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ABSTRACT

Parity non-conversation experiments provide a method to explore the weak interaction.

Precision measurements of the weak interaction will lead to more limitations on beyond the

standard model theories. Our lab will use a two-color coherent control to help us to extract

the small amplitude of the weak interaction between the nucleons of the cesium nucleus. In

this dissertation, I will discuss how our lab is investigating the anapole moment in cesium

using rf and laser �elds, along with future steps to �nish the measurement.
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1. INTRODUCTION

1.1 Physics Beyond the Standard Model

The standard model of physics has been very successful at describing our world and

predicting the existence of particles that we have subsequently found. It was developed over

the mid-1900's through the work of multiple theorists trying to understand the properties

behind the weak and strong forces and to form a stronger theoretical picture of these two

forces [ 1 ]. The �nal developments of the standard model occurred in the 1970's. They were

successful in bridging electromagnetic and weak interactions in the electro-weak interaction.

Later they uni�ed the strong interaction to the electro-weak interaction within the framework

of the standard model. Currently, unifying gravity into the rest of the fundamental forces,

strong, weak, and electromagnetic, has been unsuccessful. The model also predicted a variety

of particles, like the Z 0 boson, W� bosons, and Higgs Boson, that have not only been

found, but their properties have been veri�ed to agree with the model's predictions. Despite

the model's many glowing successful answers to how our world works, it still leaves many

questions on the table that it has no answers for. For example, the imbalance of matter and

anti-matter and our lack of understanding dark matter/energy, are just two of the troubling

problems the standard model does not have the answer to [ 1 ]�[  3 ].

Theorists have developed a wide range of di�erent theories that could potentially answer

some of the remaining questions the standard model has not been able to describe, like dif-

ferent super symmetry theories. So far many of these theories are not widely accepted or

veri�ed, though many strides are being taken to test beyond the standard model theories.

Additionally, experiments are being conducted to identify where the standard model is in-

consistent with our current understanding. Probes at di�erent energy levels are sensitive to

di�erent quantities of the standard model and of models beyond the standard model. The

Large Hadron Collider (LHC) and other particle colliders are able to probe higher energy

levels for new particles or processes. Another route is at lower energies with atomic, molec-

ular, and optical (AMO) methods. These tests are particularly sensitive when looking at

e�ects that violate fundamental symmetries (parity or time symmetry), like those found in

the weak interaction. More precise knowledge of the known quantities understood in the
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Figure 1.1. Feynman diagram of the beta decay where the down quark
becomes a up quark by the W- mediating boson [ 3 ], [ 9 ]�[  12 ].

standard model would provide boundaries for new theories. In particular it could place con-

straints on theories of a massive Z' boson,Zd boson, a light boson, or searches for potential

dark matter candidates [ 1 ]�[  8 ].

1.2 Weak Interaction

The idea of a weak interaction was �rst proposed in 1933 by Enrico Fermi, when he

proposed that beta decay could be explained by a four-fermion interaction using a contact

force with very short-range [ 9 ]. We now know beta decay, as shown in Fig. 1.1 , is when an

up quark turns into a down quark or vice versa. This ends up with a neutron transforming

into a proton by emission of an electron and anti-neutrino or a proton transforming into a

neutron by emission of a positron and neutrino. The weak interaction is mediated through

an exchange of aZ 0 or W� boson. The W� boson mediates a charged-current interaction,

where the interacting particle changes identity, like the proton turning into a neutron. The

Z 0 boson has no charge, only allowing the interacting particles to exchange momentum,

spin, and energy, mediating a neutral current where the interacting particle retains the same

identity [  3 ], [ 9 ]�[  12 ].
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The Z 0 boson signature was �rst discovered experimentally in 1973 at CERN [ 13 ], at the

Gargamelle Bubble Chamber. The Gargamelle Bubble Chamber held 1000 tons of heavy-

liquid freon. It was placed in the path of CERN's muon-neutrino beam, produced by the

CERN Proton Synchrotron, where the paths made from neutrino interactions could be ob-

served. Even though the bubble chamber could not create paths of the neutrino's trajectories

that we could observe, it was sensitive to the paths of other charged particles that could in-

teract with the neutrino. The experimentalists discovered the �rst direct evidence for neutral

currents when they observed electrons that would seemingly move on their own in the traces,

with no other charged particle to explain the movement. This movement was attributed to

the interaction of a neutrino and electron by way of aZ 0 boson [ 13 ].

It was only in 1983, at CERN's proton-antiproton collider, that direct evidence of the

bosons themselves was found and their approximate masses. The weak interaction's mediator

bosons are both massive in comparison to the size of a proton, at around 80 to 90GeV=c2, in

comparison to the protons less than 1GeV=c2 mass. The size of the mediator boson limits

the distance over which the weak interaction can occur to being less than the diameter of a

proton, becoming essentially a contact interaction on atomic scales [ 3 ], [ 9 ]�[  11 ].

1.3 Parity Violation

Through the �rst half of the 20 th century, physicists believed parity was conserved in

each of the fundamental laws of nature, or more simply that the laws did not distinguish

between actions that were mirror images of each other (like going left instead of right) [ 14 ].

Di�erent quantities transform di�erently under parity inversion. For a parity-odd quantity,

a mirror re�ection �ips the sign and for a parity-even quantity, a mirror re�ection does

not change the sign of the quantity. Examples of parity-odd quantities are position, linear

momentum, and electric �eld. Spin and orbital angular momenta along with the magnetic

�eld are parity-even quantities [ 3 ], [ 15 ].

In the mid-1950's, Chen Ning Yang and Tsung Dao Lee proposed that, unlike the strong,

gravity, or electro-magnetic interactions in which parity was conserved, the weak interaction

violates this symmetry. This parity violation (PV), or parity non-conservation (PNC), was
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posited to mix di�erent parity states for the weak interaction, like in a beta decay or meson

and hyperon decay [ 16 ]. Madam Chien-Shiung Wu experimentally veri�ed in 1957 that the

weak interaction did in fact violate parity through an observation of beta decay in Cobalt-

60 [ 17 ]. She measured the angular distribution of electrons coming from the beta decay

of Cobalt-60. An asymmetry was found in the distribution coming from a mirror-reversed

orientation of the nuclear spin of the parent nucleus of Cobalt and the momentum of the

electron, providing unequivocal proof that parity is not conserved in beta decay [ 17 ]. After

Madam Wu's discovery, the Nobel Prize in physics was awarded to Yang and Lee in 1957.

Initially, the weak interaction was determined to not be strong enough to be observable in

experiments in atomic systems, due to the knowledge that its e�ects were weak in comparison

to the electro-magnetic e�ects at the scales of investigation. In addition, only the W� bosons

were understood to mediate the weak interaction at this time. A W� exchange in the atom

would not cause a steady-state modi�cation, but instead would cause a decay of the nucleus,

changing the atom into a di�erent species. When the Weinberg-Salam-Glashow theory was

proposed in the 1960's, they predicted another mediating boson of the weak force, theZ 0

boson, which was neutral. TheZ 0 boson's neutral current would just modify the electronic

wave function of the atom and not change the atomic species like the W� bosons [ 1 ], [ 18 ].

PNC e�ects that could be observed in atoms would be a useful tool to probe the weak force

in atoms. This is mainly due to the fact that the other three fundamental forces are known

to not violate parity, so any PNC e�ect would solely be due to the weak force. Additionally

in atoms, the electric dipole transitions between states with the same parity (like 6s to 7s

transition in cesium) are forbidden by the electromagnetic interaction. With the weak force

in play, the same parity states in the atom are mixed with the opposite parity state (in the

6s to 7s transition in cesium, the mixing of s and p states is on the order of10� 11), and

the transition between the same parity states becomes slightly allowed as an electric dipole

transition. Therefore any atom undergoing an electric dipole transition between same parity

states would be due to the weak interaction (there are other interactions that can drive the

transition, but they can be weakened). Though, due to the size of theZ 0 boson causing the

weak interaction to be contact-like, this means that only electronic states that overlap with

the nucleus will be a�ected by the electron-nucleon weak force [ 1 ], [ 3 ], [ 18 ]�[  21 ].
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Precision measurements of parity violation in atoms allow us to determine the weak

charge, Qw , of the nucleus of di�erent atoms. QW of the atom is the sum of the weak

charges of all the constituents of the neutrons and protons in the atomic nucleus, the up and

down quarks. The equation is in the form of,QW = (2 Z + N )QW (u) + ( Z + 2N )QW (d),

where N is the number of neutrons in the nucleus, Z is the number of protons in the nucleus,

QW (u) is the weak charge of the up quark (coupling of the electron axial-vector currents to

the up quark-vector currents), andQW (d) is the weak charge of the down quark (coupling of

the electron axial-vector currents to the down quark-vector currents). Then with the weak

charge known, one is able to obtain the electro-weak mixing angle� W from the relationship

of QW � � N + Z(1 � 4sin2(� W )) . Obtaining a precise value would lead to being able to

place bounds on the standard model of physics and models beyond the standard model. In

addition, the measurement in atoms would be at lower energies than those found at particle

accelerators that are also trying to measure the electro-weak mixing angle. Over di�erent

energy scales, the standard model has predicted variation of the weak mixing angle as seen

in Fig.  1.2 and Fig.  1.3 [ 1 ], [ 3 ], [ 18 ]�[  21 ]. Fig.  1.3 is a more recent version of Fig. 1.2 ,

illustrating the e�ort over 4 years of the �eld to further �ll in this picture.

Zeldovich [ 22 ] originally brought forth the idea that the PNC e�ect could be observed in

atoms two years after Madam Wu's experiment, but predicted that the e�ect would be too

tiny to observe when he studied the e�ect in hydrogen. It was in 1974 that Bouchiat and

Bouchiat [ 23 ] determined that the PNC e�ect would be ampli�ed in heavy atoms, as the

PNC amplitude would scale as roughlyZ 3, where Z is the number of protons and thus the

nuclear charge. The PNC signal can be further ampli�ed through an interference technique,

beating the PNC against a stronger signal. Then the total transition is the sum of the two

signals plus an interference term of the two signals multiplied together. The weaker term

can be extracted from the interference term which is bigger than just the weaker term. The

prediction of Bouchiat and Bouchiat [ 23 ] was successfully observed by Novosibirsk's group

in 1978, using bismuth as the heavy atom and interference between the PNC signal and

the magnetic dipole transition signal. It was followed up in the early 1990's with similar

measurements in lead and thallium, both of which have similar masses to bismuth [ 1 ], [ 3 ],

[ 18 ]�[  20 ].
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Figure 1.2. A plot of sin2(� W ) vs. collision energy. The data points indicate
the results of various measurements that are identi�ed in the �gure while the
solid line is the standard model. Figure from Ref. [ 3 ] from 2018.
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Figure 1.3. A plot of sin2(� W ) vs. collision energy. The data points indicate
the results of various measurements that are identi�ed in the �gure while the
solid line is the standard model. Figure from Ref. [ 21 ] from 2022. The red line
is the standard model prediction using the new value of the W-boson mass
while the blue line is the previous value as seen in Fig. 1.2 
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Table 1.1. Measurements ofEP NC in di�erent atomic systems (with the
current lowest experimental uncertainty achieved).

Atom Ref Uncertainty Year
Cesium [ 24 ] 0:35% 1997

Ytterbium [  25 ] 0:5% 2019
Thallium [  26 ] 1:1% 1995

Lead [ 27 ] 1:1% 1995
Bismuth [  28 ] 2% 1991

1.4 Atomic PNC

So far the most accurate PNC amplitude measurementEP NC was performed in cesium in

1997 by Wood, to a 0.35% uncertainty [ 3 ], [ 14 ]. There are a variety of other measurements

to determine EP NC in di�erent atomic systems, seen in Table. 1.1 .

While a PNC signal was found in bismuth, lead, and thallium, there is di�culty in

extracting di�erent parameters of interest due to the complexity of the atoms, causing dif-

�culties in theory. Theorists have had the most success in understanding the structure of

hydrogen and other `hydrogen-like' atoms in the alkali family, due to the simplicity in the

interactions of having only one valence electron. Therefore rubidium, cesium, and francium

make attractive candidates to observe a large PNC signal due to their high Z value, and

have accurate theory to back it up [ 3 ].

1.4.1 Cesium PNC

One of the more important quantities of interest that can be obtained from atomic

PNC experiments is the extraction of the weak charge of the atom fromEP NC . So far,

the weak charge of cesium has been the most precisely measured weak charge of an atom.

This is mainly due to cesium's well understood properties, which enable experimental and

theoretical values outcomes to be precise. For example the energy levels of cesium found

experimentally and theoretically match well, the low level's energies can be seen in Figure 1.4 .

The cesium experiment, done by Wood and Wieman in the 1990's, experimentally mea-

sured the amplitude of the PNC signalEP NC as the ratio to a known quantity, the vector
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Figure 1.4. Cesium energy levels showing the lowest energy levels of Cs-133.
Numbers are from the NIST database [ 29 ], except for the hyper�ne splitting
data, which are from a variety of sources [ 30 ]�[  36 ]. The hyper�ne splitting of
the 6Pj and 7Pj states are in the lower right corner instead of in the �gure due
to simplicity. Figure from George Toh's thesis [ 37 ].
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polarizability of the 6s to 7s transition, � . To extract the EP NC from the experimental

quantity, they multiplied by the known quantity � . To determine the weak charge (QW )

from EP NC , theorists must calculate the ratio ofEP NC and QW . This is where having a

simple atomic structure comes in handy, as theorists are better able to calculateQW =EP NC

precisely, therefore allowing the extractedQW to be more precise. The equation then to

extract QW is:

QW =
EP NC

�
� � �

QW

EP NC
: (1.1)

After Wood's measurement in cesium, the extraction of the weak charge was limited by the

uncertainty in the theoretical value ofQW =EP NC . This spurred theorists to improve their

value over the next decade, until their value was as precise as experiment.

Wood's Experimental Details

The process to obtainEP NC is detailed and precise. To getEP NC , Wood used a cesium

atomic beam experimental setup, as shown in Fig. 1.5 . The atomic beam is useful to be

able to pass the atoms through a sequence of actions, while still having a continuous signal.

For Wood's experiment, the atomic beam passes through three regions, each with a di�erent

purpose. The �rst region is the preparation region, which uses lasers to optically pump

the majority of the atoms into one speci�c state (F,m), while emptying out each of the

other ground hyper�ne levels. (F is the quantum number for the total angular momentum

of the atomic state andm for the projection of F on the z axis.) The next region is the

interaction region, where a resonant laser drives the 6s -> 7s transition via the weak-force

induced transition, as well as a Stark-induced transition When the atoms decay from this

state there is a fraction that decay to the emptied ground hyper�ne level. In the detection

region, a probe diode laser probes the once emptied ground hyper�ne level, so the amount of

signal detected tells us how many atoms were excited in the interaction region. Wood used

an interference technique as proposed by Bouchiat, where theEP NC amplitude is interfered
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with a Stark amplitude to be able to have a larger signal to measure than just the weak

amplitude. The transition rate of interest is:

R = j AP NC + AM 1 + AStark j2= A2
Stark + A2

P NC + 2 � AP NC � A �
Stark + c:c:; (1.2)

where AStark is the amplitude of the Stark transition, AP NC is the amplitude of the PNC

transition, and AM 1 is the amplitude of the magnetic dipole transition for the 6s to 7s state.

Surrounding the interaction region there are electric �eld plates that induce a strongAStark

transition that scales with the size of the electric �eld caused by the �eld plates.AM 1 is

small due to the change in principal quantum number and by the use of counter-propagating

the laser beams. Therefore the transition rate has a strong DC o�set fromAStark and the

only other signi�cant term is 2 � AP NC � A �
Stark . During the experiment, Wood reversed the

direction of the laser polarization and �elds in the interaction region, which causesAP NC

to switch signs as parity reverses. Therefore, as the direction reverses there is a modulation

on R due to AP NC . Wood was able to very precisely obtainEP NC , but also discovered

many new systematic e�ects and had to characterize and eliminate these systematic errors

to isolate the PNC e�ect [ 38 ].

1.4.2 NSI and NSD Contributions to EP NC

Wood et al. [ 24 ], [ 38 ] measuredEP NC =� on two di�erent components of the 6s � 7s

transition to determine the nuclear spin dependent (NSD) and nuclear spin independent

(NSI) components. Wood measured the PNC amplitude on both of the hyper�ne changing

transitions (6s F=3 to 7s F0=4 and 6s F=4 to 7s F0=3). The average of the two amplitudes

is the NSI term, while the di�erence is the NSD term.

Fig.  1.6 shows the major diagrams that contribute to parity violation in atoms. There is

only one nuclear spin independent e�ect diagram, Fig. 1.6 .(a), where aZ 0 boson is exchanged

between the electron and nucleus with the nucleon-vector and electron axial-vector currents.
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