ME50100 - Statistical Thermodynamics

Fall 2015

Days/Time: TBD / TBD
Credit Hours: 3

Learning Objective:
The objective of the course is to provide mechanical engineering graduate students with the background needed for research in emerging technology areas such as nanoscale science and for the application of modern experimental techniques in traditional research areas such as combustion and fluid mechanics. Understanding of material behavior and properties from a microscopic viewpoint is emphasized.

The molecular interpretation of thermodynamic equilibrium. Development of the partition function. Introduction to quantum mechanics and molecular spectroscopy. The Maxwell-Boltzmann formulation of statistical mechanics and applications to ideal gases, solids, radiation, and laser diagnostics. The Gibbs formulation of statistical mechanics and application to real gases. Kinetic theory and applications to transport properties and chemical kinetics.

Topics Covered:
1. Fundamentals of Quantum Mechanics
2. Atomic Structure
3. Molecular Structure
4. Introduction to Statistical Models: Fermi-Dirac, Bose-Einstein, Maxwell-Boltzmann
5. The Dilute Limit: Corrected Maxwell-Boltzmann Statistics
6. The Partition Function
7. Calculation of Thermodynamic Properties
8. Molecular Distributions
9.Gas Mixtures
10. Crystalline Solids and Phonons
11. Metals and the Electron Gas
12. Kinetic Theory and Transport Properties
13. Canonical and Grand Canonical Ensembles
14. Real Gases and Liquids

Undergraduate course in thermodynamics.

Applied/Theory: 50/50

Web Address:

Web Content:
Blackboard includes: A link to my current course site, and grades.

6 homework assignments.


2 midterm exams and 1 final exam.

Official textbook information is now listed in the Schedule of Classes. NOTE: Textbook information is subject to be changed at any time at the discretion of the faculty member. If you have questions or concerns please contact the academic department.
Statistical Thermodynamics: Fundamentals and Applications, Normand M. Laurendeau, First Edition, Cambridge Press, 2005, ISBN-13: 978-0-521-84635-6.

Computer Requirements:
ProEd Minimum Computer Requirements, and Excel.

ProEd Minimum Requirements: view

Tuition & Fees: view


Robert P. Lucht
Purdue University
Mechanical Engineering Building
585 Purdue Mall
West Lafayette, IN 47907-2088
Instructor HomePage

You May also be Interested In: