

Water Chemistry and Microbiology Changes as Plumbing Ages

By: <u>Maryam Salehi</u>, Andrew Whelton, Mohammad Abouali, Mian Wang, Zhi Zhou, Amir Pouyan Nejadhashemi, Jade Mitchell, Stephen Caskey

Lyles School of Civil Engineering, Division of Ecological and Environmental Engineering & School of Mechanical Engineering **Purdue University**

Department of Biosystems and Agricultural Engineering & Department of Plant, Soil and Microbial Sciences **Michigan State University**

Dec 11th, 2017

Outline

- Research Background & Significance
- □ Research Goal & Hypothesis
- Experimental Approach
- Result & Discussion
- **G** Summary
- Future Work

Residential plumbing is critical for the health and safety of populations worldwide.

5-10 million miles

Water Quality has been Monitored at Several Residential Buildings

Location and Type of Buildings (Number)		Pipe Type / Plumbing Age (years)	
USA	SFRBs (18)	nr/nr	
	NZE SFRB (1)	PEX-a/ 0.5	
	NZE SFRB & SFRB (2)	Cu, PEX/nr	
	SFRB (3)	PEX-a, PEX-b/0.5-2	
	Households (nr)	Cu, plastic/nr	
CAN	SFRBs & Apartments (nr)	Cu, plastic/ <5, >10, >40	
	SFRBs (6)	nr/nr	
ІТ	SFRBs (nr)	Metal, plastic/nr	
SWZ	Households (10)	0) nr/nr	
DE	Households (1,674)	Cu/0.5-5	
	Households (1,485)	nr	
	SFRBs (nr)	Cu, plastic, galvanized steel/nr	
	SFRBs (4)	Cu/nr	

Goal: Better Understand the Link Between Water Use & Drinking Water Quality.

Water Sampling

Water sampling (cold/hot) on day 3, 15, 30, 60 & 90

Water Quality Monitoring

Chemical Quality: Free chlorine, pH, Alkalinity, Total Organic Carbon (TOC),UV₂₅₄ absorbance, Metals, Threshold Odor Number (TON)

Bacterial Quality: Culture-based HPC & Culture-independent quantitative real-time PCR (qPCR)

Water Usage Patterns in Dec 2015

Parameter Fixture	Total Volume Used (m ³)	Number of Events	Average Elapsed Time (hr)	Maximum Elapsed Time (hr)
Service Line	5.2	3535	0.1	72
Basement-Cold	0.4	60	0.5	72
Basement-Hot	0.04	21	0.7	72
1st Floor-Cold	0.3	619	0.6	72
1st Floor-Hot	0.2	389	0.9	72
2nd Floor-Cold	0.1	145	2.0	72
2nd Floor-Hot	1.0	825	0.5	72

Water Usage Patterns

- During October to December the daily water usage varied between 0.169-0.245 m³/d.
- Basement fixture was the least used (number of events at cold: 60-105, hot: 21-69) compared to the other fixtures in the building (number of events at cold: 145-856, hot: 326-2,230).
- During October to December the most frequently used fixture was the **2nd floor hot water** (bathroom sink, number of events per month 2,230).

TOC Concentration Increased Inside the Building

Several Heavy Metals with Health & Aesthetic Limits were Detected

The **basement fixture brass needle valve** may have caused maximum Zn (5.9 mg/L), Fe (4.1 mg/L), and Pb (23 μ g/L) levels compared to other fixture water samples.

Both HPC & Gene Copy Number Increased at 1st & 2nd Floor

Greatest HPC level (856.7 CFU/mL) at day 90 basement hot water.

Positive correlations between TOC levels & bacterial gene copy numbers at water softener, 1st floor (cold), 2nd floor (cold/hot).

Water Use Influenced Chemical & Microbial Levels at each Fixture

Summary

The maximum water stagnation time was 72.0 hr.

□ Bacteria & organic carbon levels increased inside the plumbing system compared to the municipal tap water entering the building.

□ A greater amount of bacteria was detected in hot water samples compared to cold water samples.

□ At the basement fixture, where the least amount of water use events occurred, greater organic carbon, bacteria, and heavy metal levels were detected.

Future Research

□ Integrate calibrated hydraulic water quality model for different plumbing designs.

Right Sizing Tomorrow's Water Systems for Efficiency, Sustainability, & Public Health

Andrew Whelton (PI), Jade Mitchell, Janice Beecher, Joan Rose, Juneseok Lee, Pouyan Nejadhashemi, Erin Dreelin, Tiong Gim Aw, Amisha Shah, Matt Syal, Maryam Salehi

ACKNOWLEDGEMENT

Thanks to **National Science Foundation (grant CBET-1228615)** and **Environmental Protection Agency (grant R836890)** for funding.

Special thanks to Whirlpool Corporation including Eric Bowler, Jason Schneemann and Ronald Vogelwede for providing technical assistance and hosting the test-site at the ReNEWW House Project.

The authors thank Dr. Chloe De Perre for assisting in ICP-MS analysis, Celeste Bronson and Jesse Li for helping with water sampling and the TON panelists.

American Water is also thanked for providing municipal water source and treatment plant testing data.

Question & Comments

Maryam Salehi, Ph.D.Andrew Whelton, Ph.D.msalehie@purdue.eduawhelton@purdue.edu

https://engineering.purdue.edu/people/maryam.salehi.esfandarani.1