

the Nobel Prize in Physics. 

The first experiments on PA spectroscopy in the latter half of the 1980s and 1990s were 

conducted in ultracold homonuclear species. A few years after the theoretical framework for free-

bound transitions in ultracold Na was presented by Thorsheim et.al. [27], PA spectroscopy of 

Rb2, Li2, Na2, K2, and Cs2 was performed, detecting free-bound transitions by both trap-loss 

measurements and multiphoton ionization (these detection techniques will be discussed later). 

Since these early days, numerous groups around the world have created ultracold atoms and 

performed spectroscopic studies, among other research topics. Here, we highlight some of the 

early pioneering work that paved the way for explosive growth and exciting research on ultracold 

molecules. 

D. J. Heinzen’s group at the University of Texas, Austin trapped Rb atoms in an optical dipole 

trap and performed PA spectroscopy to bound Rb2 vibrational levels with a binding energy of 

almost 1000 cm
-1

 by scanning the frequency of the dipole trap laser [28, 29]. For PA spectroscopy 

below the Rb(5s) + Rb(5p3/2) asymptote, they observed the presence of a ‘pure long-range’ 

electronic state with an inner turning point > 25a0, compared to inner turning points of ~10a0 or 

less for most electronic states. 

PA spectra of K2 were generated in Stwalley’s group at the University of Connecticut [30, 31]. 

Instead of a tunable dipole trap, the potassium atoms were confined in a MOT, and a separate 

tunable PA laser produced highly excited K2 molecules. PA resonances were detected by a 

decrease in MOT fluorescence when on resonance. In this way, the Connecticut group identified 

lines belonging to three different electronic states. 

PA spectroscopy of 
6
Li2 and 

7
Li2 was performed at Rice University in Hulet’s group. Using 

fluorescence detection, Abraham et.al. [32] detected vibrational levels belonging to excited 

singlet and triplet electronic states, and the binding energies of these levels. At the ultracold 

temperatures afforded by the MOT, they also resolved the hyperfine structure of the PA lines. 
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Ultracold Na2 molecules were created at NIST, where PA spectroscopy was undertaken to 

complement double-resonance spectroscopy and laser induced fluorescence [33]. 

A different detection technique was used by Pillet’s group at Laboratoire Aime Cotton in Orsay, 

France for PA spectroscopy of Cs2 molecules [34]. They used ionization detection to detect PA 

molecules that decayed to vibrational levels of the triplet ground state. In addition, measurements 

made to determine the temperature of the molecular cloud revealed that the temperature of the 

Cs2 molecules was ~300 μK. 

With the success of PA in homonuclear systems, researchers started working towards PA of 

heteronuclear species, such as KRb [35], RbCs [36], LiCs [37], NaCs [38] and KLi [39]. The 

experimental details for dual species PA are more involved than for single species PA, not least 

because (depending on the two alkali species of interest) the apparatus may require separate sets 

of light sources and optics, not to mention different atom sources. It is also challenging to 

optimize the number and density of both species of trapped atoms. Since molecules are produced 

via light-mediated interatomic collisions, the spatial overlap of the two trapped atom clouds needs 

to be very well adjusted, which is not always a straightforward task. Once overlapped, however, 

another potential issue arises: interspecies collisions between the trapped atoms cause loss of 

atoms from the trap and reduce the efficiency of molecule formation. During our work with the 

dual species Li-Rb MOT, we have encountered these (and more) challenges, and have iteratively 

improved the system, and hence the quality of our data acquisition. Details of our experimental 

setup will be discussed in the next chapter. 

1.2.2 Applications of ultracold heteronuclear molecules 

The payoff for working with two atomic species is that unlike homonuclear molecules, ultracold 

heteronuclear molecules possess a permanent dipole moment in the ground electronic state. In 

2002, DeMille [4] proposed a novel scheme for quantum computation that relied on the dipole-

dipole interaction of heteronuclear molecules. Starting with a dual-species MOT, PA is performed 

to create ultracold heteronuclear molecules. The molecules are transferred to a one-dimensional 

optical lattice formed by the standing wave interference pattern of a laser beam. The polar 

molecules occupy lattice sites spaced by λ/2, where λ is the optical lattice laser wavelength. An 

external electric field with a field gradient along the length of the optical lattice creates a non-zero 

electric dipole moment of the molecules. In essence, the strength of the spatially varying electric 

field tunes the interaction between nearest neighbor polar molecules, which can be treated as 



6 

 

quantum bits, or qubits that are oriented up or down with respect to the electric field, as shown in 

Figure 1.1. With demonstrated production of ultracold heteronuclear molecules in the lowest 

rovibrational states of the ground electronic state [40], this proposal promises an all-optical 

quantum logic gate operation. 

 

Figure 1. Schematic outline of the quantum computation scheme proposed by 

DeMille [4]. The small arrows in each rectangular section of the optical lattice 

represent the orientation of the permanent dipole of polar molecules.  

Coherent control has been widely used to study interference between different transition 

pathways in atomic and molecular systems by using all-optical means. In ultracold systems, this 

idea can be applied in the PA step as follows: two light fields that are phase locked to each other 

photoassociate ultracold atoms to an excited electronic state. The first light source employs a 

conventional one-photon PA resonance, while the second source is two-photon resonant with a 

free-bound transition. The two PA pathways create molecules in different rotational states, and 

because the light fields are phase-coherent, they form PA molecules in rotational superposition 

states. The superposition can be detected by a standard time-of-flight ion imaging setup. More 

details of this application of polar molecules will be presented later in this thesis. 

Spectroscopy of ultracold molecules using PA is also an important area of research. PA 

complements the spectroscopic picture of excited molecular electronic states. Conventional 

spectroscopy can access moderate- to deeply-bound vibrational levels, but information on near-

dissociation levels is washed out due to the large initial thermal distribution of the sample under 

study [20]. PA offers a very high resolution spectroscopy tool to glean information about these 

near dissociation levels of ultracold molecules [18, 41]. Unlike bound-bound spectroscopy that 

mainly covers short internuclear spacing (See, for example [42] and [43]), PA favors long-range 
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free-bound transitions, primarily due to good overlap between the initial scattering-state and final 

molecular wavefunction. Recently, however, evidence has begun to emerge of short-range PA, 

with ultracold Rb2 molecules created in excited state vibrational levels above the corresponding 

molecular asymptote [44], and molecules formed in the A
1
u

+
 state with PA light at 1071 nm 

(unlike conventional Rb2 PA at ~780-800 nm) [45]. 

The vast potential of heteronuclear polar molecules has guided our studies of ultracold LiRb 

molecules, one of the least studied alkali heteronuclear species. This thesis will present 

spectroscopic studies of ground and excited electronic states of LiRb using ionization 

spectroscopy. Our goal in exploring LiRb energy levels is to gain a better understanding of the 

molecular structure, with the ultimate aim of searching for convenient pathways to transfer these 

molecules into the ground rovibronic state. This transfer to the least energetic states will create an 

ideal starting point for studying dipole-dipole interaction of LiRb molecules, and also for creating 

and manipulating a coherent superposition of rotational states with long decoherence times. 

The remainder of this chapter reviews background information needed to understand free-bound 

and bound-bound transitions (for a rigorous background on molecular spectroscopy, see [46] and 

[47]). We introduce the framework of molecular potential energy curves, and the different 

regimes that correspond to deep, strongly bound states, and long-range behavior close to the 

dissociation energy. Spectroscopic notation and selection rules that apply to different interaction 

regions are defined. Experimentally, our starting point is the cooling and trapping of atoms. 

Therefore, to complete the chapter, we present the principles governing the light-matter 

interaction that are crucial to producing ultracold atoms, and eventually ultracold molecules. 

1.3 Background on molecular spectroscopy 

1.3.1 Born-Oppenheimer approximation 

The non-relativistic Hamiltonian for a diatomic molecule can be written as [48, 49]: 

                                                       ) (1.1) 

where the subscript el represents electrons and N represents the nuclei. The first two terms are the 

kinetic energies of the nuclei and electrons, respectively, and the other three represent 

electrostatic interactions. R and r are the coordinates of the nuclear and electronic coordinates, 
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respectively. Due to the el-N interaction term the Hamiltonian cannot be separated into electronic 

and nuclear parts. However, electrons move much faster than nuclei, which allows us to use the 

Born-Oppenheimer approximation and treat electronic motion separately from nuclear motion. 

With this approximation, the overall molecular wavefunction         can be written with separate 

electronic and nuclear wavefunctions as: 

          
  
     

 
  (1.2) 

With the electronic and nuclear motion decoupled, we can look at the variation of the potential 

energy as a function of internuclear spacing and so construct a potential energy curve (PEC). A 

set of PECs for LiRb are shown in Figure 1.2. Two features are common to all PECs. As R→0, 

the potential energy increases sharply, indicating repulsion. At the other extreme, as R→∞, the 

exchange interactions vanish and the molecule separates into the constituent atoms. Each PEC 

will also have classical turning points where the molecule preferentially spends more time, which 

corresponds to a larger probability density. 

 

Figure 1.2. A set of potential energy curves (PECs) for 
7
Li

85
Rb, generated from 

ab initio calculations by Korek et.al. [50]. Note that all the curves at long range 

are asymptotic to a Li or Rb atomic level. We will discuss later the curves 

relevant to PA and excited state ionization spectroscopy. 
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1.3.2 Term energies 

In addition to electronic motion, molecules can also vibrate and rotate. For a given PEC and 

ignoring rotational motion, the vibrational levels can be approximated to first order by the equally 

spaced energy eigenvalues of a harmonic oscillator potential. However, it quickly becomes 

apparent that the vibrational energy levels for real diatomic molecules are not equally spaced, and 

we need to consider anharmonic terms that better model the vibrational energy. Thus we can 

write the vibrational term energies as: 

  v)       v   
1

 
)      v   

1

 
)

 

   (1.3) 

where    is the vibrational constant and      is the anharmonic constant, both given in units of 

cm
-1

 (1 cm
-1

 ≈ 30 GHz). The subscript denotes the value of the constants at the equilibrium 

internuclear separation. 

The rotational energy of a diatomic molecule will depend on the rotational angular momentum   

and the rotational constant             
  (where μ is the reduced mass, and Re is the internuclear 

separation at equilibrium) to give BJ(J + 1). In writing this, we have not included the effect of 

centrifugal distortion on the molecule. 

Treating the rotational and vibrational energies separately from each other is a reasonable starting 

point, but molecules can vibrate and rotate simultaneously. With this modification, along with the 

addition of centrifugal effects, the rotational term energy becomes: 

 v       v                 v                 (1.4) 

where Bv is the rotational constant and Dv is the centrifugal distortion constant, and   is the 

projection of the orbital angular momentum on the internuclear axis (more on this later). The 

subscripts denote the dependence of the rotational and centrifugal distortion constants on the 

vibrational level under consideration. 

Bringing together the electronic, vibrational and rotational terms, the energy of a molecule in a 

rovibronic state can be written as: 
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   v,  )        v  )     v) (1.5) 

Here, T is the energy of the minimum of a PEC above the bottom of the lowest electronic state. 

1.3.3 Long-range interaction 

As mentioned earlier, as R becomes large (> 20a0 [41]), a PEC will asymptotically approach an 

atomic energy level, and the molecular interaction is better described as that between two 

separated atoms. The potential energy as a function of internuclear separation is modeled as: 

   )       
  

  

 

 (1.6) 

De is the dissociation energy, and Cn are dispersion coefficients. The dominant multipole term 

will depend on the PEC being considered. Table 2.1 lists the types of interactions for different 

powers of R. Homonuclear diatomic molecules interact via the long-range R
–6

 van der Waals 

interaction in the ground state, and via induced dipole-dipole (R
–3

) interactions in excited states. 

For heteronuclear molecules, both ground and excited state potentials go as R
–6

. As we will see 

later, this difference has an effect on the spectroscopy of homo- and heteronuclear molecules. 

Table 1.1. The different types of long-range interactions, based on the R
–n 

dependence of the interaction potential. For PA of heteronuclear molecules n = 6 

for the ground and excited electronic states. 

n Type of interaction 

3 Dipole-Dipole 

4 Dipole-Quadrupole 

5 Quadrupole-Quadrupole 

6 Induced Dipole-Dipole (van der Waals) 

 

1.3.4 Spin-orbit interaction 

So far in our molecular framework, we have not considered relativistic effects, which become 

important and non-negligible at ultracold temperatures. Of these, the spin-orbit interaction is the 

strongest, and manifests itself at long range as molecular PECs asymptotically approach the 

dissociation energy. Consider the first excited state LiRb PEC shown in Figure 1.2. The Li(2s) + 
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Rb(5p) asymptote is split into the Li(2s) + Rb(5p1/2) and Li(2s) + Rb(5p3/2) levels, where the 

energy spacing is ~230 cm
-1

. 

The relative interaction strengths among the various relativistic (spin-orbit) and non-relativistic 

(electron exchange) components varies over the PEC. In order to help understand how the 

different angular momenta and rotation of the molecule couple to one another, we use Hund’s 

representation as described below. We only mention cases (a) and (c), which are relevant to our 

work. For the complete set of Hund’s cases see, for example, Herzberg [46]. 

Hund’s case  a) 

In the region of small internuclear separation, the angular momentum coupling is described by 

Hund’s case  a). As shown in Figure 1.3 a) the orbital angular momentum L ( = l1 + l2. The 

subscripts denote the two atoms) and spin angular momentum S ( = s1 + s2) separately couple 

more strongly to the internuclear axis than to each other.  , the projection of L on the internuclear 

axis, and Σ, the projection of S on the internuclear axis, are both good quantum numbers, and can 

be used to label case (a) molecules: 

2S+1
   (1.7) 

The   superscript denotes reflection symmetry of the spatial component of the electronic 

wavefunction in a plane containing the internuclear axis.     0,1, ,  are labeled as Σ,  ,  , , 

respectively. For example, the ground electronic state of heteronuclear alkali molecules is labeled 

as 
1
Σ

+
  Note: Σ is used to represent the     0 state, as well as the projection of S onto the 

internuclear axis. Context should make the distinction clear). The   depiction is omitted for     0 

states because these states are degenerate.  

Hund’s case  c) 

In contrast to case (a), at the large internuclear distances where spin-orbit effects become more 

prominent, the coupling between L and S becomes stronger than the individual coupling to the 

internuclear axis. In this regime          Σ  is a good quantum number, and case (c) states are 

labeled as: 
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   (1.8) 

Unlike for Hund (a) states, the   superscript for Hund (c) denotes reflection symmetry of the total 

electron wavefunction through a plane containing the internuclear axis. Hund (c) coupling is 

shown in Figure 1.3(b).  

To complete the discussion of Hund’s cases, we mention an additional symmetry constraint that 

arises for homonuclear molecules only. If the wavefunction is symmetric (antisymmetric) upon 

inversion of the electronic coordinates about the molecular center of mass, the molecule has 

gerade (ungerade) symmetry. For both Hund (a) and (c), this information is displayed as a g/u 

subscript. Since this additional restriction does not apply to heteronuclear molecules, the number 

of allowed transitions and the states accessible by one-photon electric dipole-allowed transitions 

is different compared to homonuclear molecules. 

1.3.5 Electronic state labeling 

A set of PECs for a heteronuclear molecule will have several Σ,  ,  , etc. states, and it is 

important to clearly distinguish among them. The following labeling convention is used for 

heteronuclear diatomic alkali molecules: the lowest electronic energy state is written as X 
1
Σ

+
. 

The lowest triplet state is the a
3
Σ

+
. In LiRb, both these states are asymptotic to the Li(2s) + 

Rb(5s) level. The lowest 
3
  is the b

3
  state. After the X 

1
Σ

+
, the next energetically higher 

1
Σ

+
 

state is the A
1
Σ

+
. Finally, the lowest 

1
  level is labeled as B

1
 . In literature these may also be 

labeled as the X, a, b, A, and B states, respectively. 

Hund’s case  c) states have a different labeling convention. These are labeled as numbers in order 

of increasing energy of the atomic asymptotes. From Figure 1.2 and the discussion above, we can 

see that, at long range, both the X 
1
Σ

+
 and the a

3
Σ

+
 states are asymptotic to the Li(2s) + Rb(5s) 

asymptote. The X state correlates to the 1(0
+
) level. Similarly, the a state correlates to the 1(0

–
) 

and the 1(1) levels. The next 0
+
 level is the 2(0

+
), and so on. The spin-orbit coupling at long-range 

can result in more than one Hund (c) state correlating to the same Hund (a) level. Table 1.2 lists 

the Hund’s case (a) states and the corresponding case (c) states asymptotic to the first two LiRb 

atomic levels. 
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(a) 

 

 

(b) 

 

Figure 1.3. Vector representation of  a) Hund’s case  a) and  b) Hund’s case  c). 

N is the angular momentum of nuclear rotation. Adapted from [51]. 
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Table 1.2. Electronic state correlation between Hund (a) and Hund (c) potentials. 

The fine structure splitting of the Li(2s) + Rb(5p) level is not listed here. 

Hund's case (a) Hund's case (c) 

Li(2S)+Rb(5S)   

X
1
Σ

+
 1(0+) 

a
3
Σ

+
 1(0-) 

  1(1) 

Li(2S)+Rb(5P)   

A
1
Σ

+
 2(0+) 

c
3
Σ

+
 2(0-) 

  2(1) 

b
3
  3(0+) 

  3(0-) 

  3(1) 

  1(2) 

B
1
  4(1) 

 

1.3.6 Selection rules for allowed transitions 

Before embarking on studies of atomic and molecular transitions, we need to know if a particular 

transition is permitted, given the (one-photon) light field coupling the initial to the final 

rovibronic state. This information is contained in the transition matrix element: 

                  (1.9) 

where  i and  f are the initial and final state wavefunctions, and d is the dipole operator. Recall 

that the molecular wavefunction can be separated into an electronic and nuclear wavefunction 

using the Born-Oppenheimer approximation, and the nuclear wavefunction can be further 

separated into vibrational and rotational components to give: 

     
  
  

v       
 (1.10) 

The vibrational wavefunction does not affect the electric dipole matrix element, and can be 

factored out: 
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v    

  
v    

  (1.11) 

The dipole matrix element above determines the electric dipole selection rules. 

Regardless of the specific Hund’s case the selection rule      0, 1, except      0   J   0, is 

rigorously enforced, where J is the total angular momentum (excluding nuclear spin). The 

complete list of selection rules for Hund’s cases (a) and (c) are listed in Table 1.3. 

Table 1.3. One-photon electric dipole-allowed transitions in molecules. 

General selection rule 

 J = 0, ±1; J' = 0   J = 0   

J ≥     

Hund (a) Hund (c)  

     0,  1      0,  1 

Σ
+
 ↔ Σ

+
, Σ

– 
↔ Σ

–
, Σ

+
   Σ

–
 0

+
 ↔ 0

+
, 0

–
 ↔ 0

–
, 0

+
   0

–
 

 Σ   0    

 

1.3.7 Franck-Condon Principle 

Whereas the dipole matrix element in Eq.(1.11) governs the selection rules, the overlap between 

the initial and final state wavefunction determines the strength of a particular transition. This 

information is conveyed via the Franck-Condon Factor (FCF): 

FCF      
v    

  
v    

  
 

 (1.12) 

As the amplitude of the wavefunction is largest near the classical turning points, a large FCF 

results when, for example, the outer turning points of the initial and final states lie at the same 

internuclear separation. 

The Franck-Condon principle assumes that in the time scale of electronic transitions, the nuclei 

remain stationary. Alternatively, electronic transitions are said to be ‘vertical’ transitions. Figure 

1.4 shows a schematic of wavefunction overlap between a ground and excited electronic state. 
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Having presented an overview of important aspects of molecular spectroscopy, we next discuss 

electronic states of LiRb molecules. 

.  

Figure 1.4. Schematic representation of overlap between ground and excited state 

vibrational levels. The degree of overlap, which in turn determines the strength of 

the transition, is given by the Franck-Condon factor. Figure adapted from [52]. 

1.4 Electronic states of LiRb 

1.4.1 X 
1
Σ

+ 

Until recently, sparse experimental data were available for LiRb. Our interest in the molecule is 

primarily due to its large permanent dipole moment among diatomic alkali molecules (4.1 Debye 

[53]), which makes LiRb a suitable system for quantum computing schemes that rely on 

controlling the dipole moment of molecular qubits. 

Ab initio calculations of the LiRb PECs have been performed by Igel-Mann et.al. [54] and Korek 

et.al. ([55] and [50]; see Figure 1.2 for LiRb PECs based on calculations from ref. [50]), but very 

limited spectroscopic studies have been reported. Ivanova et.al. [42] used laser-induced 



17 

 

fluorescence (LIF) spectroscopy in a heat pipe to identify the first 45 vibrational levels of the 

7
Li

85
Rb X state. These conventional high temperature spectroscopic techniques can produce high 

resolution spectra of deeply bound rovibrational levels for both ground and excited electronic 

states, but the near-dissociation levels still remain out of reach. Our LiRb PA studies should help 

to complete the energy level picture of the X state. 

1.4.2 a
3
Σ

+
 

Ivanova et.al. also reported limited and preliminary data on the a state, but no complete study for 

this state has been performed as of the writing of this thesis. Ab initio calculations are the best 

source of information available on this state. As reported later in this thesis, we have identified 

near-dissociation levels of the a state via resonantly enhance multiphoton ionization (REMPI). 

1.4.3 Excited electronic states 

Prior to the ultracold experiments in our lab, we conducted spectroscopic studies of hot LiRb 

molecules  that revealed useful information about the ground X and excited B states. We mapped 

out the first 21 vibrational levels of the   state using fluorescence excitation spectroscopy (FES) 

[43]. Briefly, the LiRb vapor produced in a heat pipe is excited using a tunable cw dye laser. 

Fluorescence produced by the molecules decaying to the ground state is collected and analyzed 

with a high resolution monochromator. For FES studies, as the dye laser is tuned, the 

monochromator is set to detect fluorescence as an excited molecular state decays radiatively to a 

specific ground rovibrational state. In this way we are able to map out the excited     state. 

Details of the heat-pipe spectroscopy measurements can be found in [56]. In 2013, Ivanova et.al. 

reported spectra for the B
1
  and D

1
  states of LiRb [57]. 

These studies started to reveal information about LiRb, but all of the accessible transitions were 

to deeply bound levels of the excited electronic states. Our current work on PA spectroscopy 

started to probe the least deeply bound levels at large internuclear spacing. The next section 

outlines the PA process. 

1.5 Photoassociation (PA) 

As mentioned earlier, ultracold molecules are formed when the PA laser frequency, PA, is 

resonant with a bound molecular level. The overlap between the ground- and excited-state 
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wavefunctions is large at large internuclear spacing, leading to molecule formation in high-lying 

vibrational states close to the atomic asymptote. These molecules can decay via either a bound-to-

bound transition or a bound-free transition. In the first instance, the excited molecule decays to 

rovibrational levels of ground (singlet or triplet) electronic states and forms a stable molecule. If 

the molecule undergoes a bound-free transition via spontaneous decay, it breaks apart into the 

constituent atoms, which take away the excess kinetic energy released in the decay process. The 

kinetic energy can be greater than the MOT trap depth and the atoms escape the trapping region. 

The photoassociated molecules are nonresonant with the cycling transition and are not confined 

to the trapping region either. Both of these decay channels cause a reduction in the number of 

trapped atoms, with the corresponding decrease in fluorescence from spontaneous decay. 

As we tune the frequency of the PA laser, we can observe changes in the MOT fluorescence level 

as the laser goes through free-bound transitions and produce ‘trap-loss’ spectra. These spectra 

provide information about the spacing of high-lying vibrational levels of the photoassociating 

state. As we keep scanning the PA laser farther from the dissociation level (red-detuning), the 

Franck-Condon factor between the ground-state scattering wavefunction and the excited-state 

bound wavefunction decreases, and is reflected in the strength of the trap-loss resonances. 

Trap-loss can tell us whether a free-bound transition has occurred, but gives no information about 

the decay path of the excited state molecules. Resonantly enhanced multiphoton ionization 

(REMPI) fills this gap by probing PA molecules that decay to the ground singlet or triplet 

electronic states. Most PA REMPI schemes use two identical photons from a pulsed laser. The 

ion signal is maximized by tuning the laser to be resonant with an intermediate state (the two-

photon ionization scheme is also referred to as resonantly enhanced two-photon ionization or 

RE2PI). For alkali diatomic molecules, pulsed dye lasers operating in the visible to near-IR 

wavelength range can easily ionize ground state molecules. 

Whereas trap-loss spectra only contain information about the PA state, analysis of REMPI spectra 

is complicated because of the ionization pathway that includes the initial ground state as well as 

the intermediate ionizing state. The advantage of ionization spectra is that not only can we detect 

if the excited state molecule decays to the ground state, but also the specific vibronic level that 

the molecule decays to. In this way we can determine the vibrational structure of the intermediate 

ionizing state, as well as the structure of the ground state. LiRb REMPI spectra are discussed in 

Chapter 4. 
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The first step towards creating ultracold LiRb molecules is to produce a sample of ultracold Li 

and Rb atoms. In the next section, we discuss the principles behind optical cooling and trapping 

that lead to Li and Rb atoms in a magneto-optical trap (MOT). 

1.6 MOT principles 

1.6.1 Cooling and trapping of atoms 

To create a sample of atoms at sub-milli-Kelvin temperatures, we make use of atom-photon 

collisions to transfer momentum from the atoms and reduce the translational motion, which in 

turn decreases their temperature. If we think about a few photons scattering off of atoms, they do 

not significantly affect the momentum of the atoms. However, for large scattering rates (millions 

of photon scattering events per second), the atoms decelerate to kinetic energies equivalent to a 

temperature of a milli-Kelvin or less. A useful (though limited) classical analogy to describe this 

situation is slowing a bowling ball by firing a stream of ping pong balls at it. Spontaneous 

emission, which must occur after each absorption process, occurs randomly in all directions, and 

so on average there is no net gain of momentum by the atoms.  The application of magnetic fields 

to spatially trap the atoms completes the cooling and trapping process to produce a MOT. 

At this point we may ask: instead of cooling atoms first to form ultracold molecules, can we 

instead form the molecules first and then cool them using cooling and trapping techniques similar 

to the ones used for atoms? Optical cooling works for atoms because of cycling transitions 

between the ground and excited hyperfine states which ensure the atoms keep losing momentum 

to the cooling light by undergoing repeated absorption and stimulated emission between the same 

initial and final states that are resonant with the cooling light. Optical cooling of molecules is an 

extremely challenging task because they possess vibrational, rotational and hyperfine degrees of 

freedom. These numerous decay channels would require an impractical number of repump 

frequencies for efficient cooling. Nevertheless, recent developments in optical cooling of 

molecules have produced good results [58], with the caveat that these approaches work for 

molecules that have favorable decay rates to very few ground state levels. Thus, as of now, the 

schemes to cool and trap molecules are not as widely applicable as those for atoms. 

A rigorous treatment of MOT principles is presented in [59]. Here we mention the salient features 

of laser cooling and trapping. 
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1.6.2 Optical Cooling 

In the general picture of optical cooling described earlier, we assumed that the photon frequency 

is always resonant with an atomic transition. This is obviously not the case, since the moving 

atoms see light that is Doppler shifted above or below resonance by a frequency k   v, where v is 

the atomic velocity vector and k is the photon wavevector. Consider a one-dimensional picture in 

which atoms are moving towards the left as shown in Figure 1.5 and the laser frequency L is 

red-detuned from the resonant frequency 0. Since the atoms are moving towards the laser beam, 

they will see blue-shifted laser frequency and be resonant with the light when v|| = (0 – L)/k, 

where v|| is the component of v along k. They will undergo a transition to an excited state and a 

short time later (tens of ns) decay back to the ground state through spontaneous emission and 

slow down via momentum transfer. Atoms moving in the opposite direction see red-shifted 

photons that are out of resonance and are unaffected by the photons. In steady state the cooling 

process is balanced by the heating effect due to spontaneous emission in random directions. At 

this point the minimum temperature of the atoms is TD =  /2kB. TD is called the Doppler 

temperature, and  is the excited state decay rate, or the transition linewidth. For example, 
85

Rb 

with a transition linewidth           .6 MHz has a Doppler temperature of TD   140 μK. 

As it turns out, however, atoms can be cooled to below the Doppler limit. Our earlier model did 

not predict this sub-Doppler cooling because it was based on a simplified, one dimensional, two-

level system that ignored magnetic sublevels. In the refined energy level picture, the ground state 

atoms can be distributed among the various Zeeman sublevels, with the population distribution 

dependent upon the laser polarization. Metcalf and van der Straten [59] showed that the laser 

polarization varies along the direction of propagation. This position-dependent polarization 

gradient acts to redistribute the atomic sublevel population and hence cool them to below the 

Doppler temperature. 
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Figure 1.5. Schematic representation of the Doppler cooling force on a moving 

atom by resonant laser light [60]. 

1.6.3 Magnetic trapping 

By using the three pairs of orthogonal, counter-propagating lasers, we can achieve cooling of 

atoms, but there is no force that can confine the atoms. This can be achieved by using either 

electric fields or magnetic fields. Our experimental setup employs the latter approach. 

The presence of a magnetic field B causes a Zeeman shift of the energy level Ei: 

                       
 
 
 
    (1.13) 

where  B is the Bohr magneton, gF is the Landé g-factor, and mF is the projection of the total 

angular momentum F onto the field axis. 

To trap the slowed atoms, we need a linearly varying magnetic field that goes through zero at the 

intersection of the lasers. Using two identical coils with the current flowing in opposite directions 

– known as an anti-Helmholtz configuration – creates this effect. The coils are set up with their 

axes parallel to one of the three laser directions, most conveniently the vertical (z-) direction. In 

combination with the circularly polarized laser light, the Zeeman shift transfers population from 

one magnetic hyperfine level to another (for right (left) circular polarization, the selection rule for 

mF is:  mF = + (–)1). Each pair of lasers consists of a right-circularly polarized field ( 
+
) and a 

counter-propagating left-circularly polarized field ( 
–
). See Figure 1.6. 
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Figure 1.6. Cooling and trapping of atoms using a combination of resonant light 

(red) and a pair of anti-Helmholtz magnet coils. 

Since the magnetic field varies linearly as we move along the z-axis, we can qualitatively describe 

the atomic motion as follows: At z = 0 (trap center) the average momentum transfer to the 

stationary atoms from the z-pair of lasers is zero since the photon absorption rates are equal for 

the two lasers. For z > 0, the  
–
 laser is more likely to be absorbed because of the Zeeman shift, 

giving a momentum kick to the absorbing atom in the -z direction, and thus towards trap center. 

The analogous situation arises for atoms at z < 0 getting a momentum kick from the  
+
 laser in 

the +z direction, again towards trap center. The atoms are therefore trapped in the harmonic 

oscillator potential created by the magnetic field. The magnetic trapping scheme is shown in 

Figure 1.7 for a simplified two level atom with one and three magnetic sublevels in the ground 

and excited states, respectively. 
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Figure 1.7. Scheme for trapping cooled atoms. The left ( 
+
) and right ( 

 – 
) 

circularly polarized light provides a momentum kick to the atoms and slows 

them, while the magnetic field creates a trapping potential for spatial 

confinement. The vertical arrows denote transitions from the ground F = 0, mF = 

0 state (0, 0) to the excited F = 1, mF = -1, 0, 1 states (1, -1), (1, 0) and (1, 1), 

respectively. 

1.7 Conclusion 

In this chapter, we have provided motivation for investigating ultracold heteronuclear molecules, 

in particular LiRb as our choice of system. We have presented background information on 

molecular spectroscopy to aid in our spectroscopic studies. To create ultracold molecules, we 

have introduced laser cooling and trapping as the starting point for creating ultracold atoms, and 

subsequent PA as the mechanism for creating ultracold LiRb molecules. 

In the next chapter, we give details of our dual-species MOT apparatus, including means for 

detecting LiRb molecules. 
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2. SETUP FOR CREATING AND DETECTING ULTRACOLD LIRB MOLECULES 

 

Table-top experiments in AMO physics require various instruments that include light sources, 

optical elements, vacuum chambers, electronics, and data acquisition hardware and software. 

Building such a setup from the ground up is a complex undertaking, and requires substantial time 

and effort, not only to assemble the different sections of the system but also to troubleshoot and 

debug problems. It should be noted here that all aspects of the dual species MOT apparatus and 

detection system described in this chapter have only been possible due to significant teamwork 

and contributions from Sourav Dutta and John Lorenz, the other two graduate students involved 

in this project from its initial phases. 

Every system comes with its advantages and drawbacks, and our system is no different. Here we 

give details of our magneto-optical trap (MOT) apparatus, starting with our indispensable sources 

of coherent radiation. 

2.1 Lasers 

The light sources used in our lab range from cw semiconductor diode lasers to high peak power 

pulsed dye lasers. In all, their purpose is i) to create the ultracold atoms, ii) use light-matter 

interactions to create ultracold molecule, and iii) probe the molecular sample to obtain 

information about its energy levels and to precisely control the molecular degrees of freedom. 

2.1.1 Diode lasers 

Diode lasers are a mainstay in AMO experiments for their versatility, durability, ease of use and 

cost effectiveness. Over the course of this project, we have constructed several diode lasers for 

different aspects of the experiment. Here we present the operating principles of diode lasers, 

means of reducing the output frequency linewidth, and frequency stabilization schemes. 
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2.1.2 External cavity diode lasers 

The active medium in a diode laser is a semiconductor chip that emits photons when a current is 

applied.  The output of standalone diode lasers has a range of several nm and is governed by the 

diode gain profile. As current is applied, the emitted photons bounce back and forth between a 

highly reflective back facet and a slightly transmissive front facet of the diode chip. Lasing 

ensues once population inversion is achieved above a threshold current. At this point the bare 

laser diode has a broad linewidth of hundreds of MHz. For the purposes of creating a MOT or to 

probe the trapped atoms, we need to narrow the laser linewidth to within ~1 MHz or less of the 

desired frequency. This can be done by using optical feedback from an external optical element. 

Diode lasers are highly susceptible to stray reflections that can influence their output 

characteristics. In many applications, this feedback is a nuisance and has to be minimized, but it 

is advantageous if the goal is to reduce the laser linewidth. 

Both linewidth reduction and the required frequency tuning can be achieved by adding a 

diffraction grating in the so-called Littrow configuration. Optical feedback is provided by a 

diffraction grating which, along with the back facet of the diode chip, acts as an external lasing 

cavity to form an external cavity diode laser (ECDL). The first order diffraction from the grating 

is fed back to the diode to reduce the linewidth, while the zeroth order is the useable – and 

tunable – output. The grating angle  for optical feedback in Littrow is: 

           λ (2.1) 

where d is the grating groove density and  is the output wavelength. For a 780 nm diode laser 

and a diffraction grating with a groove density of 1200 lines/mm, the Littrow angle   is about 

45°. 

Figure  .1 illustrates how to think of the optical feedback. The curve labeled ‘medium’ is the gain 

profile of a 671 nm bare diode (without the external grating). Lasing takes place due to reflections 

from the front and back facet of the diode chip. The thickness of the chip determines the 

frequency spacing between adjacent cavity modes, called the free spectral range (FSR) of a 

cavity: 

           (2.2) 
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where d is the cavity length and c is the speed of light. For a typical internal cavity length of 1 

mm, the FSR is 1 0 GHz. This is the ‘internal cavity’ curve in Figure  .1. 

Similar to the internal cavity gain profile, the feedback from the external cavity formed by the 

grating and diode back facet also has a gain profile, shown as the ‘grating feedback’ curve. Since 

the external cavity is much longer compared to the internal cavity (a few cm), the FSR is a few 

MHz (external cavity modes shown in Figure 2.1). With the optical feedback, we not only 

stabilize the diode output but also reduce its linewidth to a few MHz, compared to hundreds of 

MHz for the bare diode. The external cavity mode nearest the maximum of the diode and external 

cavity gain profiles experiences the lowest round trip losses, and the ECDL preferentially lases in 

that mode. The vertical line in Figure 2.1 highlights such a lasing mode.  
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Figure 2.1. ECDL gain curves for a 671 nm diode laser [61]. The curve labeled 

‘Medium’ is the gain curve for the diode chip. ‘Internal Cavity’ curve shows the 

mode structure of the cavity set up by the front and back facets of the diode chip. 

‘External Cavity’ shows the numerous lasing modes of the cavity made up of the 

back facet of the diode chip and the diffraction grating. ‘Grating Feedback’ 

shows the gain profile of the external cavity. The ECDL lases on the external 

cavity mode that has maximum gain near the maximum of the other three gain 

curves. 
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(a) 

 

(b) 

Figure 2.2. (a) Top and (b) side-on views  of one of our homemade ECDLs. 
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2.1.3 ECDL design 

Figure 2.2 shows one of our home-made lasers. All the parts needed to construct our ECDLs are 

either commercially available or readily machined in the Physics machine shop. The output from 

a bare diode is highly divergent and needs to be collimated. We use a Thorlabs aluminum tube 

assembly (Thorlabs model LT230P) to house the laser, with a 4 mm lens placed at one end of the 

tube to produce a collimated output. This tube is secured inside a machined aluminum mount. 

We use a diffraction grating with 1200 lines/mm groove density as the optical feedback element.  

Using epoxy, the grating is glued to an ultrastable 1/ ” mirror mount, also from Thorlabs  model 

KM05). In Littrow, the horizontal tilt adjustment on the mirror mount allows coarse (tens of 

GHz) tuning of the output wavelength. For finer (~MHz) tuning we use a piezoelectric transducer 

 PZT; Micromechatronics AE0 03D04F) that can adjust the external cavity length by up to 6μm 

when 150 V (maximum) is applied. For locking the laser to an atomic transition, we send an 

electronic feedback signal to the PZT to stabilize the output frequency. 

ECDLs are also extremely sensitive to changes in temperature, mechanical vibrations and air 

currents. Temperature changes not only influence the diode and its internal cavity, they can also 

cause noticeable fluctuations in the external cavity length and make the entire system unstable. 

This problem is mitigated by using thermoelectric coolers (TEC) that maintain the laser diode and 

the external cavity at a constant temperature. A TEC uses the Peltier effect to transfer heat from a 

source to a sink. The diode housing and grating are mounted on an aluminum baseplate that sits 

directly on top of a 30 mm   30 mm TEC element. The TEC in turn is positioned above a  ”   

 ”   1” aluminum block that acts as the heat sink. 

We place the ECDL inside a 6”   6” aluminum box to minimize the effect of air currents. Even 

so, the laser is susceptible to mechanical noise, from dropping a tool on the optical table to 

moving a chair along the floor. To mechanically decouple the ECDL, we put ½” thick pieces of 

sorbothane between the thermal sink and the bottom of the laser box. In Figure 2.2(b), we show 

the laser cavity, TEC and sorbothane pads. 

Once the laser box is assembled, current is supplied to the laser diode using a commercially 

available, low noise, modular laser diode driver from Thorlabs (LD8002). The TEC is controlled 

using a separate Thorlabs temperature controller, model TED8020. 
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2.2 Locking ECDL to an atomic reference 

As mentioned earlier, the optical feedback provided by the grating provides single mode output. It 

also stabilizes the frequency to a linewidth on the order of a few MHz. To resolve hyperfine 

levels that are separated by ~MHz spacing, we need to further reduce the laser linewidth. Active 

feedback based on an absolute, stable reference offers a solution by reducing the linewidth to < 1 

MHz. We use the hyperfine transitions of atomic 
85

Rb and 
7
Li to lock the 780 nm and 671 nm 

MOT lasers, respectively. Below we discuss the technique of saturated absorption spectroscopy to 

obtain the hyperfine spectrum, and include a brief mention of the homemade electronics that are 

needed to lock the ECDLs. 

2.2.1 Background on saturated absorption spectroscopy 

Doppler-free saturated absorption spectroscopy provides a means of probing an atomic sample by 

eliminating linewidth broadening due to the Doppler effect. A schematic outlining the procedure 

is shown in Figure 2.3. A strong pump beam tuned through a hyperfine transition is incident upon 

the atoms, with a weaker probe beam, also at the same frequency as the pump, counter-

propagating and interacting with the same atoms as the pump laser. Atoms in motion in the 

interaction region see one laser beam blue-shifted, while the other beam is red-shifted. Only those 

atoms with close to zero velocity will concurrently interact with both laser beams. A high 

intensity pump laser significantly depletes the ground state, causing the ground-to-excited-state 

transition to saturate. This decreases the probe absorption, and we can observe narrow peaks in 

the Doppler broadened absorption background. Subtracting the background via a second probe 

beam produces the Doppler-free hyperfine peaks, which are suitable for producing an error signal 

to lock the laser. 

2.2.2 Peak locking scheme 

The output frequency of a laser diode drifts on a short time scale due to noise in the control 

electronics, mechanical vibrations, low frequency noise, etc., and on a longer time scale due to 

temperature fluctuations that cause changes in the external cavity length. One approach to 

stabilizing the laser with a linewidth < 1 MHz is to directly lock the laser to one of the peaks 

obtained from saturated absorption spectroscopy. Essentially, the idea is to create a signal that can 

provide information on not only the frequency drifts but the direction of the drifts as well, and 
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feed this information back to the laser diode to correct for these drifts. In the process, we have to 

provide a signal that is relatively insensitive to noise, intensity fluctuations, etc. 

 

Figure 2.3. Saturated absorption spectroscopy setup. The Doppler broadened 

saturated absorption peaks are detected by photodiode 2 (PD2) and the Doppler 

broadened background is detected by PD1. The background is electronically 

subtracted as part of the locking circuit. 

Locking the laser to the top of a saturated absorption peak reduces most of these discrepancies. 

The procedure is as follows: we monitor the difference signal of two photodetectors, with one 

photodiode detecting the probe beam interacting with the pump, and the second monitors the 

noninteracting probe. Electronically subtracting the signal therefore gives us Doppler-free 

saturated absorption peaks. As the laser frequency is being scanned across these resonances at a 

few Hz, it is also being ‘dithered’ at a frequency  which is typically tens of kHz. Thus the laser 

frequency is: 

          0    cos    ) (2.3) 

The dither signal affects the voltage output of the photodiodes: 

       ))       0   cos     ) (2.4) 

Expanding the above equation to first order gives: 

      )) ~    0)   
  

  
 cos     ) (2.5) 
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The first term is dc and can be ignored. The second term contains the error signal correction. The 

error signal changes sign depending on the drift – given by dV/d – of the laser, and also crosses 

zero at the top of the peak, thus providing a good reference for the locking circuit. As an example, 

Figure 2.4 shows the error signal for the 
85

Rb(5s) F   3 →   p3/2)  ’ hyperfine peaks. 

The Doppler-free hyperfine structure and the corresponding error signal are generated using a 

homemade feedback and locking circuit. Briefly, the circuit takes the difference current from the 

saturated absorption photodetectors and uses a transimpedance amplifier for current-to-voltage 

conversion. This voltage is mixed with a 7 kHz dither signal using a commercial mixer chip and 

produces an error signal. A part of the mixer output is delivered to the modulation input of the 

laser current controller and corrects for fast frequency changes. The other part provides feedback 

to the PZT (via an integrator op-amp) for a robust peak lock. More details of the locking circuit 

can be found in the thesis of Dionysis Antypas [62]. 

 

Figure 2.4. Error signal (top) corresponding to the respective hyperfine and 

crossover (c.o) peaks (bottom) for the 
85

Rb(5s) F   3 →   p3/2)  ’ = 2, 3, 4 

hyperfine transitions. The wavelength (frequency) increases (decreases) to the 

right. 
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2.2.3 Mode-hop-free ECDL 

For reliable MOT operation we need all of the diode lasers to be tightly locked with minimal 

frequency drift. Other applications of ECDLs may instead require large, continuous frequency 

tuning. Going back to Figure 2.1, the vertical line indicates the preferred external cavity mode,  , 

that suffers the least round trip losses. If we start to tune the output frequency of the laser by 

changing the PZT voltage, the resulting change in the external cavity length translates the mode 

structure. Since we have not changed the injection current, the internal cavity mode remains 

unchanged. Once mode n has shifted by more than half the FSR, the losses for the (n + 1)
st
 mode 

will decrease, and the frequency will jump so that lasing occurs on this mode. This ‘mode-

hopping’ is an undesirable outcome of tuning the length of the external cavity. 

One approach to solving this problem is to tune the internal and external cavity modes in sync by 

adjusting the PZT voltage and injection current in a fixed ratio. To determine this tuning factor, 

the PZT voltage is scanned and the injection current is kept fixed. This tells us how the laser 

frequency changes as a function of PZT voltage, i.e. v/VPZT. Similarly, we apply a voltage to the 

modulation input of the laser current controller while keeping the PZT voltage constant. The 

current controller has a specified modulation coefficient that controls the change of current for an 

input voltage. Similar to the PZT, we can determine the change of laser frequency as a function of 

modulation voltage: v/VMOD. The ratio VMOD/VPZT gives the voltage ratio needed for mode-hop-

free tuning of the diode laser. 

We implemented the feedforward circuit with a 1560 nm homemade ECDL that acts as the seed 

laser for a 1 W erbium-doped fiber amplifier (EDFA). To test the mode-hop free tuning range of 

the laser, we frequency doubled the EDFA output and scanned across the Rb D2 hyperfine lines. 

The second harmonic was produced with an MgO doped PPLN crystal from Covesion, Ltd. 

Figure 2.5 shows the mode-hop free spectrum. The 
85

Rb and 
87

Rb hyperfine lines are 

superimposed on the Doppler broadened background. With the feedforward circuit, we can scan 

at least 20 GHz without mode-hops. A larger mode-hop free laser at 780 nm has also been 

demonstrated in our lab [63]. We will return to the 1560 nm ECDL in Chapter 5.  
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Figure 2.5. A section of the 20 GHz mode-hop-free scan of the frequency 

doubled 1560 nm ECDL, showing the hyperfine peaks of 
85

Rb and 
87

Rb. 

2.3 Rb MOT lasers 

Rb atoms interacting with light resonant with a cycling transition undergo thousands of photon 

scattering events per second. Momentum conservation ensures that we are reduce the kinetic 

energy of the atoms and cool them in the process. However, because the energy level structure of 

real atoms deviates from an ideal two-level system, the atoms will not be completely confined to 

the cycling transition, and will decay to the ground hyperfine level that is nonresonant with the 

cooling light. To efficiently cool Rb atoms, therefore, we need light at two frequencies: a cooling 

laser resonant with the cycling transition and a repump laser to bring the atoms occupying the 

‘dark’ ground hyperfine level back into the cycling transition. The cooling and repump transitions 

for 
7
Li and 

85
Rb are shown in Figure 2.6. 

2.3.1 Rb cooling (trap) laser 

The trap light is provided by a Sacher Lasertechnik Tiger laser in Littrow configuration. The 

specified maximum output power of the laser is 1 W, but after two optical isolators and a 

polarizing beamsplitter cube (to pick off light for the saturated absorption spectroscopy setup) we 

have ~750 mW of maximum available power. 

Due to the Doppler shift of the background Rb vapor source, we detune the trap laser frequency 

from the 5s (F = 3)  5p3/2 ( ’ = 4) transition. The frequency shift is carried out using an 
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acousto-optic modulator (AOM; Crystal Technologies, model 3080-120, center frequency 80 

MHz). Phonons generated in a TeO2 crystal scatter the incoming photons, and based on 

momentum conservation, the diffracted beam has either a higher or lower frequency compared to 

the undiffracted (incident) beam. Given the available AOM frequencies and allowed hyperfine 

transition frequencies, we proceed as follows: using the saturated absorption setup, we lock the 

trap laser to the F = 3   ’ = 2–4 crossover resonance. This transition is 92.05 MHz below the 

cycling transition, and so we upshift the cooling laser frequency using the AOM by 73 MHz for a 

detuning Rb = –19 MHz. The detuning is a balance between two factors: as the cooling light is 

brought closer to resonance, the trapped atoms fluoresce more, which gives rise to radiative 

heating and in effect increases the MOT temperature. Detuning too far away from resonance can 

reduce the number of trapped atoms to begin with.  

2.3.2 Rb repump laser 

The repump laser is a homemade ECDL using a Sanyo DL7140-201S 70 mW laser diode. The 

design is identical to the ECDL shown in Figure 2.2. As with the Rb trap laser, the repump also 

uses an AOM to shift the frequency for an appropriate locking transition. For 
85

Rb, atoms falling 

out of the cycling transition decay to the 
85

Rb(5s) F = 2 ground hyperfine state and are 

‘repumped’ into the cooling transition via the F = 2   ’ = 3 transition. The repump is locked 

using a separate saturated absorption spectroscopy scheme to the F = 2   ’ = 1–2 crossover 

peak, and the AOM upshifts the output by 78 MHz. 

2.4 Li MOT lasers 

The setup for the Li cooling and repump lasers has undergone modifications since the initial 

observation of LiRb PA with trap-loss spectroscopy. In the original version (ver. 1), we used a 

Toptica DLPro ECDL (Littrow) as a master laser in an injection locking configuration. To 

injection lock one laser to another, the output of a single mode laser – the master laser – is 

injected into a free-running slave laser (using a polarizing beamsplitter (PBS), for example). This 

technique utilizes the sensitivity of diode lasers to optical feedback, and allows the slave laser to 

acquire the characteristics of the master laser and thus operate as an optical amplifier. 

Compared to a hyperfine splitting of 3.03 GHz for 
85

Rb, the ground state hyperfine splitting for 

7
Li is 803.5 MHz. We can therefore use AOMs to generate the required cooling and repump 

frequencies. In ver. 1, we split the DLPro output into three: a beamsplitter picked off light for the 
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saturated absorption setup, and the remaining light propagated through two 200 MHz AOMs. 

Both AOMs were setup in a double-pass configuration, in which the 1
st
 order diffracted light is 

retroreflected through the AOM to double the frequency shift. One AOM upshifted the light by 

400 MHz, while the other downshifted by 400 MHz to provide the cooling and repump 

frequencies, respectively. The shifted outputs were injected into two free-running lasers (Opnext 

HL6545MG, 130 mW maximum output). The outputs of the injection-locked lasers were 

combined on a non-polarizing beamsplitter cube, and injected into a Toptica BoosTA tapered 

amplifier (TA) to provide ~250 mW of total power. Using a half-waveplate (HWP) before the 

beamsplitter, we could control the fraction of amplified power in the cooling and repump 

transitions. 

During day-to-day operation of the Li lasers, we noticed that the injection lock was unstable and 

the lock time varied from ~1 hr at best to less than 10 minutes. As the slave lasers had a center 

frequency of 667 nm, significant heating (55 °C) was required to increase the output wavelength 

to near 671 nm. At 55 °C the diodes were operating near the maximum design temperature, and 

this may have been a contributing factor to the lock instability, although we could not further 

investigate this matter further.  Nevertheless we were still able to operate the system and study 

collisions between atoms in the Li and Rb MOTs, and perform initial trap-loss measurements of 

LiRb PA transitions. 

The current incarnation of the Li MOT laser system has removed the need to use injection locking 

and is vastly more stable. The DLPro output is directly injected into the TA, and part of the TA 

output is used for saturated absorption spectroscopy. Unlike the excited state hyperfine splitting 

of 
85

Rb, the 2p3/2 hyperfine splitting for 
7
Li is small enough that it cannot be resolved with our 

lasers (see Figure 2.6). As a result, the Doppler-free saturated absorption spectrum consists of 

transitions from the two ground state hyperfine levels, and the ground hyperfine crossover 

resonance. We lock the Li laser to the crossover resonance by upshifting the saturated absorption 

light using a 200 MHz AOM that is set up in a double pass configuration, as shown in Figure 2.7. 

The remaining output is focused into an EOM driven at 800 MHz with 6 W of input rf power. As 

the laser frequency is locked at f0 + 400 MHz, where f0 is the DLPro output frequency, the 

cooling and repump frequencies are generated by the carrier and upper sideband of the EOM, 

respectively. Using the EOM simplifies the optical setup and takes care of the instability observed 

earlier in ver. 1. 
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For ease of alignment, the EOM is mounted on a rotation mount that is fixed to a 2D translation 

stage. We pick off part of the Li light after the EOM and steer it towards a 2 GHz Fabry-Perot 

cavity to monitor the repump sideband. As rf modulation is applied to the crystal, the carrier and 

sideband frequencies are clearly visible at the correct spacing. Second order sidebands can also be 

seen. Inevitably the effect of these higher order sidebands (and of the unused first order sideband) 

is to reduce the power in the relevant frequency components (cooling and repump) of the light.

 

Figure 2.6. Energy levels and MOT laser transitions for 
85

Rb and 
7
Li. 

2.5 Li Zeeman slower 

The Li MOT is loaded from a Li oven that produces a collimated beam of atoms traveling at over 

1000 m/s. The vast majority of these atoms are travelling too fast to be captured in the MOT 

region, and so a means to decelerate the atom beam is needed. Momentum transfer between a 

light field and the atoms is a viable option (similar to the cooling light for the MOT, except only 

along the axis of the atom beam). The light should be resonant with a cycling transition; hence we 

can pick off part of the EOM output for this purpose. Due to Doppler shifts, most of the atoms 
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will be off resonant with any slowing light, but a spatially varying magnetic field can induce a 

Zeeman shift that will keep atoms on resonance. This combination of a counterpropagating, near-

resonant slowing beam and a ‘Zeeman slower’ imparts sufficient momentum kicks to decelerate 

the atoms and capture them in the MOT region. Light for the Zeeman slower is picked off after 

the EOM and downshifted by 80 MHz with an AOM. 

The schematic for the Li and Rb MOT lasers is shown in Figure 2.7. 

 

Figure 2.7. Layout of the MOT lasers. After adjusting the laser frequencies using 

AOMs (Rb trap and repump) and EOM (Li), all three MOT laser beams are 

combined on a dichroic mirror and launched into the MOT beam fiber. For the 

Zeeman slower, part of the Li TA output after the EOM is frequency shifted with 

an AOM and launched into a separate Zeeman slower fiber. The focal length of 

lenses is given in mm. 
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2.6 AOM board 

All the AOMs needed for the experiment are controlled using a homemade circuit board that is 

interfaced to Labview (see the thesis of John Lorenz for more details). The PCB was designed 

and implemented by REU student Roger Ding. The AOM frequency sources are voltage 

controlled oscillators (VCO) from Minicircuits. AOMs typically need over 1 W of rf power; the 

VCO outputs are amplified using rf amplifiers (Minicircuits ZHL-1A). Rf switches are installed 

to rapidly switch on and turn off the AOMs. Attenuators placed on the outputs limit the rf power 

to the AOMs, which is typically ~1.3 W. The VCO frequencies are controlled using a Labview 

program. 

2.7 Transporting light to experimental chamber 

Light from the laser table is transported to the MOT chamber using polarization-maintaining 

(PM) fibers. The fibers were custom-made by OzOptics, based on the input beam characteristics 

of our lasers. In order to simplify the optical setup, we combine the Rb trap, Rb repump and Li 

lasers (with the cooling and repump sidebands) onto the same PM fiber, with the beam sizes 

individually adjusted using telescoping lenses to maximize the coupling efficiency. A second PM 

fiber is used to transport the Zeeman slower light. Table 2.1 shows the beam sizes and coupling 

efficiencies for all the four beams. The output end of the MOT laser coupling fiber has an 

attached collimating lens that produces a 5 mm 1/e
2
 diameter output beam. 

Table 2.1 Beam sizes and typical coupling efficiencies of the MOT lasers and 

Zeeman slower beam. 

 
1/e

2
 beam diameter (mm) PM fiber coupling % 

Rb trap 2 x 1.02 51 

Rb repump 2 x 0.74 54 

Li TA output 2 x 1.28 55 

Zeeman slower 2 x 1.28 50 

 

As the name suggests, PM fibers preserve the polarization of the input light, given that the input 

polarization is aligned with the fiber’s polarization axis. Slight misalignment can be detected as a 

fluctuation in s- and p-polarization power at the output (by measuring the power reflected or 

transmitted by a PBS, respectively). This fluctuation is minimal for good polarization alignment 
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and least sensitive to mechanical or thermal perturbation of the fiber. For the fiber to work 

effectively, however, the input polarization extinction ratio (PER; ratio of p- to s- polarization) 

has to be at least 1000:1 (30 dB), as specified by the manufacturer. None of our lasers satisfy this 

requirement, but the PER can be improved by using a half-wave plate (HWP) and PBS. The 

beamsplitters in our setup had a better extinction ratio for p-polarization (30 dB) than s-

polarization (20 dB), and so we used the HWP-PBS combination to maximize the transmitted (p-) 

polarization separately for each source. Finally, a HWP was placed immediately before the MOT 

fiber input to adjust for any reduction in the extinction ratio caused by the last steering mirrors 

and/or the dichroic mirror before the coupling input (see Figure 2.7). 

We used a similar HWP-PBS combination for the Zeeman slower beam. Unlike the output end of 

the MOT PM fiber, there is no collimating lens for the fiber coupling the Zeeman beam. Instead, 

we have placed a pair of lenses at the output that expand and collimate the beam to a ~25 mm 

beam diameter. 

2.7.1 Optimizing fiber coupling efficiency 

The PM fiber coupling efficiency is highly sensitive to minor changes in alignment. We’ve 

observed that the coupled power of the Rb trapping laser can change by ~5% due to drifts in the 

mirror mount knobs, whereas the Rb repump laser coupling is slightly more stable. If the 

coupling power has been optimized, the drift may be less, again more so for the Rb repump than 

the Rb trap laser. 

For the Li laser, the beam shape is significantly distorted by the EOM crystal, which in turn 

reduces the coupling efficiency. The beam shape may also visibly change as the crystal heats up 

when the rf power is applied. We let the EOM reach thermal equilibrium after turning on the rf 

source (~30 minutes) and translate the EOM mount to optimize the coupling efficiency. To avoid 

major realignment, we monitor coupling efficiencies for all the lasers on a regular basis. 

Recently the power coupled into the MOT fiber decreased significantly (15% coupling for the 

repump, compared to a maximum of 56%). The problem was traced to a sharp kink in the fiber 

jacket where it was secured to a metal frame. Fixing the kink returned the coupling efficiency to 

previous values; however extreme care has to be taken when working around the fiber to ensure 

there is no further damage. 
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2.8 MOT optics 

Light for the Li (671 nm) and Rb (780 nm) MOTs falls in a range such that the same set of 

broadband dielectric mirrors can be used for both wavelengths. The same also applies for the AR-

coated lenses and beamsplitters. Figure 2.8 shows the MOT optics layout. The PM fiber output (5 

mm 1/e
2
 beam diameter) is directed towards a telescoping lens assembly that magnifies the beam 

to ~20 mm. This enlarged beam is split into vertical and horizontal components with a 1:2 power 

ratio that is adjusted using a HWP placed before the PBS. A second HWP-PBS pair placed in the 

horizontal path gives the two orthogonal horizontal beams. In this way we have independent 

control on the power ratio of each of the three orthogonal MOT beams. 

Quarter-wave plates (QWPs) are placed in each beam path after the final steering mirrors before 

the MOT chamber. Each beam is centered on the respective MOT window by using an aperture. 

The beams transmitted through the MOT chamber pass through QWPs in each arm, and are 

retroreflected with the opposite handedness than the incident circularly polarized beam. Due to 

window losses, the retroreflecting mirrors are carefully positioned to balance the intensity in each 

pair of MOT beams. 

2.9 MOT characteristics 

2.9.1 Measuring atom number and density 

Once the MOT optics are set up and aligned carefully, we start loading Li and Rb atoms in the 

respective MOTs. Rb atoms decaying from the 5p3/2 state fluoresce at 780 nm, which is barely 

visible to the naked eye. To confirm the presence of the Rb MOT, we set up an IR camera using 

one of the 1.33” windows. As the MOT trapping and repump beams are unblocked and the anti-

Helmholtz magnet coils are turned on, we observe fluorescence from the trapped atoms. Whereas 

we need the IR camera to identify the Rb MOT, the Li MOT fluoresces at a clearly visible 671 

nm and can be seen with the naked eye. 

After visual confirmation of the MOTs, we set up photodiodes to determine the fluorescence 

levels, which are needed to calculate the number of trapped atoms for each species. The optical 

power P from MOT fluorescence incident on the photodiode is given by 
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where N is the number of trapped atoms,  is the unit solid angle over which fluorescence is 

collected,  is the fluorescence wavelength (780 nm for 
85

Rb, 671 nm for 
7
Li) and sc is the 

photon scattering rate per atom: 
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Here  is the natural linewidth of the cycling transition,   is the detuning from resonance, and s = 

I/I0, the ratio of MOT beam intensity to the saturation intensity I0. The relevant parameters for Rb 

and Li MOT operation are given in Table 2.2. 

 

Figure 2.8. Top view of the MOT chamber and the optics directing the Li and Rb 

lasers towards the MOT region. All focal lengths are given in mm. 
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Table 2.2 MOT parameters used for initial MOT diagnostics and atom number 

calculations. 

 
 (MHz)  (MHz) I0 (mW/cm

2
) I (mW/cm

2
) 

7
Li 2  5.87 -12 2.5 12.7 

85
Rb 2  6.07 -24 1.7 79.6 

 

Next, we determine the MOT atom density. We use a CCD camera to capture images that are 

recorded and analyzed in Labview. The camera is a Basler SCA640-70fm, with 659  490 pixels 

and a pixel size of 7.4 um  7.4 um. A 5 cm lens focuses the MOT images onto the CCD. We 

calibrate the camera magnification using a known object at the same distance from the CCD as 

the MOT, from which we get a magnification factor of 0.34. Once the images are recorded, we 

use a second Labview script to calculate the size of each image. The script loads and plots the raw 

pixel value information and takes a horizontal and vertical slice through the center of each image 

to calculate the 1/e diameter of the cloud. This information allows us to calculate the volume and 

together with the atom number measurement, we can determine the MOT density. Typically we 

trap ~510
7
 Li atoms at a density of ~510

9
 cm

-3
. For Rb, the numbers are ~110

8
 and ~410

9
 

cm
-3

, respectively. Figure 2.9 shows CCD images of our Rb and Li MOTs. 

2.9.2 MOT loading and collision rates 

We have performed extensive studies of collisions between trapped Li and Rb atoms [64 and 56] 

based on MOT fluorescence measurements. Here we present a brief discussion of these collision 

measurements and the need to minimize these interspecies collisions for efficient molecule 

formation. 

Figure 2.10 shows Li and Rb MOT fluorescence captured by two photodiodes. The Li (Rb) curve 

is recorded in the absence of the Rb (Li) MOT. The Rb fluorescence is picked off from a dichroic 

mirror placed after a pair of collecting lenses which reflects light at 780 nm and transmits at 670 

nm (Figure 2.8). There is of course leakage at both wavelengths, but this contributes a negligible 

background offset. During the MOT operation, atoms are lost due to collisions between trapped 

atoms and also collisions of trapped atoms with background (untrapped) atoms. This loss is 

balanced by the steady trapping of background atoms, and a steady state is reached as seen by the 

fairly constant fluorescence signal for both Li and Rb in Figure 2.10.  
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Figure 2.9. CCD images of the Rb MOT (top left), Li MOT (top right) and 

overlapped Li and Rb MOTS (bottom).
 

If we load one MOT in the presence of the other, there are significant collisions between trapped 

Li and Rb atoms and as a result we lose atoms from the MOT. Figure 2.11 clearly shows this 

behavior. We load the Rb MOT in the absence of the Li MOT at t = 20 s. At t = 100 s, we start 

loading the Li MOT, and observe  ~50% decrease in Rb MOT fluorescence, which indicates that 

approximately half as many atoms as before are now trapped. When we turn off the Rb MOT at t 

= 175 s, we notice that the Li MOT fluorescence increases by more than 50%, indicating more Li 

atoms are trapped when the Rb MOT is absent. These interspecies collisions reduce the atom 

density, which is not ideal for creating ultracold LiRb molecules. We mitigate this loss of atoms 

by implementing a dark-SPOT Rb MOT, as explained in the next section. 
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Figure 2.10. Li (blue) and Rb (red) MOT loading curves. Each MOT is loaded in 

the absence of the other. The DC offset seen from t = 0 to t = 10 s is due to the 

photodetectors picking up stray reflections from the chamber. 
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Figure 2.11 Evidence of inter-species collisions in Li and Rb. The Rb MOT is 

loaded first and reaches steady state. When we turn on the Li MOT at t = 100 s, 

there is a ~50% decrease in the Rb MOT fluorescence, which indicates a 

proportional decrease in trapped Rb atoms. Next, we turn off the Rb MOT at t = 

175 s and see an increase in the Li MOT fluorescence. This behavior reflects 

significant inter-species collisions. 

2.9.3 Rb Dark MOT 

The collision-induced trap losses were an encouraging sign that the MOTs were overlapped (also 

confirmed by MOT CCD images), but the Rb atom loss in particular was severe, causing ~50% 

trap loss with the Li MOT present (shown in Figure 2.11) and a reduction in Rb number density. 

As the PA rate depends on MOT density (among other factors), this collision-induced density 

reduction needed to be mitigated. 
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In the early 1990s, Wolfgang Ketterle and coworkers at MIT devised a scheme to maximize MOT 

density as a step towards creating Bose-Einstein condensates (BECs) of sodium atoms [65]. Their 

research indicated two important factors that limited the maximum achievable density in a MOT. 

Consider a single species MOT. Collisions between atoms in the ground and excited state can 

transfer sufficient kinetic energy to escape the trapping potential. In addition, trapping light also 

acts as a heating mechanism. As atoms continuously absorb and scatter photons, equilibrium is 

reached between inward confining forces and repulsive forces due to the scattered photons that 

limit the MOT density. The MIT group was able to mitigate both these factors by using a dark 

spontaneous-force optical trap (SPOT) MOT. Both the additional kinetic energy and fluorescence 

are a consequence of excited state atoms. The dark SPOT MOT functions to reduce this excited 

state fraction by forcing trapped atoms into the ground hyperfine state, which is out of resonance 

with the cooling light. As a result, the MOT density can be increased by an order of magnitude. 

This approach can be applied to single and dual species MOTs. 

To implement this scheme, we need a way to first trap atoms and then force them into the dark 

state. Ketterle and coworkers did this by blocking the central portion of the repump beam while 

the trapping light remains unblocked. Atoms on the periphery of the trapping volume are trapped 

and confined to the cycling transition because both the trapping and repump light are present in 

this outer ‘shell’. As they move inwards, the atoms cease to interact with the repump light in the 

dark region created by blocking the repump light, and are shelved to the dark state. 

For our experiment, we use a Rb dark SPOT MOT, as the collisional losses are significant 

between Rb atoms in the F = 3 (upper) ground hyperfine state and trapped Li atoms. Our setup 

before coupling light into the MOT PM fiber is such that the Rb trap and Li laser polarizations are 

perpendicular to the Rb repump light. Since the fiber maintains the polarization of each laser, a 

PBS at the fiber output (C1) reflects the Rb repump light and transmits the other two (Figure 2.8). 

Light transmitted by a HWP-PBS (C2) pair in the repump beam path goes through a -50 mm lens. 

We put a glass slide with a 6mm opaque disk (cut out from the cover of a floppy disk using a hole 

punch) in the expanded beam path. A second 250 mm lens gives collimated Rb repump light with 

a dark center part. It is then combined with the trapping light on C3. With the dark MOT 

operational, the collisional losses between trapped Li and Rb atoms are greatly reduced. 
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2.10 Vacuum chamber 

Our work with a dual species MOT apparatus began with a markedly different MOT chamber, a 

6” stainless steel spherical octagon  Kimball Physics MCF600-SphOct-F2C8). The first 

observation of Rb and Li MOTs took place in this chamber. However, with an eye towards future 

experiments, we came to the conclusion that this chamber would be insufficient to satisfy our 

needs for greater optical access and space for an ion detection assembly. 

 

Figure 2.12. Li and Rb MOT chamber. We monitor the MOT clouds using the 

CCD camera. For ionization spectroscopy, the ion species are accelerated 

towards the field-free region by field plates. The MCP assembly is set up in the 

smaller chamber above the field free region. 
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Figure 2.12 shows the MOT chamber, which is a commercial  ” spherical octagon from Kimball 

Physics (MCF800-ExtOct-G C A16). It has two  ”, eight  .7 ” and sixteen 1.33” CF ports. All 

of the windows mounted on the chamber are AR coated for the 650 – 1100 nm range. The  ” 

ports are used for the vertical MOT beams, with the top flange connected to a 10.6” long CF 6” 

nipple that acts as the field free region for TOF experiments. The other end of the nipple connects 

to the smaller 6” spherical octagon chamber that now holds the MCP assembly. 

The horizontal MOT beams pass through two pairs of orthogonal CF  .7 ” windows. One of 

these windows also transmits the PA laser, which is non-collinear with the MOT beams. To 

collect the MOT fluorescence and image the cloud with the CCD camera, we use a third pair of 

CF  .7 ” windows. Of the two remaining windows, one is connected to the Li Zeeman slower 

(and through it to the Li oven and one of two ion pumps), and the other leads to a six way cross 

that connects to an ion gauge. Directly across from the Zeeman slower, a 1” sapphire window-

mounted flange is secured to the cross to transmit the Zeeman slower light. Unlike borosilicate 

glass, sapphire reacts minimally with Li. 

The CF 1.33” ports are used for the following: one port is used for the Rb getter feedthroughs, 

one for the electric field plate feedthroughs, and a window is mounted on the third port to direct 

the ionizing laser into the chamber. Four of the CF 1.33” ports have blank flanges connected to 

them, while the rest all allow optical access to the chamber. These can be used for future 

experiments that require a high powered laser to create a dipole trap, for example. 

The MOT chamber, Zeeman slower tube and the Li oven are all maintained at ultra-high vacuum 

(UHV), ~10
-10

 Torr, using two ion pumps. For good system performance, it is critical to maintain 

the lowest possible pressure, and the ion pumps are continuously run to maintain UHV. 

The sapphire window that transmits the Zeeman slower beam is another part of the vacuum 

chamber that needs to be periodically monitored. The Zeeman slower reduces the Li atom 

velocity so that we can capture the slower moving atoms, but fast moving atoms escape the 

trapping region and hit the sapphire window. Over time, a coating of Li atoms starts appearing on 

the window, which reduces the Zeeman slower light transmission and deteriorates the Li MOT 

performance. We overcome this problem by heating only the sapphire window and the nipple 

connecting the flange to the six-way cross. We use heat tape, with aluminum foil wrapped around 

the flange and nipple, and heat up to 190°C for two days before slowly returning to room 

temperature. This procedure removes the Li layer and returns the system to normal operation. 
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2.11 PA laser 

We use a Coherent 899 cw Ti:Sapphire (Ti:S) ring dye laser as our PA light source. Initially the 

laser was pumped by a 5 W, 532 nm Coherent Verdi V5, to give a maximum output power of 

~200 mW. More recently we have upgraded to an 8 W Lighthouse Photonics Sprout-G pump 

laser which has increased the Ti:S output to over 400 mW. 

The Ti:S offers a broad tuning range and narrow linewidth operation. The laser can be tuned 

between 770 nm and 900 nm, but the majority of our work is focused on PA transitions below the 

Li(2s) + Rb(5p1/2) and Li(2s) + Rb(5p3/2) levels, which correspond to wavelengths red of 780 nm 

and 795 nm, respectively. The Ti:S is locked to an external reference cavity with a linewidth of 

~1 MHz, which is sufficiently narrow to resolve not only PA transitions but any rotational and 

hyperfine structure that may be present for individual PA resonances. 

We periscope the Ti:S beam up to the center of the MOT chamber. The beam is collimated to a 

~0.85 mm diameter with a pair of converging lenses. Part of the beam is picked off at the Ti:S 

output and fiber coupled to a Bristol 621A wavemeter (accuracy ±60 MHz). The laser lock and 

frequency are continuously monitored in all of our experiments (for more details of the Ti:S laser, 

see the thesis of John Lorenz). 

As an initial test of the PA laser and MOT operation, we recorded trap-loss spectra for Rb2, 

shown in Figure  .13. Taken with a normal ‘bright’ Rb MOT, the Ti:S was scanned over ~ 00 

GHz below the Li(2s) + Rb(5p3/2) asymptote, where we observed many PA resonances previously 

observed by Heinzen and coworkers [28, 29]. 

Proper Ti:S beam alignment with the MOT is critical to obtaining a strong PA signal. Before our 

first observation of LiRb trap-loss, we aligned the PA laser by tuning it first to the Rb (5s)  

(5p3/2) transition. The PA laser disrupts MOT operation when tuned to a Rb atomic transition and 

results in a decrease in MOT fluorescence. Optimal PA laser alignment is achieved when the 

MOT fluorescence is minimized.  The alignment was then double-checked by switching the Ti:S 

to a Rb2 PA resonance and again minimizing the trap-loss signal. Once LiRb PA resonances were 

observed, minor adjustments of the Ti:S alignment were carried out by fixing the laser frequency 

on a PA transition and minimizing the MOT fluorescence level. 

 



51 

 

2.12 Ion detection setup 

Our apparatus is capable of detecting ultracold molecules by monitoring changes in MOT 

fluorescence level, and also by ionizing the molecules and detecting the ion fragments. To create 

and detect ions in our system, we use ns pulses from an Nd:YAG pumped dye laser that ionize 

atoms and molecules in the MOT chamber, which are then steered towards a microchannel plate 

(MCP) assembly and recorded using hardware and software signal acquisition. The details are 

presented below.  

 

Figure 2.13. Trap-loss spectroscopy of Rb2, performed as an initial diagnostic of 

our MOT operation and Ti:S laser. The dips show positions of Rb2 PA 

resonances (in PA laser frequency units). 

2.12.1 Pulsed dye laser 

PA ionization spectra are acquired using multiphoton ionization, as mentioned in Chapter 1. 

Pulsed dye lasers pumped by ns pulse width Nd:YAG systems deliver ~10
6
 W of peak power 

(~mJs of energy) and can easily ionize PA molecules via multiphoton ionization. In our 

experiment, we use the second harmonic of a Spectra-Physics Lab 190 Nd:YAG as the pump 
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source. The YAG generates ~7 ns pulses at 532 nm with a 10 Hz repetition rate. The maximum 

output energy of the Lab 190 is 500 mJ, but during normal operation we do not require 100% 

output energy. 

The YAG pumps a Spectra-Physics PDL-2 dye laser. The advantage of using the PDL-2 is the 

large continuous tuning range (tens of nm) and remote control using Labview. Replacing dye is 

also a straightforward procedure and allows us to work with a large wavelength range. The PDL 

operates as follows: the pump beam enters the PDL and part of it is picked off by a beamsplitter 

and focused onto the dye oscillator cell. The generated fluorescence travels perpendicular to the 

pump direction and is incident on a diffraction grating on one end and an output coupler on the 

opposite side. This forms a cavity similar to the external cavity in our diode lasers. Once lasing is 

established, the output wavelength is tuned by tilting the grating either by manually turning a 

stepper motor control knob, or via remote control through a stepper motor driver interface. 

The oscillator cell output strikes the amplifier cell and is set to counterpropagate with the pump 

beam transmitted by the pump beamsplitter. Finally, the amplified output is directed towards the 

MOT chamber. For the experiments presented in this thesis, we use rhodamine R590 dye 

dissolved in spectrophotometric grade methanol. The concentration for the oscillator and 

amplifier cells is 115 mg/L and 17 mg/L, respectively. With the 532 nm pump, the wavelength 

range of the dye is between 554 nm and 580 nm, with peak energy at ~560 nm. The dye lasing 

threshold can be extended by a couple of nm to either the lower or higher wavelength end by 

making the oscillator dye solution more or less concentrated, respectively. 

2.12.2 MCP assembly 

For ion detection, we have installed a system of field plates that accelerate the ions towards a 

microchannel plate (MCP) assembly. The assembly is based on the design proposed by Wiley and 

McLaren [66] that accelerates ions with three field plates. Each circular plate has a 3.2 cm center 

hole for the vertical MOT beams. The bottom and middle field plates are spaced by 4.7 cm, and 

the middle and top plates by 2 cm. This 3-plate assembly helps to focus ions on the detector 

regardless of their initial positions in the MOT region, thus acting as an ion lens and improving 

spatial resolution. This feature is critical for future studies on ultracold molecular alignment and 

orientation. For optimal time-of-flight (TOF) resolution, the field plate voltages are set to the 

following values: 400 V (bottom), 340 V (middle) and the top plate is permanently grounded to 

the vacuum chamber body. 



53 

 

The accelerated ions travel through a 30 cm field free region and strike the MCP assembly, 

shown schematically in Figure 2.14. For unrestricted optical access for the vertical MOT beam, 

the MCP assembly is positioned ~35 mm away from the axis of the vertical MOT window. To 

ensure that ions are accelerated towards the MCP assembly, the accelerating field plates are tilted 

by 5 from the vertical. In addition, we have also positioned permanent magnets on the outer wall 

of the nipple (field free region) to steer the ions towards the MCPs. We empirically optimize the 

position of the magnets by maximizing the recorded ion counts for a known LiRb PA resonance. 

 

Figure 2.14 MOT chamber schematic showing the field plate and MCP assembly. 

The field plates are tilted at 5 with respect to the vertical axis of the chamber. 

This allows clear optical access for the vertical MOT beams. Permanent magnets 

(orange) on the side of the field-free region steer the ions towards the MCP 

assembly. 

We have installed a double stack MCP (resistance 330 M ) and phosphor screen manufactured 

by Tectra Physikalische Instrumente, Germany. The MCPs can be operated at a maximum 
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potential difference of 2 kV; however, during daily operation we do not exceed 1.8 kV (lower 

MCP -1.9 kV, upper MCP -0.1 kV). Care has to be taken to slowly increase the MCP voltage to 

avoid damaging the assembly. For the first -1000 V, we increase the voltage in steps of -50 V 

every two minutes. From -1000 V to -1500 V, the voltage increase is -50 V every 5 minutes, and 

from -1500 to -1900 V, the rate is -50 V every 10 minutes. This turn on sequence has been 

conveniently automated using Labview. 

For TOF ionization spectroscopy, we monitor the MCP current generated by individual ion 

strikes. The electron cascade from the MCPs hits the metal coated bottom part of the phosphor 

screen and produces the observable signal. For ionization spectroscopy we do not require spatial 

resolution of incident ions and do not apply a potential difference to the phosphor screen (this is 

needed for future studies of LiRb alignment and orientation). The BNC feedthrough is connected 

to a  0   impedance oscilloscope  bandwidth 3 0 MHz) to monitor the signal and to the ion 

counting hardware. 

The scheme for detecting ions and acquiring the resulting signal is shown in Figure 2.15. The 

signal generated by the ion strikes travels via the BNC feedthrough to an Ortec FTA 420-C 

preamplifier module with a gain of 400. The voltage output from the preamplifier is sent to a 

LeCroy 821 quad discriminator. For each input signal that is above a user-specified threshold 

voltage, the discriminator outputs a NIM-logic pulse (NIM stands for Nuclear Instrumentation 

Methods. NIM logic 0 is 0V and logic 1 is -0.8 V). Both the preamplifier and discriminator are 

housed in a NIM controller unit. The preamplifier output is also sent to a  0   input impedance 

oscilloscope to monitor the ion signal. The NIM logic levels are incompatible with our data 

acquisition (DAQ) hardware that recognizes TTL logic (logic 0 is 0 V, logic 1 is 5 V), and so we 

use a MC10H125 chip for NIM-to-TTL signal conversion. 

The DAQ monitors signal from all four ion species incident on the MCP assembly. However, 

since we are only interested in LiRb
+
, a means to selectively record the relevant ion signal is 

needed. Using Labview, we create (in software) a time gate that allows us to record only those 

ions that arrive within the time width of the gate. We set a 700 ns wide gate centered on the LiRb
+
 

arrival time. The gate, along with the trigger that fires the Nd:YAG pulses, are derived from the 

same clock signal to ensure synchronization between the ionizing pulse and the recorded ion 

signal. We have incorporated this trigger and time gating into Labview programs to record 
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ionization spectra while scanning either the PA laser or the pulsed dye laser. Details of these 

Labview programs can be found in the thesis of John Lorenz. 

 

 

Figure 2.15. Setup for ion detection and counting. The MCP current output is 

converted into an amplified voltage signal using the preamplifier, and sent to a 

monitoring oscilloscope and a discriminator. The NIM output of the 

discriminator is converted into TTL signal for the National Instruments DAQ 

hardware. For gated ion counting, a software clock triggers the Nd:YAG pulse 

firing and also produces a time gate at the LiRb
+
 arrival time. The gated ion 

signal is recorded using Labview programs. 

With this setup we record individual ions incident on the MCPs, where each event produces a ~5 

ns pulse width voltage signal as seen on the oscilloscope. At the field plate voltages mentioned 

above, the expected arrival times for the four ion species are listed in Table 2.3. Figure 2.16(a) 

shows a sample TOF signal showing Rb
+
 and LiRb

+
 ions recorded over 100 ionization laser 
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pulses. Also shown in Figure 2.16(b) is the averaged TOF trace that we use to determine the 

FWHM ion spread, t. From the fitted Gaussian, t(Rb
+
) = 110 ns, and t(LiRb

+
) = 125 ns.  

Table 2.3 TOF for the four ion species present in our system. The arrival times 

are referenced to the rising edge trigger of the YAG pulses. 

Ion species TOF (s) 
7
Li

+
 5.8 

85
Rb

+
 20.1 

7
Li

85
Rb

+
 20.9 

85
Rb2

+
 28.4 

 

Search for the LiRb
+
 signal was conducted by fixing the PA laser (Ti:S) frequency at a known PA 

resonance (from trap-loss spectroscopy) and scanning the dye laser. We confirmed that the signal 

originated from ionization of photoassociated LiRb molecules by i) blocking the PA laser, ii) 

blocking the Li MOT beam only, and iii) blocking the Rb MOT beam only. The Rb
+
 signal 

persisted for the first two cases but vanished without the Rb MOT present. The LiRb
+
 signal was 

absent in all three cases. 

Having presented details of the experimental setup, we discuss PA spectroscopy studies using 

ionization detection in the next chapter. 

2.13 Conclusion 

In this chapter we have presented various aspects of our experimental setup, starting with the 

diode lasers used to cool and trap Li and Rb atoms. We describe our MOT optical table layout 

and features of our main experimental chamber, including the ion detection setup. In Chapter 3, 

we present PA spectroscopy studies performed on our apparatus. 
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 (a)   

 (b)  

Figure 2.16 (a) Rb
+
 and LiRb

+
 TOF data recorded for 100 ionizing pulses. (b) 

Average of the data shown in (a). This plot is used to calculate the FWHM time 

spread t of the signal. Compared to the respective arrival times, the ion spread is 

sufficiently narrow to clearly differentiate signal originating from the two ion 

species. The Li
+
 (Rb2

+
) ions arrive much earlier (later) and fall outside the display 

range shown here. 
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3. PA RESONANCES VIA IONIZATION SPECTROSCOPY 

 

This chapter builds on earlier PA experiments conducted in our lab using the complementary 

trap-loss spectroscopy approach. We verify with ion detection the majority of PA resonances 

observed in trap-loss for electronic states asymptotic to Li(2s) + Rb(5p1/2) and Li(2s) + Rb(5p3/2) 

and obtain similar line positions and line features. In addition we observe new, more deeply 

bound PA lines that expand our knowledge of excited state potentials. From these new lines, we 

refine the long-range C6 dispersion coefficients that can be used to extrapolate PA line positions 

at larger binding energies. We also resolve rotational structure of the 2(0
–
) v = 8 level with ion 

detection, and use this information to calculate the outer turning point. This calculation is useful 

to determine classical turning points of vibrational levels, which in turn give an indication of 

ground and excited state wavefunction overlap. We compare the PA lineshape of the 2(0
–
) v = 8, 

J = 1 resonance with a theoretical model that calculates the collision energy of atoms in the 

scattering state [67], and hence gives us an upper limit of our MOT temperature as ~1.1 mK. We 

demonstrate trapping of ground triplet molecules in the MOT magnetic field, and conclude the 

chapter by calculating PA molecule formation rate RPA using ion detection parameters. These new 

observations further shed light on our MOT operation, ion detection system, and the energy level 

structure of LiRb molecules, and will be important for future identification of schemes to create 

LiRb molecules in the ground rovibronic state. 

We start the chapter with the ab initio potential energy curves that are involved in the LiRb PA 

process. 

3.1 Molecular potentials relevant for PA 

Figure 3.1 shows the ground and excited state PECs that dissociate to the Li(2s) + Rb(5pj) 

asymptotes ( j   1/  and 3/ ) and labeled according to Hund’s case  a) notation, valid in the 

region of short internuclear spacing. Ultracold Li and Rb atoms approach each other along the 

Li(2s) + Rb(5s) asymptote and collide in the presence of a light field resonant with an excited 
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state rovibrational level. As mentioned in Chapter 1, PA occurs at large internuclear spacing – R 

  20a0 (~ 11 Å) – where the overlap between the initial scattering state wavefunction and the 

excited state molecular wavefunction is large (Figure 3.2). At this and larger spacing the states 

are described by Hund’s case  c) notation, as shown in Figure 3.3. After PA, the highly excited 

LiRb* molecules may undergo spontaneous emission and decay to the ground singlet and triplet 

electronic states to form more tightly bound LiRb molecules. 

The long-range excited state interaction for heteronuclear molecules goes as –C6/R
6
, which is 

shorter range compared to the R
–3

 behavior of excited state homonuclear molecules. The 

difference in interaction strength is reflected in the different values of the Condon point, RC, 

defined as the internuclear spacing (corresponding to the outer turning point of the PA vibrational 

level) at which the PA laser is resonant with the free-bound transition. RC is larger (> 100a0) for 

homonuclear molecules than heteronuclear molecules (< ~50a0 for LiRb), which results in a 

larger wavefunction overlap for the former and therefore a more efficient PA process. On the 

other hand, the similar R-dependence of the ground and excited states for heteronuclear molecules 

allows favorable spontaneous decay to more deeply bound ground state levels. This characteristic 

is relevant to our eventual goal of transferring PA molecules to the ground rovibronic state. For a 

more detailed comparison between homonuclear and heteronuclear molecules, see [17, especially 

Table 5.2]. 
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Figure 3.1. LiRb ab initio ground- and excited-state PECs [50]. Our PA step 

creates LiRb* molecules in states asymptotic to the Li(2s) + Rb(5p1/2) and Li(2s) 

+ Rb(5p3/2) levels. 

3.2 Experimental setup 

We start with a Li MOT with ~510
7
 atoms and a density of ~510

9
 cm

-3
. Li atoms 

predominantly occupy the F = 2 upper hyperfine level of the ground 2s state. The Rb MOT traps 

~10
8
 atoms at a density of ~410

9
 cm

-3
. For the data presented in this chapter, we use a dark-

SPOT Rb MOT, unless otherwise specified. In this mode of operation the majority of Rb atoms 

populate the F = 2 lower hyperfine level of the ground 5s state. During data acquisition, the 

operation and overlap of both MOTs is monitored using CCD cameras and photodetectors that 

record the Li and Rb MOT fluorescence. The PA laser is the cw Ti:S mentioned in Chapter 2, 

with an output power between 300 and 350 mW and a collimated beam diameter of ~0.85 mm. 

The laser linewidth is ~1 MHz when locked to the external reference cavity. The laser has a 
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mode-hop free scan range of 20 GHz, and its frequency is monitored with a wavemeter (Bristol 

621A) that is accurate to within 60 MHz. 

 

Figure 3.2. Overlap between the initial scattering-state wavefunction of Li and 

Rb atoms, and the final bound state wavefunction of LiRb*. PA molecules are 

created at large internuclear distances and undergo spontaneous emission to 

populate high-lying vibrational levels of the ground electronic states. 

Wavefunction calculations courtesy of Jesús Pérez-Ríos. 

The Spectra-Physics PDL-2 is pumped by the second harmonic of a pulsed Nd:YAG laser which 

fires ~7 ns pulses at a 10 Hz repetition rate. We use Rhodamine 590 dye for the PA spectroscopy 

presented in this chapter, with a maximum energy of ~ 4 mJ per pulse. R590 is a high-gain, long 

lifetime dye that lases between 554 nm (~18050 cm
-1

) and 580 nm (~17250 cm
-1

). 

Our data acquisition hardware does not differentiate between the different ion species, which is 

required to count only LiRb
+
 (for details of acquiring the ion signal, see Chapter 2). Instead, we 

use Labview to detect LiRb
+
 within a user-specified gated time window. The rising edge of the 

software gate is synchronized with an external clock signal that also triggers the YAG pulses. A 
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Labview data acquisition program counts the total number of ions arriving in a time-gated 

window for a specified number of ionization pulses. The program also changes the PA laser 

frequency in discrete, user-defined frequency steps, also in synchrony with the clock signal. For 

PA spectroscopy presented in this chapter, we count the total number of LiRb
+
 ions for 100 

pulses, and step the Ti:S frequency in discrete ~20 MHz steps. The PDL wavelength is held 

constant throughout the scan, while the Ti:S frequency is monitored using a Bristol 621A 

wavemeter. With these experimental parameters, we record the PA spectra shown in the next 

section. 

 

Figure 3.3. LiRb Hund’s case  c) potentials involved in PA spectroscopy [ 0]. 

The 2(0
–
) and 2(1) states are indistinguishable from each other on this scale. 

3.3 LiRb PA 

In this section we present results of PA spectroscopy using ionization detection and compare 

these results with earlier trap-loss spectroscopy, including PA line positions and features. We also 
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identify new lines detected using ionization spectroscopy. Based on the additional PA resonances, 

we determine that the long-range C6 dispersion is valid for extrapolating PA line positions at the 

largest observed detuning PA ~ -62 cm
-1

 below Li(2s) + Rb(5p1/2), which suggests that we are 

still probing long-range excited state vibrational levels. 

3.3.1 Trap-loss spectroscopy 

Heteronuclear PA of 
7
Li

85
Rb was first observed in our lab using trap-loss spectroscopy [56]. With 

this detection method, we have observed 3(0
+
) v = 3 – 5, 4(1) v = 2 – 6 and 1(2) v = 2 – 4 levels. 

These electronic states are asymptotic to Li(2s) + Rb(5p3/2). For the 2(0
+
), 2(0

–
) and 2(1) states 

asymptotic to Li(2s) + Rb(5p1/2), trap loss spectroscopy has revealed v = 2 – 4, 3 – 5 and 3 – 5 

levels, respectively. Note that in this thesis, PA vibrational level labeling starts at v = 1 for levels 

closest to the dissociation limit, and the numbering increases for more deeply bound levels. All 

other ground and excited state vibrational level numbering starts from v = 0 for the deepest bound 

level. 

3.3.2 LiRb
+
 detection 

Trap-loss spectroscopy can help identify PA levels close to the dissociation limit. However, as the 

PA laser is scanned towards more deeply bound vibrational levels, the trap-loss signal decreases 

and we cannot distinguish PA resonances from the background MOT fluorescence. In contrast, 

ionization detection records events arising out of a (near) zero background and can identify 

weaker signal that cannot be observed with trap-loss. For a suitably chosen ionization pathway, 

ion counting can readily identify PA resonances at large binding energies of tens to hundreds of 

cm
-1

. 

Whereas PA trap-loss spectroscopy has one adjustable parameter in the form of the PA laser 

frequency, PA ionization detection is a ‘two-dimensional’ search, i.e. we need to know a PDL 

wavelength at which LiRb molecules can be resonantly ionized, and we must also scan the PA 

laser in search of a free-bound transition. To simplify the initial search for LiRb
+
, we started by 

fixing the PA laser at the strongest observed trap-loss transition, the 3(0
+
) v = 3 at a binding 

energy  PA = –15.08 GHz from the Li(2s) + Rb(5p3/2) asymptote. We scanned the PDL for the 

entire dye lasing range, but were unable to detect LiRb
+
 signal. We noted that the MCP assembly 

detected Rb
+
, which led us to conclude that the ion detection was operating normally. Due to 

reasons mentioned later in this chapter, it turned out that our choice of PA resonance was an ill-
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advised one. Our next attempt was more successful with the PA laser fixed on the 4(1) v = 3 

resonance. Next, we optimized MOT parameters to maximize LiRb
+
 counts. These are listed in 

Table 3.1. We also saw a significant improvement in signal by carefully positioning a set of 

permanent magnets on the outer wall of the field-free region to steer the ions towards the MCP 

assembly. 

With the ion signal optimized, we proceeded to record PA spectra. 

Table 3.1 List of MOT parameters that optimize ion detection. 

  detuning(MHz) Intensity (mW/cm
2
) 

Rb trap beam -19 32 

Rb repump beams +12 8 

Li cooling and repump beam -25 14 

Li Zeeman slower beam -80 7 

 

3.4 PA ionization spectroscopy below Li(2s) + Rb(5p3/2) 

Figure 3.4 shows PA spectra observed via ionization detection while tuning the PA laser below 

the Li(2s, F = 2) + Rb (5p3/2, F = 2) asymptote at v3/2 = 384232.157 GHz. In this section, the 

binding energy PA is defined as the PA line position (in GHz) below v3/2. We compare PA with 

previous trap-loss spectra to corroborate the line assignment. We have labeled the lines in Figure 

3.4 as belonging to either the 4(1) or 1(2) states, with the vibrational level numbering beginning 

with v = 1 for the least bound level. The 4(1) PA resonances show the J = 1 and 2 rotational 

levels, whereas for the 1(2) level, we observe only one rotational line, which is assigned as J = 2 

[68]. For PA detuning less than ~8 GHz below dissociation, the Rb MOT is significantly 

perturbed and we do not detect PA lines beyond this detuning. The list of PA is given in Table 

3.2, and the individual resonances are shown in Figure 3.5. Here we label the PA levels of the 

different electronic states, as well as multiple rotational lines of the 4(1) state. All of the 1(2) lines 

are J = 2. Note that not all the spectra are recorded for the same PDL wavelength. The ionization 

pathways are not identical for all lines for two reasons: i) the wavefunction overlap between the 

PA level and ground vibrational levels varies as we scan farther below v3/2, which influences the 

ground state population distribution and hence the ion signal, ii) based on selection rules, PA 

levels can populate either the ground singlet or triplet state. From this singlet or triplet state, 
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selection rules also govern which excited state can be accessed for the resonantly enhanced 

multiphoton ionization (REMPI) process. This may require adjusting the REMPI wavelength 

from one PA resonance to the next. These arguments also apply in the next section to PA spectra 

for states asymptotic to Li(2s) + Rb(5p1/2). We list the REMPI wavelengths for each PA line in 

Figure 3.5. 

Table 3.2. Binding energies PA (in GHz) for the observed PA levels below 

Li(2s) + Rb(5p3/2), measured with respect to v3/2. The 4(1) v = 5 lines are only 

observed with ionization detection. 

v 4(1) J = 1 4(1) J = 2 1(2) J = 2 

2 -10.74 -9.61 -7.93 

3 -42.36 -40.70 -36.08 

4 -107.53 -105.40 -97.62 

5 -217.81 -214.90 -205.54 

6     -373.06 

 

Once we confirmed the PA line assignments obtained by ionization detection with earlier trap-

loss results, we started a systematic search for PA resonances that could not be observed with 

trap-loss. When searching for new lines, one approach is to fix the PDL wavelength while 

continuously scanning the PA laser. Assuming all components of the experiment run smoothly, 

this approach generates continuous spectra spanning tens to hundreds of GHz (see, for example 

[35]. Unfortunately, for reasons explained earlier, we cannot run our system uninterrupted for 

more than an hour. To make the most efficient use of the apparatus, we follow a different route. 

We calculate the C6 coefficient using the known PA lines for a particular electronic state and 

extrapolate the position of the next PA line in the series to within ~10 GHz (details of C6 

calculations are explained below). Upon observing the next level in the progression, we 

recalculate the C6 coefficient and extrapolate the position of the next line, and so on. We focused 

our search using this method and discovered the v = 5, J = 1 and J = 2 levels of the 4(1) state
1
 

(Figure 3.5). 

                                                      
1
 This extrapolation method will become less accurate for larger binding energies as the vibrational level 

spacing deviates from the prediction based on the long-range C6 coefficient. For all of the PA resonances 

reported in this chapter, however, this method predicts line positions fairly well. 
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3.4.1 Comparison between ionization and trap-loss spectra 

Except for the 4(1) v = 5 lines, the PA resonances shown in Figure 3.5 have been previously 

observed with trap-loss spectroscopy. We note that the line positions in ion detection are similar 

to the trap-loss lines to within ~40 MHz. As mentioned in Section 3.2, the Bristol wavemeter 

used to measure the PA laser linewidth is accurate to ~60 MHz. In addition, the hyperfine 

structure seen in both detection schemes is qualitatively similar. We do not attempt to compare 

signal strength because the ion signal is dependent on ionization efficiency of ground state 

molecules via the intermediate excited state. By contrast, trap-loss spectroscopy measures change 

in MOT fluorescence as trapped atoms are lost via PA. 

Comparison of ion detection with trap-loss spectra reveals a further important difference. Several 

vibrational levels belonging to the 3(0
+
) state were observed with trap-loss, but they are all absent 

from the ionization spectra. The reason these lines are absent in the ionization spectrum is most 

likely due to predissociation of the 3(0
+
) state. Korek et.al. have reported an avoided crossing 

between the 2(0
+
) and 3(0

+
) states that correlate at short range to the A

1
Σ

+
 and the b

3
  states [ 0]. 

Molecules that photoassociate to a 3(0
+
) level may predissociate via the lower energy Li(2s) + 

Rb(5p1/2) asymptote and decay to Li and Rb atoms instead of forming ground state molecules. 

Since trap-loss spectroscopy cannot differentiate between excited state molecules decaying to two 

free atoms or bound ground state molecules, either process results in a decrease in MOT 

fluorescence, and we detect the 3(0
+
) lines. The initial state for ionization detection, however, is 

the molecular ground state, which in this case seems to be thinly populated and explains the 

absence of ion signal. 

In the next section, we discuss PA spectroscopy for electronic states that are asymptotic to the 

Li(2s) + Rb (5p1/2) level. 
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Figure 3.4. Global view of PA resonances observed below Li(2s) + Rb(5p3/2) 

with ionization spectroscopy. 
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Figure 3.5. (a-d) (Previous page) and (e-g) show the individual PA resonances for 

the 4(1) and 1(2) states. The number next to the vertical solid and dashed line 

below PA lines denotes the PA vibrational level of the 4(1) and 1(2) states, 

respectively (legend shown in each panel). The smaller features in each figure are 

due to the molecular hyperfine energy. Multiple rotational levels are labeled 

where observed. The ionization laser wavelengths are as follows: (a) and (b) 

17826.8 cm
-1

, (c) and (e) 17605.5 cm
-1

, (d) and (f) 17633.1 cm
-1

, and (g) 17782.1 

cm
-1

. The 4(1) v = 5 J = 1 and 2 lines have only been observed with ionization 

spectroscopy. 
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3.5 PA spectroscopy below Li(2s) + Rb (5p1/2) 

The procedure is similar to that followed in the previous section, except we now scan the PA laser 

below the 
85

Rb 5p1/2 asymptote. All the PA line positions PA in this section are measured as 

detuned from the 
85

Rb (2s, F = 2) – 
85

Rb (5p1/2, F = 2) transition at v1/2 = 377108.946 GHz. Li and 

Rb MOT parameters are also identical for both sets of PA scans.  Figure 3.6 shows all of the 

observed PA resonances, with individual lines shown in Figure 3.7. Unlike the search for PA 

lines below Li(2s) + Rb(5p3/2), we observe and assign resonances to all three electronic states 

[2(0
+
), 2(0

–
) and 2(1)] asymptotic to this level. For PA ~ 8 GHz or less below dissociation, the Rb 

MOT is disrupted similar to the behavior below Li(2s) + Rb(5p3/2), and we do not observe PA 

resonances in this range. As with trap-loss spectroscopy, we only observe one rotational level for 

most of the PA resonances and assign these as J = 1 based on similar arguments as for the 

rotational level assignments in trap-loss spectra [69]. REMPI wavelengths used to acquire these 

spectra are given in Figure 3.7. 

In trap-loss spectroscopy we observed v = 2 – 4 of 2(0
+
) and v = 3 – 5 of 2(0

–
) and 2(1). In 

addition to detecting these lines with ion detection, we also show v = 5 of 2(0
+
), v = 8, 9 and 11 of 

2(0
–
) and v = 6, 7 and 10 of 2(1) (details of peak assignment are given in the next section). For 

peaks that appear in both detection schemes, we again note that the line positions in trap-loss 

spectra are within ~40 MHz of the line positions in ion detection. We also observe similar 

hyperfine structure in both sets of spectra. 
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Figure 3.6. Global view of PA resonances observed below Li(2s) + Rb(5p1/2) 

with ionization spectroscopy.  
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Figure 3.7. (a-h) (previous two pages) and (i-l) show the individual PA 

resonances for the 2(0
+
), 2(0

–
) and 2(1) states. Each PA vibrational level v is 

labeled below the respective resonance. Line features in panels (a), (c), (e), (g), 

(h) and (k) are due to molecular hyperfine energy. Multiple rotational levels are 

labeled where observed. Note that the  = 0 lines show no hyperfine structure as 

expected. The asterisks (*) label hyperfine ghosts originating from population in 

the Rb(5s, F = 3) and Li(2s, F = 1) states. The ionization laser wavelengths are: 

(a) – (h) 17742.4 cm
-1

, (i) – (k) 17602.5 cm
-1

 and (l) 17612.7 cm
-1

. 
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3.5.1 Peak assignment 

We assign electronic states to the PA levels by looking for patterns in the structure of the PA 

resonances. The hyperfine energy, Ehfs, goes as      ~  /      1) [39, 70]. Hence,  = 0 lines have 

no internal structure to first order but   1 lines show hyperfine structure. This pattern 

recognition procedure was used for the initial line assignment using trap-loss spectroscopy, and 

applies to ionization detection as well. Figure 3.7 shows the sets of peaks assigned to each of the 

three electronic states. 

In contrast to the weak ion signal at larger detuning below the Li(2s) + Rb (5p3/2) asymptote, we 

have good ion counts to detect PA resonances with a binding energy of up to  PA ~ -62 cm
-1 

(~1862 GHz below 1/2). Table 3.2 lists the observed PA lines for the J = 1 line of each 

vibrational level. As with PA spectra below Li(2s) + Rb(5p3/2), we do not observe sufficient 

rotational lines to determine Bv. The one exception is the 2(0
–
) v = 8 level, where we observe J = 

0, 1 and 2 lines. We will return to the observed rotational structure later in the chapter. 

The distinction between  = 0

 and  = 1 peaks is clear. To differentiate between  = 0

+
 and  = 

0
–
 lines, we compare the C6 dispersion coefficients for each line progression. Experimental C6 

values are obtained using the LeRoy-Bernstein formula that describes the long-range potential of 

diatomic molecules where PA occurs [71]: 

   –  v     
     

  
 
3
,
1
 
   

 

3

 
 

  6
   v – v  3 

 

(3.1) 

  is the reduced mass of 
7
Li

85
Rb, B(2/3,1/2) is the Beta function (= 2.5871), and 0 < vD < 1, 

determined experimentally. D is the dissociation energy, Ev is the energy of a PA vibrational 

level, and (D – Ev) = –hPA + Erot, where Erot = Bv[J(J + 1) – 
2
]  is the rotational energy for 

vibrational level v. J is the rotational level and Bv is the rotational constant. We plot (D – Ev)
1/3

 

against v, and use the slope to calculate C6. Since we observe a single rotational level for the 

majority of PA levels, we use the scheme outlined in [68] to include estimates of Erot in our 

calculation. However, as shown in the next section, the 2(0
–
) v = 8 level shows multiple rotational 

lines from which we can calculate Bv and Erot. This information is incorporated here to improve 

the 2(0
–
) C6 calculation. Figure 3.8 shows plots of (D – Ev)

1/3
 versus v for all observed PA 
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resonances in our study, while Table 3.3 lists our calculated C6 coefficients, along with earlier 

calculations based on trap-loss measurements [68, 69] and theory [72, 73]. The 2(0
+
) and 2(0

–
) 

states have significantly different C6 values (also seen in Figure 3.8) that we can assign lines 

belonging to each state. 

PA resonances up to v = 5 for all three electronic states were previously observed in trap-loss 

spectroscopy. We discovered the remaining peaks using the approach outlined in the previous 

section, i.e. we used the experimental C6 values to extrapolate the position of the next PA line in 

each progression. This includes the PA level with the largest binding energy,  PA ~ -62 cm
-1

, 

belonging to the 2(0
–
) state, and indicates that the long-range behavior described by the van der 

Waals interaction is valid at this energy. 

Having identified all observed PA resonances using ionization detection, we focus on the 

rotational structure of the 2(0
–
) v = 8 line in the next section. 

Table 3.2. Binding energies PA (in GHz) for the observed PA levels below 

Li(2s) + Rb(5p1/2), measured from v1/2. 

v 2(0
+
) 2(0

–
) 2(1) 

2 -9.45     

3 -38.06 -15.48 -16.26 

4 -98.44 -51.04 -52.54 

5 -208.08 -119.21 -121.41 

6     -235.51 

7     -401.52 

8   -641.33   

9   -955.86   

10     -1345.77 

11   -1862.02   
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Figure 3.8. Plot of (D - Ev)
1/3

 versus PA vibrational level v. (a) Black and red 

lines  are fits of 4(1) and 1(2) levels to Eq. (3.1), respectively. (b) Black, red and 

blue lines are fits of the 2(0
+
), 2(0

–
) and 2(1) levels to Eq. (3.1), respectively. 

 

(a) 

(b) 
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Table 3.3. C6 coefficients calculated from the fit of Eq. (3.1) to experimentally 

observed PA lines. These values are compared with earlier calculations based on 

trap-loss spectra, and also with two theory calculations. Uncertainties are given 

in parentheses, and all values are in a.u. 

Electronic state C6 (this work) C6 (trap-loss [68, 69]) C6 (theory [72]) C6 (theory [73]) 

2(0
+
) 10120 (450) 11335(+600, –300) 13900 16072 

2(0
–
) 12410 (180) 13470 (+540, –270) 13900 16071 

2(1) 13130 (330) 13730 (+535, –270) 13900 16071 

4(1) 8750 (500) 9235 (490) 9205 11308 

1(2) 10070 (590) 10190 (420) 9205 11308 

 

3.6. Rotational structure of 2(0
–
) v = 8 PA resonance 

LiRb PA is estimated to occur at internuclear spacing RC ~ 9.5 – 23.6 Å (18 – 44.6 a0) [56]. To 

get to RC, the colliding atoms encounter the centrifugal barrier of the long-range potential due to 

rotational angular momentum l. The height of these barriers can be calculated using C6 = 2500 

a.u. for the Li(2s) + Rb(5s) collision channel [73]: 

        
 6

 6
   

  

  

    1)

  
 (3.2) 

Figure 3.9 shows plots of Eq. (3.2) for s-, p- and d-waves. The s-wave collisions are barrier-less, 

but for higher partial wave collisions, the atoms need to have sufficient energy to overcome the 

centrifugal barriers to reach RC. Based on MOT temperature estimates (next section), the collision 

energy of the Li and Rb atoms is ~1.1 mK. From the theoretical C6 and Eq. (3.2), we calculate the 

p-wave barrier height to be 1.9 mK, and it occurs at ~51 Å (~100 a0). As the atomic collision 

energy is insufficient to cross the p-wave barrier to reach RC, the ultracold collisions are mainly s-

wave in character. 

Since we are dealing with a one-photon free-bound PA transition, the selection rules for electric-

dipole allowed transitions dictate that J for the PA molecules will be at most 2, and the allowed 

transitions for spontaneous decay to the ground state will be to J  3. Our PA laser linewidth of 

~1 MHz is narrow enough to resolve the rotational structure. With ionization detection, we 
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observe J = 1 and 2 levels for all of the 4(1) PA resonances, and for 2(1) v = 10. However, with 

only two rotational levels, we cannot reliably calculate Bv, the rotational constant for vibrational 

level v. On the other hand, we observe three rotational lines for the 2(0
–
) v = 8 level, which we 

assign as J = 0, 1 and 2 in Figure 3.10. We assign the strongest line as J = 1 because, according to 

the selection rules presented in Table 1.3 of Section 1.2.6, there are more allowed transitions from 

the initial scattering state to J = 1 compared to J = 0 or 2 [56]. We calculate Bv from the rotational 

energy Fv(J):  v       v[      1    ]. In Figure 3.11 we plot Erot (= Fv(J)) versus J(J + 1), and 

determine Bv = 870(90) MHz from the slope of the plot. 

Once we determine Bv, we use the rigid rotor model for a diatomic molecule to calculate the 

classical outer turning point R of our PA level:  v    
 /    . For 2(0

–
) v = 8, we obtain R = 

9.5(0.5) Å, which lies in the range of internuclear spacing for which PA can occur in LiRb, as 

discussed earlier in the chapter. 

Since the 2(0
–
) v = 8, J = 1 rotational level is well resolved, we use it in the next section to 

estimate the maximum collision energy – and hence temperature – of our trapped atoms. 
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Figure 3.9. Plots of centrifugal barrier heights (in mK) versus internuclear 

separation (in Å) calculated from Eq. (3.2). In our system, Li and Rb atoms can 

undergo s-wave collisions, but they do not have sufficient energy (~1.1 mK) to 

overcome the p- , d- and higher partial wave barriers. 
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Figure 3.10. Resolved rotational structure of the 2(0
–
) v = 8 level. The peaks 

marked with an asterisk (*) are hyperfine ghosts. 
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Figure 3.11. Plot of rotational energy Erot versus J(J + 1) for the 2(0
–
) v = 8 level. 

Erot is measured from the v1/2 asymptote. From this fit, we calculate Bv = 870(90) 

MHz. 

3.7 PA lineshape 

Li and Rb atoms have a distribution of collision energies in the initial scattering state. If we 

consider discrete collision energies , the PA lineshape due to one particular energy h would be 

a Lorentzian (in this section the collision energy  is represented in frequency units). The 

combined effect of multiple collision energies and their magnitudes affects the overall PA 

lineshape, and the convolution of individual Lorentzians corresponding to discrete collision 

energies deviates from a pure Lorentzian. Jones et.al. [74] have developed a model for 

determining PA lineshapes based on Wigner’s threshold law [7 ]. For low collision energies 

typically found in ultracold systems, the amplitude of the ground state scattering wavefunction 

goes as       1  )/ , where l is the partial wave angular momentum. The distribution of collision 

energies is given by the Boltzmann distribution,     / k  ). Together, the PA lineshape for a 

continuum of collision energies is given by [67]:  
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    ,  0                  1/      ,   0         
 

0

 
(3.3) 

where L(f, f0 – ) is a Lorentzian: 

    ,  0         
1

      
0
     

 
   

 
 
 
 
 

(3.4) 

  is the natural linewidth (full width at half maximum, or FWHM) of the excited PA state and the 

Lorentzian is centered at (f0 – ). f0 is the threshold energy for PA to occur and  ’ = kBT/h is the 

temperature. K adjusts the amplitude of the calculated lineshape to match the experimental 

observations. 

As PA lineshape reflects the distribution of collision energies, we can use the lineshape 

calculations from Eq. (3.3) and determine the temperature T of the colliding atoms in the 

scattering state. Since the 2(0
–
) v = 8 is rotationally well-resolved, we model the J = 1 line based 

on Eq. (3.3). Figure 3.12 shows the experimental 2(0
–
) v = 8 J = 1 resonance (dots), along with 

the calculated overall fit to the lineshape for s-wave (l = 0) collisions. From the calculated fit, we 

obtain T = 1.05(0.1) mK and  = 6(2) MHz. This calculation also reinforces our earlier statement 

that the atoms primarily undergo s-wave scattering because the MOT temperature is not high 

enough for significant p- or higher partial wave scattering. 
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Figure 3.12. PA lineshape fit to the 2(0
–
) v = 8, J = 1 PA resonanace (blue dots) 

using Eq. (3.3). The calculations estimate the MOT temperature to be T = 

1.05(0.1) mK. 

3.8 Decay to ground triplet state 

According to the selection rules for one-photon electric dipole-allowed transitions, the 1(2) and 

2(0
–
) states decay to the 1(0

–
) and 1(1) states, which correlate to a

3
Σ

+
. The 4(1), 2(0

+
) and 2(1) 

states can decay to a
3
Σ

+
 and X

1
Σ

+
 (1(0

+
) for Hund’s case (c)). In the next chapter we present 

excited state ionization spectroscopy based on PA lines of the 2(0
–
) state, and as a prelude we 

discuss here molecular decay from the 2(0
–
) v = 5 level to the ground electronic state. 

Molecules in the ground singlet state have zero magnetic moment, which means they are not 

affected by a magnetic field. Triplet molecules, on the other hand, have net non-zero spin and 

interact with a magnetic field [35]. We have observed such an interaction in the form of magnetic 

trapping of triplet molecules in the MOT magnetic field (~10.6 Gauss/cm) and shown in Figure 

3.13
2
. Our investigation proceeds as follows: we introduce a variable delay t between turning off 

the PA laser and firing the ionization laser pulses. A hard drive read head is used as the variable 

delay shutter. If the PA beam is continuously on and we fire the ionizing laser, the number of 

molecules being ionized does not change significantly. This is because molecules escaping the 

                                                      
2
 We cannot run a similar experiment on singlet ground state molecules because, based on selection rules, 

there is no electronic Hund’s case  c) electronic state that decays exclusively to the singlet ground state, i.e. 

all allowed transitions have an allowed decay channel to the triplet ground state. 
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magnetic confinement region are replaced by additional molecules that undergo spontaneous 

emission to the triplet state. Let us assume the excited state lifetime is ~20 ns based on the 

Rb(5p3/2) excited state linewidth. For a 4 mm diameter ionizing beam and a MOT temperature of 

~1 mK, the molecule transit time through the beam is ~9 ms. As we increase t, the ion signal 

starts to decrease, seen in Figure 3.13. We notice that the ion signal is present for t > 9 ms. In the 

absence of molecular confinement in the MOT magnetic field, the ion signal should be negligible 

as the delay t exceeds the molecular transit time. This is because without confinement, there is 

sufficient time between the PA light being turned off and the arrival of the ionization pulse that 

PA molecules can escape the ionization volume. The fact that the ion signal is present for t > 9 

ms suggests that triplet molecules are being trapped in the MOT magnetic field. 

In the next section, we use the same 2(0
–
) v = 5 level to estimate the rate of PA molecular 

formation. 

 

Figure 3.13. Magnetic trapping of ground triplet state molecules. As the delay t 

between the PA laser shutter and the ion pulse arrival is increased, the ion signal 

is seen to decrease. Presence of ion signal beyond the ~9 ms transit time of 

molecules in the ionization beam suggests that we are trapping triplet ground 

state molecules. 
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3.9 Molecule formation rate via PA 

In this section, we estimate the photoassociation rate, RPA, of molecule formation using ionization 

detection and compare this with PA formation rate obtained from trap-loss spectroscopy. One of 

the future goals of our program is to create molecules in the rovibronic ground state, which will 

subsequently be detected by multiphoton ionization. As some transfer schemes to deeply bound 

X
1


+
 rovibrational levels may not be very efficient [56], it is important to estimate the initial rate 

of creation of LiRb molecules given by RPA. 

In earlier trap-loss studies, we observed a molecule formation rate of ~3.5 10
7
 s

-1
 for the 3(0

+
) v 

= 3 level. However, since we do not observe 3(0
+
) vibrational levels with ion detection, we use 

data for the 2(0
–
) v = 5 level to estimate RPA. The following calculation, based on [44], takes into 

account molecular creation, ionization and detection efficiencies that will be relevant to 

ionization detection of ground state molecules as well. 

The number of ions detected per ionization pulse, Nion, depends on i) Na, the number of ground 

(triplet) state molecules, ii) the probability, pion, of ionizing molecules per ion pulse, and iii) the 

detection efficiency ed. In other words, 

                (3.5) 

For the 2(0
–
) v = 11 level, we record a strong ion signal Nion ~ 2 ions/pulse. The ionization 

probability is calculated as [44]: 

 
   

   1     λ      
 (3.6) 

 is the photoionization cross-section, which we estimate for LiRb to be between 10
-23

 and 10
-24

 

m
2
 based on estimates for Li and Rb [76]. With pulse energy E ~ 3 mJ, ionizing laser wavelength 

 = 565 nm and the pulse beam diameter, 2 = 4 mm, we obtain from Eq. (3.6) pion ~ 710
–3

 – 

710
–4

. Estimating the detection efficiency ed is difficult as it is related to the MCP detector 

efficiency and also the probability that an ion generated by the ionization laser strikes the MCP. 

Here, we estimate ed between 0.1 and 0.8. Using the values for pion and ed along with Nion, we 

calculate from Eq. (3.5) an estimate for the number of molecules in the ground triplet state: Na ~ 

510
2
 – 310

4
/pulse. 
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Once we know the initial number of ground state molecules, we can calculate the 

photoassociation rate, RPA, from [44]: 

     
       ) 

1    / 
 (3.7) 

where  is the transit time of the molecules in the ionizing beam volume. For a 4 mm beam 

diameter and molecules with kinetic energy ~1 mK,  ~ 9 ms. FCF is the Franck-Condon factor 

(FCF) for decay from the PA level to a vibrational level of the ground state. For our calculations, 

we choose the v” = 9 level of a
3
Σ

+
 which has good wavefunction overlap with the chosen PA 

level and hence a large FCF of 0.1. The FCF is calculated from ab initio LiRb PECs [50] using 

the LEVEL 8.0 program [77]. Substituting the FCF, transit time  and Na into Eq. (3.7), we 

calculate the LiRb PA molecule formation rate to be RPA = 10
5
 – 10

7
 s

-1
. Considering the 

uncertainty in the photoionization cross-section  and detector efficiency ed, this estimate 

compares favorably with the PA rate calculated from our LiRb trap-loss measurements (~3.510
7
 

s
–1

), which is one of the largest among heteronuclear molecules [68]. 

3.10 Conclusion 

We have presented PA spectroscopy using ionization detection, and, where possible, compared 

our results with earlier trap-loss measurements. In addition we observe new, more deeply bound 

PA lines that expand our knowledge of excited state potentials. From these new lines, we refine 

the long-range C6 dispersion coefficients that can be used to further extrapolate new PA line 

positions at larger binding energies. We also resolve rotational structure of the 2(0
–
) v = 8 level 

with ion detection, and use this information to calculate the outer turning point. This calculation 

is useful to determine classical turning points of vibrational levels, which in turn give an 

indication of ground and excited state wavefunction overlap. From the PA lineshape of the 2(0
–
) v 

= 8, J = 1 resonance and comparison with the theoretical model of [67], we calculate the 

maximum MOT temperature as ~1.1 mK. We demonstrate trapping of ground triplet molecules in 

the MOT magnetic field, and also calculate PA molecule formation rate RPA using ion detection 

parameters. The results presented in this chapter provide important information related to the 

MOT operation, ion detection system, and, most importantly, the energy level structure of LiRb 

molecules, which will be important for future identification of schemes to create LiRb molecules 

in the ground rovibronic state. Finally, some of the newly discovered PA lines are used to record 
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resonantly enhanced multiphoton ionization spectroscopy (REMPI) of ground and excited 

electronic states. REMPI spectroscopy is the subject of the next chapter. 
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4. LIRB EXCITED STATE IONIZATION SPECTROSCOPY 

 

Having presented PA spectroscopy of several high-lying vibrational levels near the Li(2s) + 

Rb(5p1/2) and Li(2s) + Rb(5p3/2) asymptotes, we now investigate the ground triplet state and 

excited electronic states using REMPI spectroscopy. Our goal in undertaking this experiment is 

two-fold: first, we would like to gain more insight into the energy level structure of LiRb 

molecules. Very few studies involving LiRb have been undertaken, whether in hot vapor or 

ultracold systems. REMPI spectroscopy can start to shed light on some of the as-yet unknown 

electronic states. In line with exploring these energy levels is our eventual goal of transferring 

ultracold LiRb molecules into the rovibronic ground state. As we mentioned in Chapter 1, 

rovibronic ground state molecules possess a large electric dipole moment that figures into 

applications involving quantum computation and ultracold chemistry, among others. Transferring 

molecules to the ground state is a challenging prospect because PA molecules are formed in 

vibrational levels that do not have a good wavefunction overlap with deeply bound ground state 

molecules. With REMPI spectroscopy, we wish to explore excited state levels to find possible 

transition pathways to the rovibronic ground state. 

This chapter presents our spectroscopic studies of excited electronic states of LiRb using 

ionization detection. We use REMPI spectroscopy to map out vibrational levels of the (3)
3
 and 

(4)
3


+
 states. In the process, we also determine vibrational levels of the ground a

3


+
 state. 

We begin this chapter by explaining further the need to perform these spectroscopic studies. 

Details of the experimental setup are presented next, followed by the REMPI spectra and 

interpretation of observed spectra features. Our analysis is aided by LiRb ab initio calculations, 

and we explain our spectroscopic observations by referring to these calculations. 
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4.1 Motivation 

In the discussion so far, we have seen how to create ultracold LiRb molecules in excited 

electronic states using PA. These molecules undergo spontaneous emission and decay to 

vibrational levels of the a
3


+
 and X

1


+
 states. However, we cannot entirely rely on spontaneous 

decay to populate the absolute ground rovibronic state (X(v = 0, J = 0), or X(0, 0)). Spontaneous 

decay is governed by the overlap between the excited state (PA) wavefunction and the 

wavefunction of the ground rovibrational levels, which is also reflected in the calculated Franck-

Condon factors between the two states. Based on this overlap, PA molecules predominantly 

decay to high-lying ground state vibrational levels, with very weak (if nonzero) FCF for decay to 

the absolute ground state. Hence, producing molecules in the ground rovibronic level in a single 

step – PA followed by spontaneous decay – may be inefficient at best, producing an insufficient 

number of molecules for further study. 

Instead of relying on spontaneous decay, we can excite molecules to known levels in excited 

states that have a more favorable wavefunction overlap with the absolute ground state, and use 

stimulated emission to drive population to X(0, 0). For this scheme to work, we need to know the 

excited state energy levels. Conventional excited state spectroscopy is performed in a thermal 

vapor in which the molecules are excited from deeply bound ground state vibrational levels. In 

ultracold systems, we can use multiphoton ionization to map out these levels. PA molecules that 

decay to the high-lying vibrational levels of the ground electronic states can be ionized using 

REMPI, with the resonant intermediate state being the subject of our study. Performing excited 

state spectroscopy is therefore relevant for exploring possible pathways to transfer loosely bound 

PA molecules to the absolute ground state. 

Multiphoton ionization spectroscopy is applicable to diatomic and polyatomic molecules. In 

ultracold physics in particular, REMPI spectroscopy has been instrumental in exploring and 

identifying structure at short and intermediate internuclear spacing in both homonuclear and 

heteronuclear molecules (for example, compare [37], [78] and [79]). Different combinations of 

alkali molecules produce a rich and diverse set of spectra. For example, one-photon electric-

dipole selection rules differ slightly between homonuclear and heteronuclear molecules, which in 

turn impose different restrictions on allowed transitions for the two classes of molecules. 

Interpretation of excited state spectra therefore takes into account selection rules to explain the 

observed structures. 
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Among alkali heteronuclear molecules, LiRb is one of the least studied systems. Heat pipe 

spectroscopy of the X 
1


+
, B

1
 and D

1
 levels has recently become available (see Chapter 1), but 

the vast majority of LiRb electronic states remain unknown. Theoretical support has been 

available mainly in the form of [50, 54, 55]. Based on these ab initio calculations, particularly 

from Korek et.al. [50], and with the REMPI spectroscopy data presented in this chapter, we have 

managed to shed light on some of these unexplored electronic states with the aim to better 

understand the LiRb molecular structure. Eventually, this information may be useful as a stepping 

stone for suitable transition pathways to efficiently populate the ground rovibronic level. 

4.2 Experimental setup 

The MOT parameters are the same as those used for PA spectroscopy in Chapter 3. For REMPI 

spectroscopy, since the Ti:S frequency is fixed on a chosen PA resonance, we also monitor the 

frequency drift. Through a joint collaboration with Dr. Andrew Weiner, we have access to a 

Menlo Systems frequency comb (FC1500-250-WG) that is used for this purpose. A photonic 

crystal fiber (PCF) produces light in the 530-900 nm range and adjacent teeth in the frequency 

comb are spaced by 250 MHz. The output is fiber coupled and transported to our lab, where we 

generate a heterodyne beat signal between the Ti:S and the tooth of the frequency comb that is 

closest in frequency to the Ti:S (in 250 MHz steps). Both beams are combined on a PBS and 

copropagate towards a fast photodiode which is connected to an rf spectrum analyzer for beat 

signal measurement. The linewidth of the beat signal is ~2 MHz. During normal operation, the 

beat signal may drift by ~5 MHz over a period of 30-45 minutes, which is the typical length of 

time we acquire data. This drift is less than the typical linewidth of our PA resonances (~10s of 

MHz) and does not affect our REMPI spectra. 

The PDL-2 laser used for PA ionization spectroscopy is also used here with R590 dye. This laser 

has a linewidth of ~0.3 cm
-1

. Typical pulse energy for REMPI spectroscopy is 2-3 mJ, with a ~4 

mm beam diameter at the MOT. The PDL wavelength is measured with a Coherent WaveMaster 

wavemeter, with an accuracy of ~0.2 cm
-1

. The ion detection hardware operates under the same 

conditions as described in earlier chapters. A Labview program counts and records the number of 

LiRb
+
 ion strikes. The program also controls the wavelength of the PDL, so that after acquiring x 

number of shots at PDL, it changes the PDL diffraction grating angle via a stepper motor control 

to output a new wavelength PDL  . The sign and magnitude of the change of wavelength  

are adjustable parameters through the program. The spectra presented in this chapter are acquired 
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with  ~ 0.3 cm
-1

. Over a 30-45 minute period and during normal system operation, we typically 

acquire between 30 and 35 cm
-1

 of continuous spectra.  

4.3 REMPI spectra 

Figure 4.1 shows a schematic of the REMPI process. LiRb molecules created by PA 

spontaneously decay to the ground electronic states. A pulsed laser ionizes the ground state 

molecules via an intermediate electronic state using two identical photons. The spectroscopic data 

presented in this chapter are acquired by fixing the PA laser frequency at three PA resonances: 

vPA = 5, 9 and 11, all belonging to the 2(0
–
) electronic states. Spectra for vPA = 5 and 11 are 

recorded for PDL wavelengths between 17280 cm
-1

 and 18050 cm
-1

 (~578.7 and 554.0 nm, 

respectively), and between 17589 cm
-1

 (~568.5 nm) and 17821 cm
-1

 (~561.1 nm) for vPA = 9. 

These are shown in Figures 4.2 – 4.4. From one-photon electric-dipole selection rules  = 0, 1 

except 0     , molecules from the 2(0
–
) state decay to 1(0

–
) and 1(1), which correlate to the 

a
3


+
 state. For the stated PDL wavelength range, LiRb molecules ionize through intermediate 

electronic states that are asymptotic to the Li(2s) + Rb(4dj) states (j = 3/2 and 5/2). In the 

experimental line assignments presented below, the uncertainty in the transition energies (in cm
-1

) 

is estimated to be ~0.5 cm
-1

 mainly due to the PDL linewidth and uncertainty in the wavemeter 

reading. 

4.3.1 Analysis of spectra 

Figures 4.5 (a) – (e) show combined REMPI spectra for vPA = 5 (orange), vPA = 9 (green) and vPA 

= 11 (blue) PA resonances. Note that the label E for the horizontal axis denotes the PDL 

wavelength in cm
-1

. We have identified and labeled transitions originating from a
3


+
 v” = 7 – 13 

to v’ = 0 – 10 of the three observed spin-orbit components  = 0, 1 and 2 of the (3)
3
 excited 

state. For brevity, we include the spin-orbit component of this state as a subscript: (3)
3
. We 

have also identified v’ = 0 – 5 of the (4)
3


+
 excited state. Based on our analysis, we do not 

observe spin-orbit splitting of this state. In the rest of this chapter, we distinguish vibrational 

levels of (3)
3
 from those of (4)

3


+
 by using the notation v’ and v’, respectively. In Figure 4.5 

(c), the peaks outlined by the black box and labeled with an asterisk (*) originate from Rb one- 

and two-photon transitions 5p3/2 – 9s and 5s – 9s, respectively. This is consistent with the Rb 

MOT operation, where atoms are subjected to the 5s – 5p3/2 cycling transition which ensures there 

is population in both levels. As the PDL scans through the Rb transitions, excessive Rb
+
 ions are 
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produced. We believe that due to the increased charge density in the MOT region, Coulomb 

repulsion becomes significant and affects the Rb
+
 TOF such that Rb

+
 ions starts leaking into the 

LiRb
+
 detection window. Aside from the inconvenience of an unwanted signal, the Rb one- and 

two-photon lines serve as a useful wavelength marker for all three spectra. 

In the discussion below, we focus on the features corresponding to a
3


+
 v” – (3)

3
 v’ ( = 0, 1 

and 2). Later in the chapter, we discuss features associated with a
3


+
 v” – (4)

3


+
 v’ transitions. 

 

Figure 4.1. Schematic of the REMPI process. PA molecules decay to the ground 

state and are resonantly ionized by a pulsed laser through an intermediate 

electronic state. 
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Figure 4.2. REMPI spectrum recorded for the 2(0
–
) vPA = 5 PA resonance. The 

asterisk (*) denotes Rb one- and two-photon resonances.  
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Figure 4.3. REMPI spectrum recorded for the 2(0
–
) v = 11 PA resonance. The 

asterisk (*) denotes Rb one- and two-photon transitions. 
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Figure 4.4. REMPI spectrum recorded for the 2(0
–
) v = 9 PA resonance. The 

asterisk (*) denotes Rb one- and two-photon transitions 



97 

 

(a) 

 



98 

 

 (b) 
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(c) 

* 
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(d) 



101 

 

 

(e) 

Figure 4.5. (a) – (e). Labeled REMPI spectra for 2(0
–
) v = 5, 9 and 11. The 

labeling scheme is: (3)
3
 -components are labeled by the green dashed ( = 0), 

black solid ( = 1) and red dash-dot ( = 2) lines, and the (4)
3


+
 lines are 

labeled by the blue dash-dot-dot lines. The numbers on top of the horizontal lines 

label a
3


+
 v”, while the numbers on the side of the vertical lines are v’ for (3)

3
 

(black boxed numbers) and v’ for (4)
3


+
 (blue unboxed). The boxed peaks in (c) 

and labeled with an asterisk are Rb
+
 one- and two-photon resonances. 
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4.3.2 Features associated with a
3


+
 v” – (3)

3
 v’ transitions 

In Figure 4.6, we show a section of the REMPI spectrum between 17725 and 17825 cm
-1

 to 

highlight several distinct features. To avoid congestion and to convey our argument, we have not 

labeled all of the assigned peaks. In the figure, we observe structure on three different scales. On 

the largest energy scale, we observe recurring features spaced by ~70 cm
-1

. These are seen as a 

grouping of triplets around 17740 cm
-1

 and around 17810 cm
-1

, and occur in the REMPI spectra 

of each of the vPA = 5, 9 and 11 PA lines. We assign these features separated by ~70 cm
-1

 as 

(3)
3
 vibrational levels v’. 

Each v’ line also has a characteristic triplet substructure. Adjacent ‘teeth’ within each triplet are 

regularly spaced by ~3 cm
-1

. In addition, we observe that each tooth within a triplet shows almost 

equal signal strength. This is seen in each of the three sets of vPA REMPI spectra. We assign these 

triplets – from lowest to highest wavelength (in cm
-1

) – as the  = 0, 1 and 2 spin-orbit 

components of (3)
3
. 

The a
3


+
 vibrational levels v” are observed as the increasing spacing of the triplet set of peaks as 

we go towards higher wavelength (in cm
-1

). Transitions from high-lying vibrational levels v” near 

the dissociation limit appear stronger than transitions from more deeply bound (lower v”) levels. 

Having identified line positions and features corresponding to a
3


+
 v” – (3)

3
 v’ transitions, 

we now present details of vibrational level assignment of the (3)
3
 states. 

4.4 (3)
3
 vibrational levels and spin-orbit components 

In order to assign the line positions to vibrational levels of an excited electronic state, we make 

use of ab initio calculations of LiRb PECs by Korek et.al., which include spin-orbit interactions  

[50]. For calculations of a
3


+
 v”, we employ the potential curve calculated by Ivanova et.al. [42]. 

Throughout this chapter, we use LEVEL 8.0 [77] to calculate electronic state vibrational levels 

and Franck-Condon factors. 

The ab initio potentials with spin-orbit interactions show numerous avoided crossings. For these 

adiabatic potentials, we assume separation of nuclear and electronic motion based on the Born-

Oppenheimer approximation, which gives rise to avoided crossings between electronic states of 

the same symmetry. However, the relativistic wavefunction in the vicinity of these avoided 
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crossings changes rapidly and results in non-adiabatic effects [79]. If the nuclei move fast enough 

that the electronic and nuclear motion cannot be decoupled, curves that previously avoided 

crossing each other may do so and result in diabatic PECs. The probability P of such a diabatic 

crossing to occur is given by the Landau-Zener formula [81, 82]. P depends on the interaction 

matrix H12 between states   1   and       and the rate of change of energies E1 and E2 of the two 

states: 

          (4.1) 

where        1  
 /  

 

  
     1  . For a derivation of the Landau-Zener formula, see [83]. We 

modify the ab initio PECs asymptotic to Li(2s) + Rb(4dj) and Li(2s) + Rb(6s) by using diabatic 

crossings and recalculate the PECs. The modified diabatic PECs are shown in Figure 4.7, where 

we highlight the relevant (3)
3
 and (4)

3


+
 curves. 

The (3)
3
 state consists of four spin-orbit components:  = 0

–
, 0

+
, 1 and 2. From LEVEL 

calculations of the diabatic PECs, we calculate and show the spin-orbit components in Figure 4.8. 

At the equilibrium internuclear separation Re ~5.6 Å, the calculated energy splitting between  

components is given in Table 4.1, which shows that the E are not equal. The REMPI spectra 

reveal a slightly different picture: we observe only three out of four spin-orbit components, and 

E appears to be equal between the teeth of the triplet structures. This comparison between 

theory and experiment may help to develop a better model for the (3)
3
 state. We note that 

degeneracy of the 0
+
 and 0

–
 components, as well as roughly equal spacing between  = 0 and 1, 

and  = 1 and 2 has also been observed in REMPI spectroscopy performed in KRb [78]. 

In Table 4.2 we list the calculated vibrational levels of the (3)
3
 components and their spacing 

Gth. We compare these values with our experimental results, listing transition energies for a
3


+
 

(v” = 11) – (3)
3
 v’ lines. We assign v’ starting with 0 because for both sets of REMPI 

spectra, we do not observe structure at wavelengths below ~17323 cm
-1

. This could indicate that 

we have reached the bottom of the (3)
3
 potential well. In addition, we identify lines 

corresponding to (4)
3


+ 
v’ (presented later in the chapter) and compare the relative line positions 

of (3)
3
 and (4)

3


+
 levels. The spacing between (3)

3
 = 0 (v’ = 0) and (4)

3


+
 (v’ = 0) levels is 

experimentally determined to be ~89.4 cm
-1

. Theoretical calculations of the same vibrational level 

energy difference give ~85.5 cm
-1

, which compares favorably with our experimental spacing. 
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Figure 4.6. Short section of the REMPI spectrum, showing features and patterns 

originating from (3)
3
 v’, (4)

3


+
 v’ and a

3


+
 v”. To avoid congestion, we label 

only selected lines assigned to a
3


+
 v” – (3)

3
 v’ transitions. We will address 

a
3


+
 v” – (4)

3


+
 v’ later in the chapter. 
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Figure 4.7. Plots of the recalculated diabatic PECs. In our studies, we identify 

excited state vibrational level progressions associated with the (3)
3
 (red) and 

(4)
3


+
 states (blue). 

For each vibrational level in Table 4.2, the calculated energies appear on average approximately 

62-66 cm
-1

 lower than the experimental energies. However, the calculated Gth are in good 

agreement with experiment, and in our final analysis, we shift the calculated vibrational energies 

by adding the average of (Eexp – Eth). Finally, we would like to mention that we list the  = 0
+
 

calculated energies only and not both 0
+
 and 0

–
 for comparison with observed  = 0 transitions. 

We have calculated the difference Gth ( = 0
+
) – Gth ( = 0

–
) which is at most ~1.5%. When 

compared with a difference of ~4% between theory and experiment, our use of only one  = 0 

component is valid. 
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Figure 4.8. Close-up view of the (3)
3
 state showing the (3)

3
 spin-orbit 

splitting. 

Table 4.1. Calculated energy of the (3)
3
  components and the energy 

difference E at the equilibrium internuclear spacing Re = 5.6 Å. 

 Emin (cm
-1

) E (cm
-1

) 

0
–
 17209.2 6.7 

0
+
 17215.9 2.4 

1 17218.3 7.7 

2 17226.0   
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Table 4.2 Comparison between theoretical and experimental G for (3)
3
 spin-

orbit components. Eexp are listed for (v” = 13) – v’ transitions.  The line position 

corresponding to  = 2, v = 5 falls close to the Rb
+
 line, and is labeled as such. 

 Theory   Exp.   

v’ Eth (cm
-1

) Gthcm
-1
 Eexp (cm

-1
) Gexpcm

-1
 

0 17250.4 69.7 17330.3 68.4 
1 17320.1 70.8 17398.7 70.9 

2 17390.9 69.9 17469.6 69.0 

3 17460.8 69.2 17538.6 67.4 

4 17530.0 70.1 17606.0 69.5 

5 17600.1 69.1 17675.5 68.6 

6 17669.2 68.3 17744.1 67.4 

7 17737.5 68.1 17811.5 67.6 

8 17805.6 67.3 17879.1 66.2 

9 17872.9 67.1 17945.3 66.2 

10 17940.0 

 

18011.5   


   

  

0 17253.3 70.3 17332.5 69.4 

1 17323.6 70.6 17401.9 69.9 

2 17394.2 70.3 17471.8 69.4 

3 17464.5 69.9 17541.2 68.1 

4 17534.4 69.5 17609.3 69.2 

5 17603.9 69.1 17678.5 69.0 

6 17673.1 68.7 17747.5 67.5 

7 17741.8 68.3 17815.0 67.9 

8 17810.1 67.8 17882.9 65.9 

9 17878.0 67.3 17948.8 66.6 

10 17945.2 

 

18015.4   


 

  

 

  

0 17261.1 70.6 17334.7 69.7 

1 17331.7 70.3 17404.4 69.9 

2 17402.0 69.9 17474.3 69.4 

3 17471.9 69.5 17543.7 69.0 

4 17541.5 69.4 17612.7   

5 17610.9 69.5 Rb
+
   

6 17680.4 69.3 17750.5 67.5 

7 17749.7 68.3 17818.0 68.2 

8 17818.0 67.4 17886.2 66.5 

9 17885.4 67.2 17952.7 66.5 

10 17952.6 

 

18019.2   
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4.5 a
3


+
 vibrational structure 

We assign a
3


+
 v” levels by examining line positions in vPA = 5, 9 and 11 REMPI spectra and 

comparing our observations with Gv” calculated from the analytic a
3


+
 PEC of Ivanova et.al. 

[42]. Experimental Gv” most closely match calculated Gv” for v” = 7 – 13. In Table 4.3 we 

compare the calculated vibrational energy spacing Gv” with observation. Entries in the column 

titled Gv” (Exp.) are the average of observed vibrational spacing for all three (3)
3
 spin-orbit 

components. From comparison of the three sets of REMPI spectra, transitions to (3)
3
 from v” = 

13 and 9 are stronger for vPA = 5 spectra, whereas v” = 11 and 8 are stronger for vPA = 11 spectra. 

vPA = 9 shows good signal for v” = 12 transitions. a
3


+
 (v” = 7) – (3)

3
 v’ features are weaker 

than the abovementioned transitions for all three spectra. We observe that many v” = 10 

transitions are partially obscured by the overlap with stronger v” = 11 lines. These transitions are 

most clearly observed in the 17440 – 17600 cm
-1

 range and labeled in Figure 4.5 (b). 

Table 4.3. a
3


+
 vibrational levels and energies (measured from the Li(2s) + 

Rb(5s) asymptote: Ed) calculated from the analytic PEC of [42]. The calculated 

vibrational spacing (Gv” (Th.)) is compared with experimental results (Gv" 

(Exp.)) and shows very good agreement. 

v” (Ev” – Ed) (cm
-1

) Gv” (Th.) Gv" (Exp.) Gv" (Th.) – Gv" (Exp.) 

7 -57.0 16.7 16.6  0.1 
8 -40.3 13.6 13.7 -0.1 

9 -26.7 10.4 10.4  0.0 

10 -16.3 7.5 7.7 -0.2 

11 -8.8 5.0 4.7  0.3 

12 -3.8 2.6 2.8 -0.2 

13 -1.1 1.0 -- --  

14 -0.1 -- -- --  

 

Transitions from v” = 13, 12 and 11, are strongest in REMPI spectra from vPA = 5, 9 and 11, 

respectively. This strongly suggests the underlying reason for the different line strengths as the 

varying wavefunction overlap between the vPA levels and v”. The strength of these vPA – v” 

transitions can be qualitatively explained by Franck-Condon factors (FCF) for transitions from 

the initial PA vibrational levels to the ground triplet state v”. These FCFs are calculated using the 

2(0
–
) ab initio potential from Korek et.al. and the a

3


+
 potential from Ivanova et.al. Figure 4.9 
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shows FCFs from vPA = 5, 9 and 11 to a
3


+
 v”. We can clearly see that the FCFs for deeper PA 

levels are larger for more deeply bound ground state vibrational levels, and conclude that for vPA 

with increasing binding energy have a better wavefunction overlap with more deeply bound v”. 

We should mention here that the FCF calculations are fairly sensitive to the shape of involved 

potential energy curves and the strength of an observed transition will not necessarily be reflected 

in the calculated FCF values [78, 79]. Nevertheless, these calculations provide a reasonable 

qualitative explanation for our observations. 

 

Figure 4.9. Calculated Franck-Condon factors (FCF) for transition from the three 

PA levels to a
3


+
 vibrational levels. For PA resonances with large binding 

energies, FCF is larger for decay to lower (deeper bound) v” levels. 
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Table 4.4 lists assigned transitions from v” = 7 – 13 to v’ = 0 – 10 for  = 0, 1 and 2. 

Transitions marked in red denote weak REMPI signal. For a more general comparison between 

experimental line assignments and theoretical prediction, we recalculate the v” – v’ transition 

energies with reference to the Li(2s) + Rb(5s) asymptote, and calculate the average vibrational 

spacing Gv’ for each spin-orbit component  = 0, 1 and 2. These results are presented in Tables 

4.5 – 4.7. Also shown in these tables are the differences between theoretical and experimental 

G. Entries in the columns labeled Eth (theoretical vibrational energies) are calculated  as follows: 

we shift up the vibrational energies calculated from LEVEL by adding to them the average of 

(Eexp – Eth) for each spin-orbit component. We graphically compare Gth and Gv’ as a function of 

energy (in cm
-1

) in Figure 4.10 and remark that the comparison between observed and calculated 

vibrational level spacing is very good. 

This concludes our presentation of observed a
3


+
 v” – (3)

3
 v’ transitions. Based on our 

observations, we have assigned REMPI spectral lines from a
3


+
 v” = 7 – 13 to (3)

3
 v’ = 0 – 

10, where  = 0, 1 and 2. Comparison of our results with theory shows good agreement of the 

vibrational line spacing G for both a
3


+
 and (3)

3
 states. 

In the next section, we discuss most of the REMPI lines that are not assigned to a
3


+
 v” – (3)

3
 

v’ transitions and compare our line assignment with theoretical calculations. 
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Table 4.4. List of observed a
3


+
 v” – (3)

3
 v’ transitions. All wavelengths and 

level spacing are in units of cm
-1

. Transitions in red denote weak REMPI signal. 

 0   1   2   

a
3


+
 v"   13   13   13   

v'   Eexp Gv’ Eexp  Gv’ Eexp  Gv’ 

0 17323.1 68.3 17324.9 69.4 17327.0 69.9 
1 17391.4 70.1 17394.3   17396.9   

2 17461.5 69.5         

3 17531.0 67.6 17533.9 68.1 17536.1 69.2 

4 17598.6 69.8 17602.0 68.6 17605.3 69.1 

5 17668.4 68.2 17670.6 69.4 17674.4 68.6 

6 17736.6 67.4 17740.0 67.4 17743.0 67.4 

7 17804.0 67.1 17807.4 67.5 17810.4 67.9 

8 17871.1 66.3 17874.9 66.4 17878.3 67.0 

9 17937.4 66.9 17941.3 66.9 17945.3 66.3 

10 18004.3   18008.2   18011.6   

  12 Gv’ 12 Gv’ 12 Gv’ 

0 
  

17328.5 
 

17329.9 70.2 
1 17394.3   

  

17400.1 69.5 

2     17467.0 69.4 17469.6 69.5 

3 17533.8 67.7 17536.4 68.4 17539.1 68.7 

4 17601.5 68.9 17604.8 69.0 17607.8 68.9 

5 17670.4 69.0 17673.8 69.0 17676.7 69.1 

6 17739.4 67.5 17742.8 67.5 17745.8 67.6 

7 17806.9 67.3 17810.3 67.3 17813.4 67.6 

8 17874.2   17877.6 

 

17881.0 67.3 

9     

  

17948.3 66.4 

10 18006.9   18010.4   18014.7   

  11 Gv’ 11 Gv’ 11 Gv’ 

0 17330.3 68.4 17332.5 69.4 17334.7 69.7 
1 17398.7 70.9 17401.9 69.9 17404.4 69.9 

2 17469.6 69.0 17471.8 69.4 17474.3 69.4 

3 17538.6 67.4 17541.2 68.1 17543.7 69.0 

4 17606.0 69.5 17609.3 69.2 17612.7   

5 17675.5 68.6 17678.5 69.0 Rb
+
   

6 17744.1 67.4 17747.5 67.5 17750.5 67.5 

7 17811.5 67.6 17815.0 67.9 17818.0 68.2 

8 17879.1 66.2 17882.9 65.9 17886.2 66.5 

9 17945.3 66.2 17948.8 66.6 17952.7 66.5 

10 18011.5   18015.4   18019.2   
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Table 4.4 cotinued 

   10 Gv’ 10 Gv’ 10 Gv’ 

0     17341.1 68.1 17342.8 69.7 

1 17406.3 70.2 17409.2 70.3 17412.5 69.2 

2 17476.5 70.2 17479.5 69.4 17481.7 69.8 

3 17546.7 67.1 17548.9 68.2 17551.5 69.3 

4 17613.8   17617.1   17620.8 69.0 

5 Rb
+
   Rb

+
   17689.8 68.2 

6 17752.0 67.5 17755.0 67.2 17758.0 67.4 

7 17819.5 67.2 17822.2 68.4 17825.4 68.5 

8 17886.7 66.6 17890.6 65.5 17893.9 66.9 

9 17953.3 65.2 17956.1 66.3 17960.8 65.7 

10 18018.5   18022.4   18026.5   

  9 Gv’ 9 Gv’ 9 Gv’ 

0 17348.2 69.0 17350.4 70.1 17352.9 70.2 

1 17417.2 69.6 17420.5 69.2 17423.1 69.6 

2 17486.8 69.9 17489.7 69.6 17492.7 69.2 

3 17556.7 67.5 17559.3 69.0 17561.9 69.0 

4 17624.2 70.1 17628.3 68.6 17630.9 68.7 

5 17694.3 67.6 17696.9 68.0 17699.6 68.7 

6 17761.9 67.5 17764.9 68.3 17768.3 67.6 

7 17829.4 67.7 17833.2 67.7 17835.9 68.2 

8 17897.1 67.3 17900.9 66.2 17904.1 66.9 

9 17964.4 63.8 17967.1 66.1 17971.0 66.8 

10 18028.2   18033.2   18037.8   

  8 Gv’ 8 Gv’ 8 Gv’ 

0             

1 17430.7 70.1 17433.3 70.4 17436.2   

2 17500.8 70.3 17503.7 69.6     

3 17571.1 66.6 17573.3 67.8 17575.5 

 4 17637.7 70.2 17641.1 69.4 

  5 17707.9 67.6 17710.5 68.0 17713.9 68.4 

6 17775.5 68.2 17778.5 69.0 17782.3 68.3 

7 17843.7 66.8 17847.5 66.9 17850.6 67.3 

8 17910.5 66.7 17914.4 66.3 17917.9 66.4 

9 17977.2   17980.7   17984.3   

10             
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Table 4.4 continued 

         7 Gv’ 7 Gv’ 7 Gv’ 

0             

1 17448.0 69.0 17451.3 69.0 17452.4 

 2 17517.0 70.1 17520.3 69.7 

  3 17587.1 66.3 17590.0 68.2 17592.7 68.9 

4 17653.4 71.5 17658.2 68.9 17661.6 68.6 

5 17724.9 67.0 17727.1 68.1 17730.2 68.5 

6 17791.9 67.7 17795.2 68.3 17798.7 67.8 

7 17859.6 67.0 17863.5 67.7 17866.5 67.8 

8 17926.6 67.6 17931.2 66.1 17934.3 66.9 

9 17994.2   17997.3   18001.2   

10             

        

Table 4.5. Comparison between theoretical (Gth) and experimental (Gexp) 

vibrational spacing for (3)
3
  = 0. Eth energies are shifted up by the average of 

(Eth – Eexp) for v' = 0 – 10. Eexp are referenced to the Li(2s) + Rb (5s) asymptote. 

All energies and vibrational spacing are in cm
-1

. 

v' Eth Gth Eexp Gexp Gth - Gexp 

0 17317.5 69.7 17321.9 68.5 1.2 

1 17387.2 70.8 17390.4 70.0 0.9 

2 17458.0 69.9 17460.3 69.8 0.1 

3 17527.9 69.2 17530.2 67.2 2.0 

4 17597.0 70.1 17597.3 70.0 0.2 

5 17667.2 69.1 17667.3 68.1 1.0 

6 17736.3 68.3 17735.4 67.6 0.7 

7 17804.6 68.1 17803.0 67.2 0.9 

8 17872.7 67.3 17870.2 66.7 0.5 

9 17940.0 67.1 17936.9 65.6 1.5 

10 18007.1   18002.6     

 

 

 



114 

 

 

Table 4.6. Comparison between theoretical (Gth) and experimental (Gexp) 

vibrational spacing for (3)
3
  = 1. Eth energies are shifted up by the average of 

(Eth – Eexp) for v' = 0 – 10. Eexp are referenced to the Li(2s) + Rb (5s) asymptote. 

All energies and vibrational spacing are in cm
-1

. 

v' Eth Gth Eexp Gexp Gth - Gexp 

0 17319.5 70.3 17324.2 69.2 1.1 

1 17389.8 70.6 17393.4 69.8 0.8 

2 17460.4 70.3 17463.2 69.5 0.8 

3 17530.7 69.9 17532.7 68.3 1.6 

4 17600.6 69.5 17601.0 69.0 0.6 

5 17670.1 69.1 17670.0 68.6 0.5 

6 17739.3 68.7 17738.6 67.9 0.8 

7 17808.0 68.3 17806.5 67.6 0.7 

8 17876.3 67.8 17874.1 66.1 1.7 

9 17944.2 67.3 17940.2 66.4 0.9 

10 18011.4   18006.6     

 

Table 4.7. Comparison between theoretical (Gth) and experimental (Gexp) 

vibrational spacing for (3)
3
  = 2. Eth energies are shifted up by the average of 

(Eth – Eexp) for v' = 0 – 10. Eexp are referenced to the Li(2s) + Rb (5s) asymptote. 

All energies and vibrational spacing are in cm
-1

. 

v' Eth Gth Eexp Gexp Gth - Gexp 

0 17322.8 70.6 17326.1 69.8 0.8 

1 17393.4 70.3 17396.0 69.9 0.4 

2 17463.7 69.9 17465.9 69.3 0.6 

3 17533.6 69.5 17535.2 69.1 0.5 

4 17603.2 69.4 17604.3 69.0 0.5 

5 17672.6 69.5 17673.2 68.6 0.9 

6 17742.1 69.3 17741.8 67.7 1.6 

7 17811.4 68.3 17809.5 67.9 0.4 

8 17879.7 67.4 17877.4 66.8 0.6 

9 17947.1 67.2 17944.2 66.4 0.8 

10 18014.4   18010.6     
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Figure 4.10. Comparison between calculated and observed (3)
3
 Gv’ for (a)  = 

0, (b)  = 1 and (c)  = 2. Theoretical calculations (red open squares) are based 

on the diabatic PECs and calculated using LEVEL. The experimental data points 

(black closed circles) are each plots of Gexp for  = 0, 1 and 2 from Tables 4.5, 

4.6 and 4.7, respectively. 
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4.6 Assignment of (4)
3


+
 vibrational levels 

In addition to the (3)
3
 vibrational levels, we also observe and assign v’ = 0 – 5 vibrational 

levels of the (4)
3


+
 state (see Figure 4.5). The (4)

3


+
 diabatic PEC is shown as the blue curve in 

Figure 4.7. Unlike the triplet structure originating from spin-orbit splitting of the (3)
3
 state, we 

do not observe the  = 0
–
 and 1 components for (4)

3


+
. The calculated spin-orbit splitting for this 

state is also smaller: at the equilibrium internuclear spacing Re ~ 5.4 Å, the two spin-orbit states 

are split by less than 1 cm
-1

. 

In Table 4.8, we list all of the observed a
3


+
 v” – (4)

3


+
 v’ transitions. In addition, we compare 

the calculated (4)
3


+
 vibrational spacing with experiment in Table 4.9. The calculated vibrational 

level energies are shifted up by the average of (Eth – Eexp). Entries listed under Gexp are 

calculated by determining the v’ energies for all v” with respect to the Li(2s) + Rb(5s) asymptote 

and taking the average. Again, the agreement between experimental line spacing and calculated 

line spacing is good. This comparison between theory and experiment is shown graphically in 

Figure 4.11. 

4.7 Conclusion 

In this chapter, we have presented results of REMPI spectroscopy performed in ultracold LiRb 

molecules. We have compared spectra recorded by fixing the PA laser at three different 

resonances, 2(0
–
) v = 5, 9 and 11. We have labeled transitions from a

3


+
 (v” = 7 – 13) to (3)

3
 

(v’ = 0 – 10). Furthermore, we have also identified lines corresponding to a
3


+
 (v” = 7 – 13) – 

(4)
3


+
 (v’ = 0 – 5) transitions. Overall, we have identified ~94% of the lines experimentally 

observed in our REMPI spectra. 

At this point, we do not have sufficient information to explain the origin of the unassigned lines. 

However, we would like to point out that there are several electronic states – besides the two we 

have studied – that may be accessible by our REMPI laser, as seen in Figure 4.7. For our goal of 

populating the rovibronic ground state, the (5)
1


+
 state seems to be the most promising, as its 

equilibrium internuclear spacing Re of ~3.9 Å (7.4 a0) is near Re ~ 3.5 Å (6.6 a0) of the X
1


+
 

ground state. From Korek et. al. [50], this state is predicted to cross the (3)
3
 state, although in 

our studies, we have not observed influence of the (5)
1


+
 state on the observed (3)

3
 levels. If 

there is an interaction observed between the two states, possible singlet-triplet mixing could lead 
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to a pathway to create deeply bound ground singlet state molecules. Further investigation in this 

direction may be warranted. 

 Table 4.8. List of a
3


+
 v” – (4)

3


+
 v’ transitions. All wavelengths and level 

spacing are in units of cm
-1

. Transition energies in red denote weak signal. 

a
3


+
 v" 13   12   11   10   

(4)
3


+
 v'    Gv’   Gv’   Gv’   Gv’ 

0 17412.5 101.2     17419.8 101.5 17427.8 101.6 

1 17513.7 97.2 17516.6 97.1 17521.3 97.3 17529.4 97.4 

2 17610.9 91.7 17613.7 91.5 17618.6 91.9 17626.8 91.3 

3 17702.6 87.7 17705.2 87.7 17710.5 88.1 17718.1 88.1 

4 17790.3 83.1 17792.9 82.8 17798.6 82.4 17806.2 82.5 

5 17873.4   17875.7   17881.0   17888.7   

 

9   8   7   

  

 

  Gv’   Gv’   Gv’ 

  

 

17438.8 101.0 17452.4 100.2 17469.6 100.0 

  

 

17539.8 97.4 17552.6 98.6 17569.6 97.7 

  

 

17637.2 91.8 17651.2 91.8 17667.3 92.3 

  

 

17729.0 87.9 17743.0 87.4 17759.6 87.5 

  

 

17816.9 81.7 17830.4 81.7 17847.1 81.6 

  

 

17898.6   17912.1   17928.7   

   

Table 4.9. Comparison between theoretical (Gth) and experimental (Gexp) 

vibrational spacing for (4)
3


+
. Eth energies are shifted up by the average of (Eth – 

Eexp) for v' = 0 – 5. Eexp are referenced to the Li(2s) + Rb (5s) asymptote. All 

energies and vibrational spacing are in cm
-1

. 

v' Eth Gth Eexp Gexp Gth - Gexp 

0 17407.4 103.0 17411.8 100.9 2.0 

1 17510.4 98.0 17512.7 97.5 0.5 

2 17608.4 94.2 17610.3 91.8 2.4 

3 17702.6 89.5 17702.0 87.8 1.7 

4 17792.1 85.7 17789.8 82.3 3.4 

5 17877.7   17872.0     



118 

 

 

Figure 4.11. Comparison between calculated and observed (4)
3


+
 Gv’. 

Theoretical calculations (red open squares) are based on the diabatic PECs and 

calculated using LEVEL. The experimental data points (black closed circles) are 

taken from Gexp in Table 4.9. 
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5. CONCLUSION AND OUTLOOK 

 

We have presented the first set of experiments on ultracold LiRb with ionization spectroscopy as 

the primary detection mechanism. We have demonstrated the utility of this approach in 

discovering PA resonances at large binding energy that could not be detected by trap-loss 

spectroscopy. Ion detection has also proven immensely useful in our efforts to not only explore 

excited electronic states of LiRb, but also to identify ground electronic vibrational levels. In this 

chapter, we discuss our goals for the ultracold LiRb project, and also discuss technical 

improvements that may prove beneficial for future projects. 

5.1 Resolving ground and excited state rotational structure 

Acquiring knowledge of rotational structure in the ground and excited electronic states is required 

for our planned experiments involving superposition of rotational states. While REMPI 

spectroscopy works well to detect vibrational levels of the ground and excited electronic states, 

the laser linewidth prohibits rotational structure from being resolved. Wang et.al. [84] 

demonstrated the technique of cw depletion spectroscopy to resolve rotational structure in both 

ground and excited state vibrational levels. The technique works as follows: the PA laser is fixed 

on a known resonance, and the REMPI laser ionizes the formed LiRb molecules from the initial 

v”,  ” ground level, via an intermediate v’,  ’ level. An additional cw laser is applied to the 

molecules to transfer molecules from the v”   ” level to a different excited level v’’’,  ’’’. 

Because the cw laser is transferring molecules out of v”   ” and into v’’’,  ’’’, the ground v”,  ” 

population is depleted and causes a decreases in the REMPI ion signal. 

Since we are already performing REMPI experiments on our setup, we only need an additional 

cw laser for depletion spectroscopy. Fortunately, we have at our disposal a homemade tunable cw 

ring dye laser (lasing between 555 and 610 nm, ~30 mW output power) that was earlier used to 

perform LiRb heat pipe spectroscopy of the B
1
 state [43]. This state is also expected to have an 

avoided crossing with the (2)
3


+
 state [50], which would introduce triplet character to the B state 
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(and vice versa) and result in an allowed a – B transition. We have identified rotational and 

vibrational structure in the B state from this study and we can tune the cw dye laser to a particular 

B
1
 rovibrational level and identify the a

3


+
 v’,  ’ level. A schematic of this scheme is shown in 

Figure 5.1. Rotational level information gleaned from depletion spectroscopy will also be useful 

for experiments involving rotational superposition states of the a
3


+
 state, as discussed next. 

 

Figure 5.1. Schematic for depletion spectroscopy to resolve ground state 

rotational structure. A cw depletion laser (dep., gray arrow) is resonant between 

the a and B states due to (2)
3


+ 
– B

1
  singlet-triplet mixing, and reduces the 

REMPI ion signal in the process. The PA and REMPI steps are unchanged from 

the discussion in Chapter 4.  

5.2 Coherent control of polar LiRb molecules 

Over the last two decades, our lab has become proficient at coherent control experiments 

involving atomic systems [85, 86]. We are interested in applying coherent control towards 

ultracold polar molecules to create a superposition of rotational levels and study their time 

evolution. If we have molecules in two rotational levels       0   and       1  , the superposition of 
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these two states can be written as            0       –    /   1   , where a and b are probability 

amplitudes, and E = 2Bv is the energy splitting between   0   and   1   with rotational constant Bv. 

      now evolves over a period 1/(2Bv). This superposition state can be created by coupling the 

two rotational levels with phase coherent light fields, as shown in Figure 5.2. 

For practical implementation of this proposal, we can couple rotational levels of a
3


+
 v” = 11, for 

example. To do this, we use a two-photon Raman transition to the (1)
3
 v’,  ’ = 2 level. (1)

3
 

corresponds to the 1  ) state in Hund’s case  c) notation, and has been identified in our PA 

spectroscopy. The a
3


+
 – b

3
 transition wavelength is ~780 nm, which is equivalent to two 

~1560 nm photons. We have an ECDL seeded fiber amplifier that operates in the 1545 – 1565 nm 

range that would provide the  light. The 2 light can easily be generated using one of our 

homemade 780 nm ECDLs. 

 

Figure 5.2. Schematic showing coupling between the   0   and   1   rotational levels 

using phase-coherent one- and two-photon light fields.  

In order to create the superposition state, phase coherence between the  and 2 lasers is critical. 

One approach is shown in Figure 5.3. The 780 nm () ECDL is modulated at 2Bv using well 

known microwave modulation techniques. At the same time, part of the 1560 nm (2) fiber 

amplifier output is frequency doubled and injection locked to the lower sideband of the 780 nm 

laser, creating phase coherence and hence rotational superposition states. We have already 

demonstrated frequency doubling of the 1560 nm laser (see Chapter 2). 

Once the molecules are created in the superposition state, we need a probe to observe the time 

evolution of the superposition. Since the rotational frequencies are on the order of a few hundred 

MHz, the pulse width of the ionizing probe laser has to be much less than a few ns, on the order 
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of picoseconds or less. Thanks to Dr. Andrew Weiner and Dr. Daniel Leaird, we have acquired 

and assembled a femtosecond (fs) mode-locked Ti:Sapphire laser that is ideally suited for our 

needs. The laser generates ~100 fs pulses and currently operates at a 93 MHz repetition rate, as 

shown in Figure 5.4. The repetition rate can be adjusted to a multiple of E = 2Bv by changing the 

position of the output coupler. Finer adjustments can be made by attaching a PZT to the output 

coupler mirror mount. 

 

Figure 5.3. Proposal for creating phase coherence between the  and 2 fields. 

The frequency double output of the 1562 nm ECDL is injection locked to the rf 

generated lower sideband at 2Bv. 

Once we fix the repetition rate, pulses from the fs Ti:S will ionize the molecules at the same 

instance of the evolution of the superposition state, and create Li
+
 and Rb

+
 ions. Our MCP 

assembly includes a phosphor screen that can image the spatial distribution of incident ion 

species. Without superposition, the Li
+
 and Rb

+
 images would be circularly symmetric images, 

and distinguishable from each other based on the image size: lighter Li
+
 ions will have the higher 

velocity compared to Rb
+
 and strike the phosphor screen farther off center than Rb

+
 ions. 

Evidence of rotational superposition states will be indicated by an asymmetry in the circular 

pattern. Eventually, we would like to create the rotational superposition states in deeply bound 

vibrational levels of the ground X
1


+
 in hope of implementing a scheme similar to the one 

proposed by DeMille [4]. 

Next, we will discuss possible improvements and additions to the apparatus that can improve 

future experiments. 
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Figure 5.4. Rf spectrum analyzer output showing the 93.2 MHz repetition rate of 

the fs Ti:S and its harmonics. This spectrum was recorded with a fast (~GHz 

bandwidth) photodetector connected to the spectrum analyzer. We can adjust the 

repetition rate by changing the position of the output coupler. A PZT attached to 

the output coupler can provide finer adjustments to the repetition rate. 

5.3 Modifications to MOT apparatus 

Since the first observation of LiRb
+
, we have spent considerable time and effort to improve our 

signal detection, with room for further improvement. Steering ions towards the MCP assembly by 

using permanent magnets was a simple yet effective means to increase signal. We roughly 

positioned the magnets in the location where the LiRb
+
 signal was maximized. A more systematic 

means of steering the ions may be to use a set of frame mounted electromagnets that can be more 

conveniently adjusted. Another advantage of using electromagnets would be the fine tuning 

available to adjust the magnetic field for maximum ion counts. 

To generate the cooling and repump frequencies for the Li MOT, we use a nonresonant EOM that 

requires a 6 W rf amplifier. We have noticed that the heated crystal can distort the beam shape to 
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the extent that the PM fiber coupling efficiency drops by ~20% or more. This in turn reduces the 

Li MOT number and density and can weaken our signal. To alleviate this problem, we can 

replace the current EOM with a resonant LC circuit EOM that requires significantly lower power 

for similar modulation depth (~1 W or less). 

Another upgrade that would boost the ionization signal would be higher PA power. The PA rate 

depends, among other things, on the PA laser intensity. Currently, we get a maximum of ~450 – 

500 mW of PA power on (very few) good days. The Ti:S pump laser has a maximum output of 8 

W. Upgrading to a higher power pump laser would provide a significant boost to PA power. 

Combined with improved ion steering and a more stable EOM, the increased PA power should 

aid the search for new, more deeply bound PA resonances. 
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