Orbital Trajectories

Thanks to NASA, the Moon is getting a new crater! NASA is sending a spacecraft hurtling into the Moon's surface. Why? To see if there's water below the surface. This collision will send up a plume of dust and gas over 6 miles (10 kilometers) high. To tell if there's any water, scientists will look for ice crystals and water vapor in this plume.

NASA LCROSS 2009

In 2009, NASA launched a similar mission with the Lunar Crater Observation and Sensing Satellite (LCROSS). After using all its' fuel, LCROSS dropped its' used upper stage into the southern crater Cabeus.

WE CHALLENGE YOU TO

Design, build, and test a spacecraft that will release a lander to hit its' desired target

AND LEARN ABOUT

- Orbits
- Trajectories
- Momentum

MATERIALS

- Fishing line
- Paper cup
- Index card
- Paper clip
- String
- Toothpicks
- Marble
- Target
- Masking tape ***
- Scissors ***
- Chairs for zipline ***
- *** Materials found at home

FURTHER EXPLORATION

Academo Orbit Simulator | https://academo.org/demos/orbit-simulator/ **PhET Orbit Simulator** | https://phet.colorado.edu/sims/html/gravity-and-orbits/latest/gravity-and-orbits_en.html

How We Are Going to the Moon | https://youtu.be/_T8cn2J13-4

DESIGN & BUILD

- Brainstorm ideas about how you can create a spacecraft to release a lander (marble) to hit the desired target
 - a. Will the lander (marble) travel on the inside or outside of the craft?
 - b. How will the spacecraft release the lander?
 - c. At what point along its path do you need to release the lander?
- 2) Sketch your design
- 3) Build your spacecraft using the materials provided

SAFETY TIPS

- Be careful with scissors!
- Do not stand in the path of the marble

TEST

- 4) Set up the target and zipline
 - a. Use the fishing line to create a zipline about 10 feet long between two surfaces at different heights. For instance, you can connect one end to a chair or door handle and the other end taped to the floor.
 - b. Place the paper target under the zipline about 2 feet from the lower end.
- 5) Hang the spacecraft on the zipline
 - a. Use the paperclip to hang the paper cup spacecraft on the zipline
 - b. Make sure the paper cup and the paperclip can slide freely from the top of the zipline to the bottom.

- 6) Launch and release
 - a. Send the spacecraft down the zipline and try to land the marble on the target using the release system you designed.
 - b. Use the rings on the target to track your accuracy over several attempts.

TIPS

- If the spacecraft goes slowly, try making the zipline steeper.
- If the lander doesn't stay in your spacecraft, try changing the list of the spacecraft or adding a small piece of tape to keep the lander from falling out early.
- If the lander doesn't come out, try adjusting the tilt of the spacecraft or building a chute with tape or toothpicks.
- If the lander misses the target, try releasing it earlier since the lander is moving forward along the zipline it will continue to move forward as it falls.

DISCUSS

- A. How does the lander respond if you launch further down the zipline?
- B. What parts of your design were important to ensure the lander hit the target?
- C. What was the trajectory of the lander after being released?
- D. How can you improve the release mechanism?