Purdue Engineering Professional Education

 Toll-Free in U.S. (877) 598-4233
 Print
AAE50800 - Optimization in Aerospace Engineering

Spring 2014

Days/Time: MWF / 8:30-9:20 am
Credit Hours: 3

Learning Objective:
To introduce students to the theory and numerical calculation of optimal space trajectories. This course provides the essential technical components of space trajectory design and space trajectory optimization. Students develop basic engineering skills in formulating and solving open-ended problems and in writing a project report. Some students have turned their projects into directed studies (AAE 590), conference papers, and journal submissions.

Description:
Formulation of optimization problems encountered in aerospace engineering. Minima of functions and functionals, necessary conditions, calculus of variations, control formulation, two-point boundary-value problems. Applications to typical problems in aerospace engineering such as optimal launch, minimum time to climb, maximum range, and optimal space trajectories.

Topics Covered:
The Problems of Bolza, Lagrange and Mayer; Interchangeability of the problems, introductory concepts, Zermelo's problem, Lotka-Volterra model; Proof of the Euler-Lagrange Theorem; Calculus of variations, necessary conditions, transversality conditions, TPBVP; Example of flat Earth launch problem and derivation of linear and bilinear tangent steering laws; Proof of the Weierstrass Necessary Condition;Statement of the Maximum Principle; Flight envelopes for subsonic and super-sonic aircraft, minimization of time to climb, maximization of the range of a rocket, optimal launching of a satellite; Proof of the Weierstrass???Erdmann Corner Conditions;Optimal Control Problems with Inequality Constraints;Bounded control problem, singular subarcs, switching functions, generalized Legendre-Clebsch condition;General Theory of Optimal Rocket Trajectories;Extremal arcs, impulsive, thrust, optimal trajectories in a uniform field, the primer in a inverse square field, orbital transfer maneuvers; Computational techniques; Trajectory design, trajectory optimization.

Prerequisites:
Students should be senior or graduate standing in engineering, science, or mathematics.

Applied/Theory: 30/70

http://www.itap.purdue.edu/learning/tools/blackboard/

Web Content:
Syllabus, grades, lecture notes, homework assignments, solutions and quizzes.

Homework:
Once a week assignments accepted via Internet.

Projects:
Yes. Students select individual projects on optimization in aerospace engineering. Written proposals, progress reports, and a final report are required.

Exams:
Three exams. No final exam.

Textbooks:
**Updated Jan. 9, 2014** Required - Longuski, J.M., Guzman, J. J., and Prussing, J.E., Optimal Control with Aerospace Applications, Springer, New York, 2014; ISBN: 978-1461489443. Disclaimer: Please visit the Listing of Textbooks by College or School for the most up-to-date textbook information.

Computer Requirements:
ProEd Minimum Computer Requirements. Trajectory design and optimization software will be made available to students for homework assignments and for the projects.

ProEd Minimum Requirements:
view

Tuition & Fees: view

 James M. LonguskiPhone765-494-5139Emaillonguski@purdue.eduOfficePurdue UniversityNeil Armstrong Hall of Engineering, Rm. 3220701 W Stadium AveWest Lafayette, IN 47907-2045 Fax765-494-0307Instructor HomePage