

Community Update:

Rapid Response to the Norfolk Southern Chemical Spill and Chemical Fires in East Palestine, Ohio

Andrew Whelton, Ph.D., Paula Coelho, Aaron Bragg, and many more

awhelton@purdue.edu

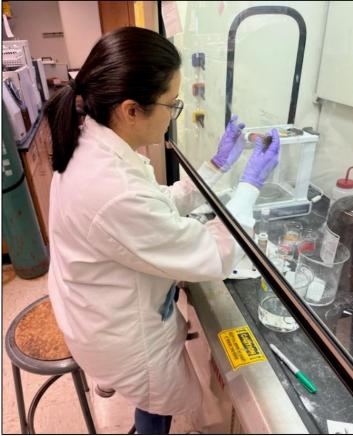
In collaboration with

Rapid public health scientific support in response to disasters

2014 Chemical Spill (WV) 2017 Tubbs Fire (CA) 2018 Camp Fire (CA) 2020 Oregon Fires (OR) 2021 Chemical Spill (HI) 2021 Marshall Fire (CO) and others...

Key Questions:

- 1. What chemicals should been looked for?
- 2. Where did/do the chemicals go?
- 3. How do you return infrastructure/homes to safe use?
- 4. What were/are the chemical exposures?



About Paula

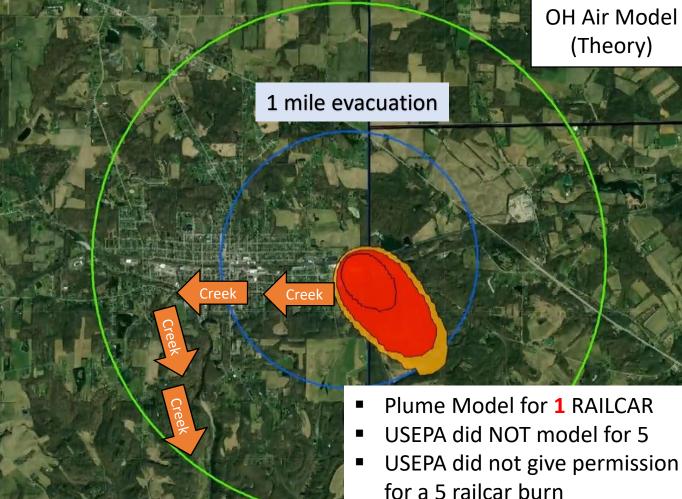
Hometown: Belem, Para, Brazil

Alma Mater: Federal University of Para (B.S. Sanitary and Environmental Engineering)

Program: Purdue University Ph.D. Student in Environmental and Ecological Engineering

Current Research/Research Projects

- Water quality (Microplastic in building faucets)
- East Palestine, Ohio, chemical spill



East Palestine, Ohio Chemical Spill and Chemical Fires

149 rail cars, 38 derailed

11 derailed were combustible liquids, flammable liquids, and flammable gas.

What was on the train according to the Norfolk Southern document posted by the U.S. EPA ...

Ethylhexyl acrylate

Vinyl chloride

Butyl acrylate

PVC resin

PE resin

Frozen vegetables

Powder flakes

Paraffin wax

Propyl glycol

Diethylene glycol

Petro oil, NEC

Petroleum lube oil

Semolina

Balls

Fuel additives

Malt liquors

Benzene

Residue lube oil

Isobutylene

Sheet steel

Hydraulic cement

Passenger autos

Ethylene glycol methyl butyl

ether [2-butoxyethanol]

Chemicals reported released or burned in early February 2023

Chamiaala			Physical and Che	mical Properties			
Chemicals Reported	Molecular Weight, g/mole	Density, g/cm ³	Boiling Point at 760 mmHg, °F	Water Solubility, mg/L	Vapor Pressure, mmHg	Log K _{ow}	
2-Butoxyethanol	118.17	0.902	644	100,000	0.6	0.83	
Vinyl chloride	62.50	0.911	44	8,800	2,980	1.46	
Butyl acrylate	128.17	0.890	563	2,000	5.45	2.36	
Ethylhexyl acrylate	184.27	0.880	782	100	0.178	4.09	
Propyl glycol	76.09	1.030	368	1,000,000	0.13	-0.92	
Diethylene glycol	106.12	1.000	473	1,000,000	0.0057	-1.47	
Petro oil, NEC	Contains thousands	of individu	ial chemicals. Wh	en burned create	s and releases nun	nerous.	
Petroleum lube oil	Contains thousands	of individu	ial chemicals. Wh	en burned create	s and releases nun	nerous.	
Polyethylene	Not a chemical. Thi	s is a plastic	. When burned c	reates and release	es numerous.		
Semolina	Not a chemical. Thi	s is wheat. '	When burned cre	ates and releases	numerous.		
Polyvinylchloride	Not a chemical. Thi	s is a plastic	. When burned c	reates and release	es numerous.		
Balls	Not a chemical. Composition unclear.						
Frozen vegetables	Not a chemical. When burned creates and releases numerous.						
Powder flakes	Not a chemical. Co	mposition u	nclear.				

Obtained from the NLM PubChem database. Temperatures where density water solubility, vapor pressure, and Henry's Law Constant's were were determined were either 20, 23, or 25 degrees Celsius

Feb. 3 chemical spill and fires at train derailment in Ohio.

Feb.6-1mile evacuation for shrapnel concerns: NS recommends burning 5 railcars of vinyl chloride; Chemicals set on fire.

Feb. 8 -Evacuation order lifted. "air was basically what it was prior to the train crash".

Feb. 13 – OH tells people to use bottled water; Chemicals have been contained in 1.3 miles of Sulfur Run; 3,500 fish found dead in creeks; "100s" of chemicals they are detecting; Haze and odor in area after fires were out

Feb. 15 -OH says municipal drinking water is safe to drink based on NS data

Feb. 14-17 Feb. 22 – - Public reports of illnesses in households cleaning who quidance returned to the area

PA

issues

home

Feb. 23 -OH begins to test municipal drinking water for the first time

Feb. 23 -OH says 43,500 fish found dead in creeks

Feb. 25 -CDC begins onsite public health investigati on

Event Timeline

Feb. 25-27 -Purdue site visit to creeks and homes to sample. Finds creeks are hazardous, public not warned. Chemicals not contained; well owners not getting help.

Feb. 25 – Co. Health **Dept posts** private well water test results for the first time

Mar. 1 – **USEPA** warns people not to let kids play near creeks

Mar. 1 – Railroad workers report illness during cleanup activities to US DOT

Mar. 2 -Purdue letter to **OSHA** about worker safetv and creeks

Mar. 2 -TAMU/CMU review of USEPA outdoor air testina results indicates potential long-term health risks.

Mar. 3 – CDC public health survey indicates acute health impacts from the incident

Mar. 3 -UEP informal public health survey indicates residents still reporting health impacts

Mar. 3-4 Purdue Site visit to creeks to sample

Mar. 7 -Purdue letter to U.S. Senate warning of unreported health risks

Mar. 9 -TAMU/CM U reports their own outdoor air testing results. Acrolein found.

Analysis by TAMU/CMU of USEPA's Outdoor Air Testing Results (Feb 24)

EPA Reported Concentrations

Calculated Hazard Quotient (HQ) for East Palestine (OH)

HQ due to "Normal" Levels in Counties Across USA, Counties in Ohio, and in Columbiana County (OH)

Chemicals (CAS#)	Median (mg/m3) in East Palestine (OH) Feb 2023	East Palestine	(OH) Ech 2022	HQ for highest in East Palestine	county in USA	HQ for highest county in USA (EPA NATA 2014)	HQ for median county in Ohio (EPA NATA 2014)	county in Ohio	HQ for Columbiana County, Ohio (EPA NATA 2014)
1,1,2-Trichloroethane (79-00-5)	0.00007	0.00145	0.35	0.73	0.00	0.02	0.00	0.00	0.00
1,3-Butadiene (106-99-0)	0.000084	0.00053	0.04	0.27	0.01	0.08	0.01	0.02	0.01
Acrolein (107-02-8)	0.00014	0.0008	7.0	40	0.89	6.1	0.88	1.56	0.83
Benzene (71-43-2)	0.00084	0.012	0.03	0.40	0.01	0.03	0.01	0.02	0.01
m,p-Xylenes (179601-23-1)	0.00078	0.0098	0.01	0.10	0.00	0.01	0.00	0.01	0.00
Naphthalene (91-20-3)	0.00007	0.0014	0.02	0.47	0.01	0.04	0.01	0.02	0.01
o-Xylene (95-47-6)	0.00029	0.021	0.00	0.21	0.00	0.01	0.00	0.01	0.00
Trichloroethylene (79-01-6)	0.000018	0.00053	0.01	0.27	0.00	0.17	0.01	0.03	0.01
Vinyl Chloride (75-01-4)	0.00026	0.016	0.00	0.20	0.00	0.00	0.00	0.00	0.00

Background Information:

- Hazard Quotient (HQ) = Concentration ÷ RfC
- HQ < 1: little concern for single chemical
- HQ < 0.1: little concern for multiple chemicals
- RfC = level likely to be without appreciable risk over a lifetime

Interpretation:

- Concentrations for nine of the ~50 chemicals EPA reported are <u>higher than "normal" average levels</u>
- If they continue at these levels, they may be of health concern (especially acrolein)

A LOT of people are volunteering their time and resources to provide scientific support to the community

PURDUE

Andrew Whelton, Ph.D., Civil Env. Eng

Nusrat Jung, Ph.D., Civil Eng.

Brandon Boor, Ph.D., Civil Eng.

Caitlin Proctor, Ag. Env. Eng.

Linda Lee, Ph.D., Agronomy

Jeff Youngblood, Ph.D., Materials Eng.

Marty Frisbee, Ph.D., Earth Sci.

Brock Harpur, Ph.D., Entomology

Youn Jeong Choi, Ph.D., Agronomy

Gouri Prabhakar, Ph.D., Atmospheric Sci.

Bobbie Vance, Civil Eng.

Brad Caffery, Civil Eng.

Paula Coelho, EEE

Rasul Diop, EEE

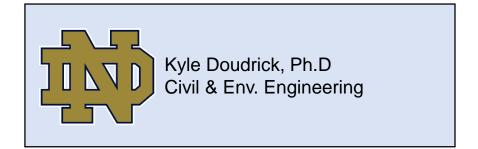
Stephanie Heffner, EEE

Kristofer Isaacson, EEE

Gracie Fitzgerald, EEE

Aliya Ehde, EEE

Akshat Verma, MSE


Katherine Del Real, EEE

Laura Gustafson, CE

Ana Maria Torres, CE

Jinglin Jiang, CE

Xiaosu Ding, CE

Key Questions:

- I. What chemicals should been looked for?
- 2. Where did/do the chemicals go?
- 3. How do you return infrastructure/homes to safe use?
- 4. What were/are the chemical exposures?

Site visits so far

February 25-27 March 3-4

March 17-19 March 23-25

Creek water sampling (18 locations)

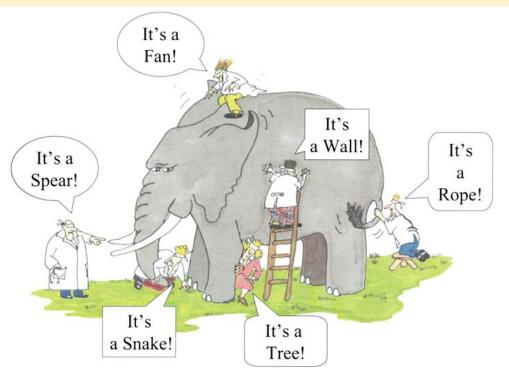
Creek soil sampling

Well water sampling (15 wells)

Outdoor home wipe sampling

Interviews with homeowners

Study is approved by the Purdue University Human Research Protection Program, Internal Review Board (IRB)-2023-422

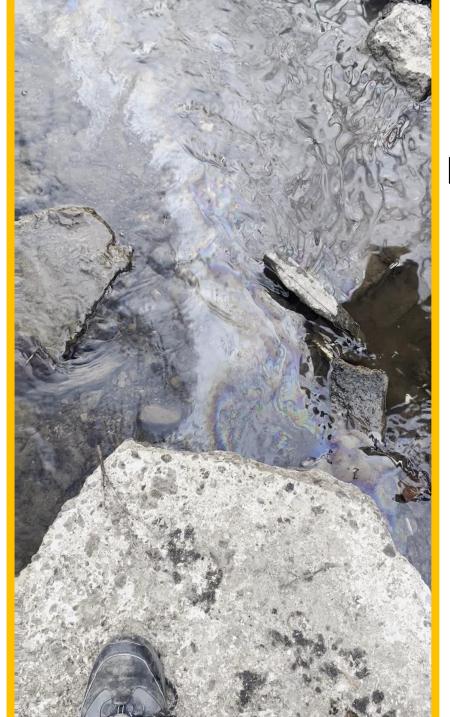


Our Approach: 3 weeks after the incident, barely any data was publicly available data despite "safety" claims

Critical scientific decisions right after a chemical spill are

- 1. What do you test for?
- 2. Where and how do you test?

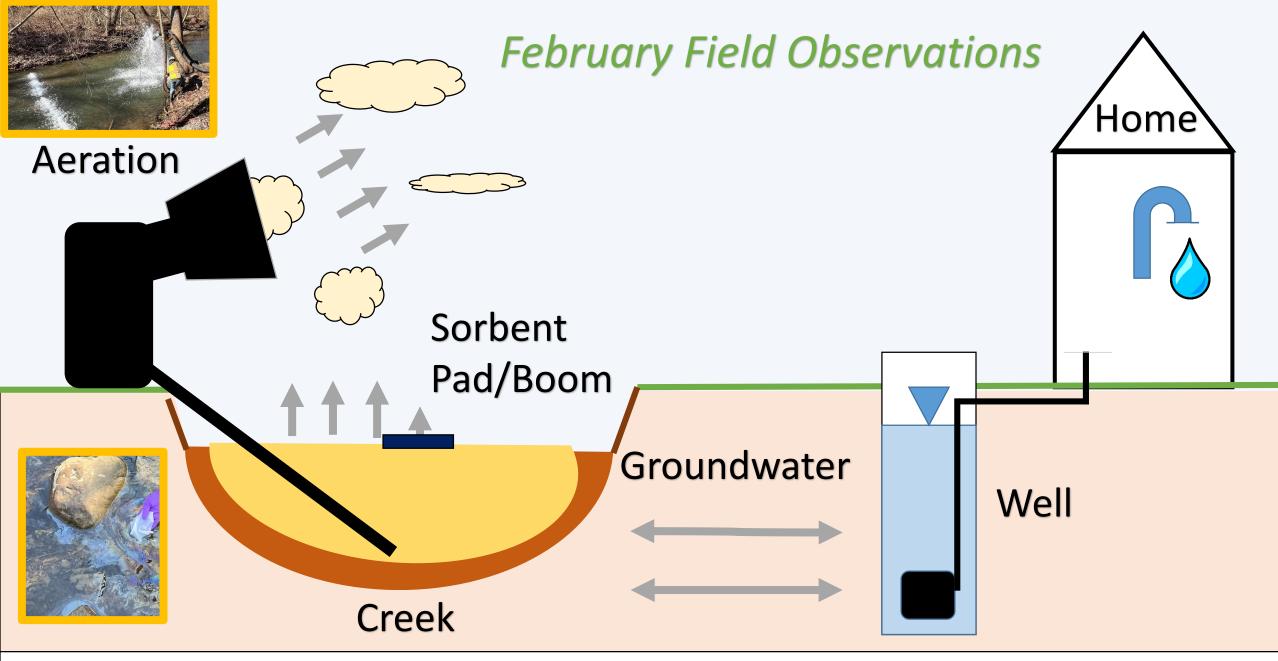
Review public agency data


Household interview

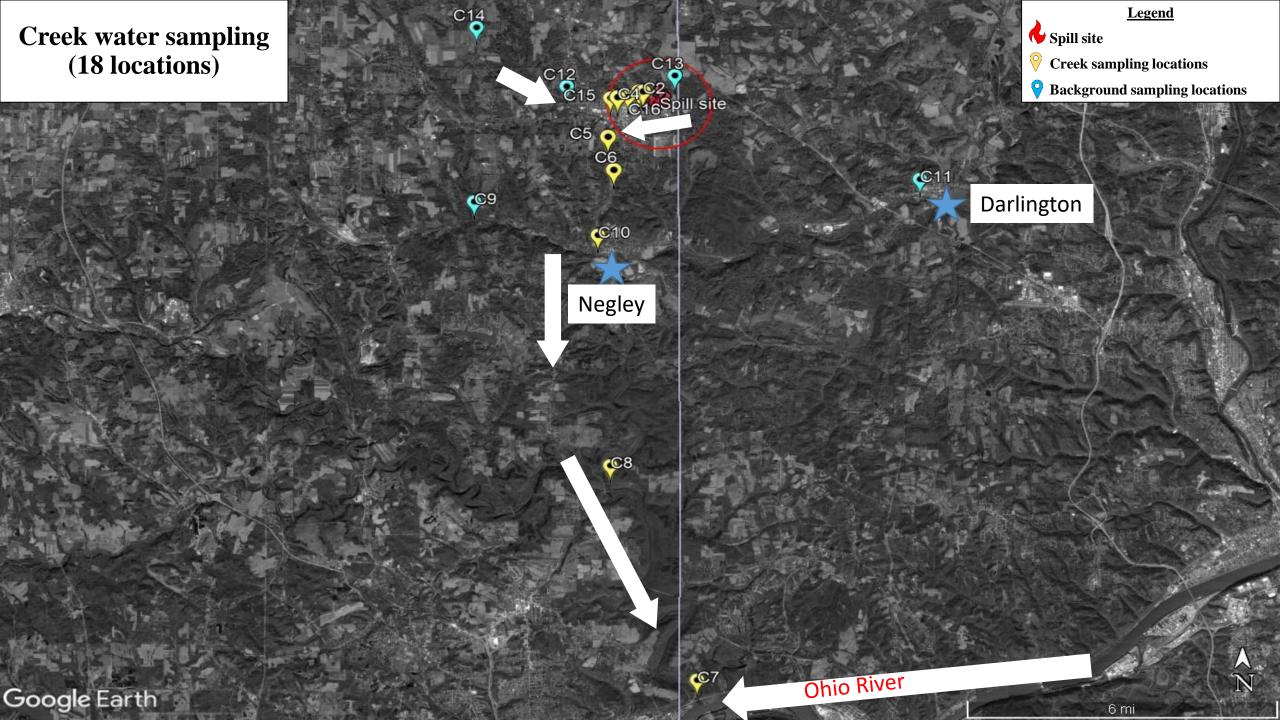
Home and private well investigation

Creeks investigation

What are we screening for?

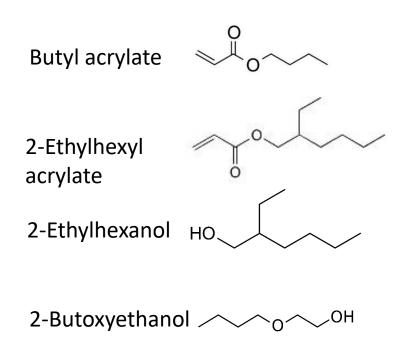

- Water pH, temperature
- Volatile organic compounds (VOC)
- Semi-volatile organic compounds (SVOC)
- Per- and polyfluoroalkyl substances (PFAS)
- Total petroleum hydrocarbons (TPH)
- Heavy metals (Iron, lead, zinc, etc.)
- Ions (Sulfur, phosphorous, etc.)

Free floating chemicals
3 weeks
after the spill



What have we found? Inconsistent testing by government agencies for chemicals of concern

USEPA Outdoor Air	OH Surface Water	OH Municipal Water	OH Private Well V	Water	
Acrolein	Not tested	Not tested	Not tested		
Not tested	Butyl acrylate	Butyl acrylate	Butyl acrylate (not confirm	ned)	
Not tested	2-Ethylhexanol	Not tested	Not tested		
Not tested	2-Ethylhexyl acrylate	2-Ethylhexyl acrylate	2-Ethylhexyl acrylate (not	confirmed)	
Not tested	2-Butoxyethanol	Not tested	Not tested		
Vinyl chloride	Vinyl chloride	Vinyl chloride	Vinyl chloride		
Benzene	Benzene	Benzene	Benzene		
Xylenes	Xylenes	Xylenes	Xylenes	PA DATA	
Naphthalene	Naphthalene	Naphthalene	Naphthalene	NOT	
1,3-Butadiene	Not tested	1,3-Butadiene	1,3-Butadiene	SHOWN	
1,1,2-Trichloroethane	1,1,2-Trichloroethane	1,1,2-Trichloroethane	1,1,2-Trichloroethane	116 5 474	
Trichloroethylene	Not tested	Trichloroethylene	Not tested	NS DATA	
Phosgene	Not tested	Not tested	Not tested	NOT SHOWN	
Ethylene glycol (Not tested)	Not tested	Not tested	Not tested	SHOWN	
Purdue Surface Water Detections (Mar 7 Letter to US Senate): Acrolein , <i>n</i> -Butyl ether, Butyl acrylate, 2-Butoxyethanol, 1,3-Butadiene, 2-Ethylhexyl acrylate, Ethylene glycol					


The Ohio EPA required Norfolk Southern to collect and analyze creek water samples, but not all chemicals were tested for at the same time

Chemical	Method Detection Limit, ppb	Date of 1st Sample	Max West of Site, ppb	Max East of Site, ppb	Max Norfolk Southern Background, ppb (1st sample)
Vinyl chloride	0.29	Feb 9	7,700	0.58	< 0.29 (Feb 5)
Butyl acrylate	1.0	Feb 9	180,000	22	< 1 (Feb 5)
2-Ethylhexyl acrylate	1.0	Feb 9	122,000	68.1	491 (Feb 5)
Benzene	0.34	Feb 9	39.3	3.6	< 0.34 (Feb 4)
2-Butoxyethanol	Unclear	Feb 9	657,000	848,000	556 (Feb 4)
Methyl acrylate	1.0	Feb 9	3.3	ND	< 1 (Feb 5)
Polypropylene glycol	619	Feb 28	111,000	33,000	1,030 (Feb 28)
Diproplylene glycol	5,000	Feb 28	106,000	29,600	< 5,000 (Feb 28)
Diethylene glycol	5,000	Feb 28	19,700	89,100	< 5,000 (Feb 28)

Some of their "background" samples were within the plume fallout area

We developed an analytical method to target four primary contaminants (as well as others) and collected background creek water samples

	Method			Our Background Locations			
Compound	% Recovery with LLE	MRL - Minimum Reporting Limit (ppb)	MDL - Method Detection Limit (ppb)	С9	C11	C12	C14
Butyl acrylate	64.4	2.6	0.6	ND	ND	ND	ND
2-Butoxyethanol	49.5	5.3	1.03	ND	ND	ND	ND
2-Ethylhexanol	103.5	2.6	0.6	ND	ND	ND	2.8
2-Ethylhexyl acrylate	70.4	1.3	0.5	ND	ND	ND	ND

<LOQ = Less than limit of quantitation

ND = Non-detected

Preliminary results for creek samples collected in Feb. 26 and 27, 2023

C5

©6

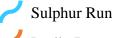
C4-sheen	Purdue (ppb)	Ohio EPA (ppb)
Butyl acrylate	23.9	67
2-Butoxyethanol	520.8	911
2-Ethylhexanol	198.3	84.8
2-Ethylhexylacrylate	467.6	165
347	100	120

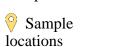
C5-sheen	Purdue (ppb)	Ohio EPA (ppb)
Butyl acrylate	0	3.7
2-Butoxyethanol	0	225
2-Ethylhexanol	0	-
2-Ethylhexylacrylate	27.5	16.4

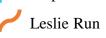
		SSEP AFRICAS
C6-sheen	Purdue (ppb)	Ohio EPA (ppb)
Butyl acrylate	0	4.8
2-Butoxyethanol	0	228
2-Ethylhexanol	<loq< td=""><td>-</td></loq<>	-
2-Ethylhexylacrylate	41.0	10.7

Google Earth

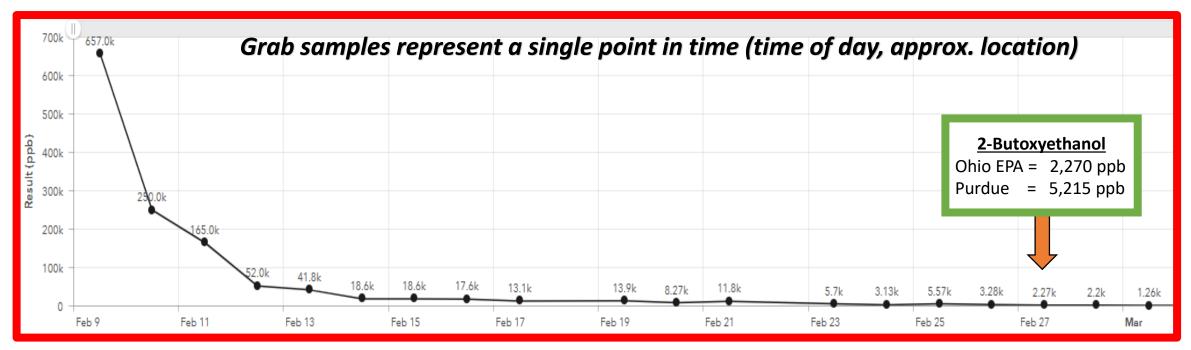
Sheen composition unclear


__ C3 👩 (





Spill site



C1-sheen	Purdue (ppb)	Ohio EPA (ppb)
Butyl acrylate	3.72	1.3
2-Butoxyethanol	10,460	150
2-Ethylhexanol	177.0	310
2-Ethylhexylacrylate	70.2	23.3

C2-sheen	(ppb)	EPA (ppb)
Butyl acrylate	0	20.2
2-Butoxyethanol	5,215	2,270
2-Ethylhexanol	13.7	36.1
2-Ethylhexylacrylate	60.0	19.6

C3-sheen	Purdue (ppb)	Ohio EPA (ppb)
Butyl acrylate	10.16	136
2-Butoxyethanol	4,455	5,540
2-Ethylhexanol	41.09	38.6
2-Ethylhexylacrylate	7.86	89.7

- Data posted by Ohio EPA represents a single point(s) in time.
- Approach for Norfolk Southern creek sampling not well described online.
- By Ohio EPA direction, Purdue asked Norfolk Southern for their sampling plan twice, with no response.
- Time of day, sampling location, rainfall, creek turbulence may influence results.

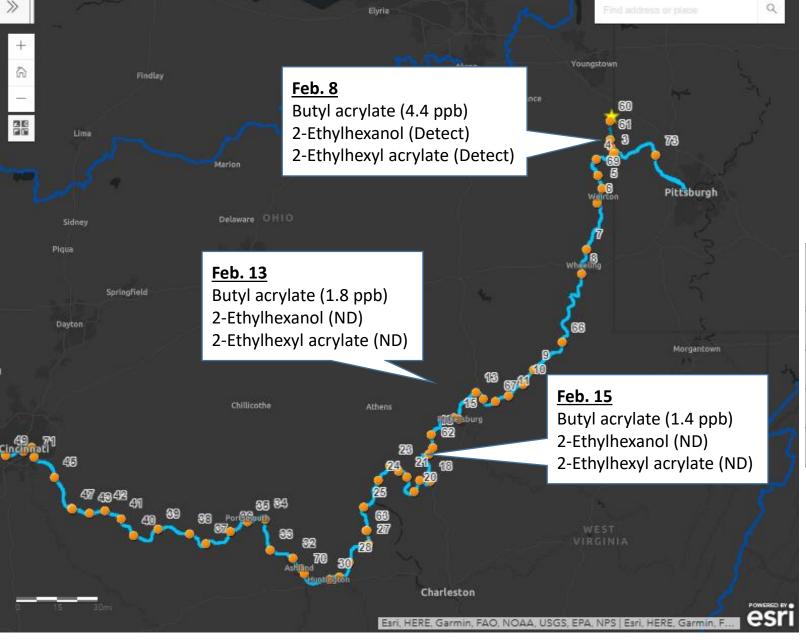
Many more results coming from us in the coming days to weeks

As expected, contaminant levels decreased over time, but sheen and odor were still present 7 weeks after the spill

Compound	Sulphur Run Location		Leslie Run Location		
•	3 wk	5 wk	3 wk	5 wk	7 wk
Butyl acrylate	23.9	ND	ND	ND	ND
2-Butoxyethanol	520.8	ND	ND	ND	ND
2-Ethylhexanol	198.3	ND	<loq< td=""><td>ND</td><td><loq< td=""></loq<></td></loq<>	ND	<loq< td=""></loq<>
2-Ethylhexyl acrylate	467.6	ND	41.0	ND	ND

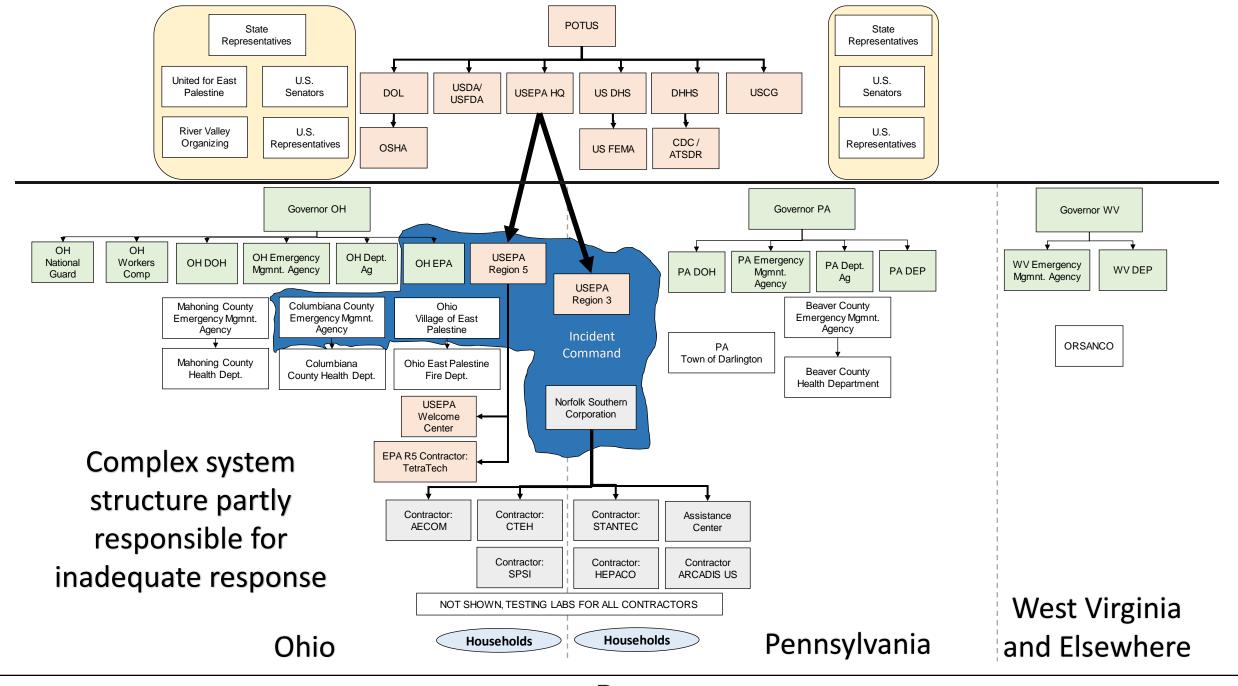

- ☐ Officials told us sheen was butyl acrylate. Our opinion: Composition unknown. Maybe lube oil constituents?
- ☐ Officials said the odor is butyl acrylate. Our opinion: No data supporting that position.

15 private drinking water wells were sampled, no contaminants associated with the spill were detected


 Some wells were less than 100 feet from heavily contaminated creeks.

 Ion and metals analysis results are still being processed.

Other challenges



Feb. 3 – Derailment and spill Feb. 6 – Fires

Compound	ATSDR Screening Level, ppb
Butyl acrylate	560
2-Ethylhexanol	200
2-Ethylhexylacrylate	500
2-Butoxyethanol	None issued

ATSDR hasn't responded about what screening levels represent. Contacted 2x by the recommendation by USEPA (Incident Commander)

Potable Water Sampling Plan

East Palestine Derailment Site East Palestine, Ohio

Norfolk Southern Railway Company

February 2023

A Flawed Foundational Document:

Water sampling plan developed by AECOM for Norfolk Southern which was embraced by Incident Command

- ☐ Did not screen for ethylene glycol methyl butyl ether [2-butoxyethano] a chemical known to be spilled when this document was created.
- ☐ Other chemicals not included.
- ☐ Ohio EPA and County Health Depts sampled drinking water following this plan.
- □ No testing data was shared publicly until 3.5 weeks after the disaster.
- ☐ Plan was never publicly posted.

A few other notes

- Governors and Mayors preventing waste from entering their communities for treatment and disposal
- In Ohio, a truck hauling soil waste spilled
- Multiple universities stepping in to provide scientific support
- Evidence indicates that Ohio deferred to Norfolk Southern to know what chemicals to test for. All chemicals spilled were not tested for initially.
- Evidence indicates that chemicals reached Negley and elsewhere in air, not in the plume model shown publicly.
- When USEPA became Incident Commander, they didn't immediately fix air and water testing problems.
- USEPA seemingly didn't approve of burning 5 railcars of vinyl chloride, nor did they create a environmental impact model for that decision.
- USEPA air testing efforts failed to accurately document acute chemical exposure risks indoors or for workers (illnesses occurred but "air is safe" claims were made)
- USEPA and other organizations have not disclosed the footprint of the chemical plume
- USEPA conducted soil testing for dioxins, but now expanding area. No plume model shared publicly.

Files and results available at www.PlumbingSafety.org

- Letter to OSHA with results and asking for worker safety investigation
- Letter to the U.S. Senate E&PW Committee with results
- Testimony to the PA Senate VA&EP Committee
- Letter to the PA Governor with results
- Letter to the U.S. House of Representatives with results
- ❖ FOIA to the CDC about East Palestine illness incident

Visit our website to learn more. All efforts are currently funded by donations.

Andrew Whelton, Ph.D., <u>awhelton@purdue.edu</u>

Volunteer scientific support team

Crowdfunding site here:

https://crowdfunding.purdue.edu/project/36991

