
The Most Monitored Home in America: Plumbing for Innovation and Prosperity

November, 2018 Andrew J. Whelton, Ph.D.

plumb·ing

['pləmiNG]

NOUN

the system of pipes, tanks, fittings, and other apparatus required for the drinking water supply, heating, and sanitation in a building

4000-3000 BCE

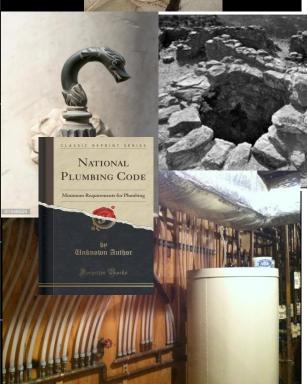
Copper water pipes in buildings (India)

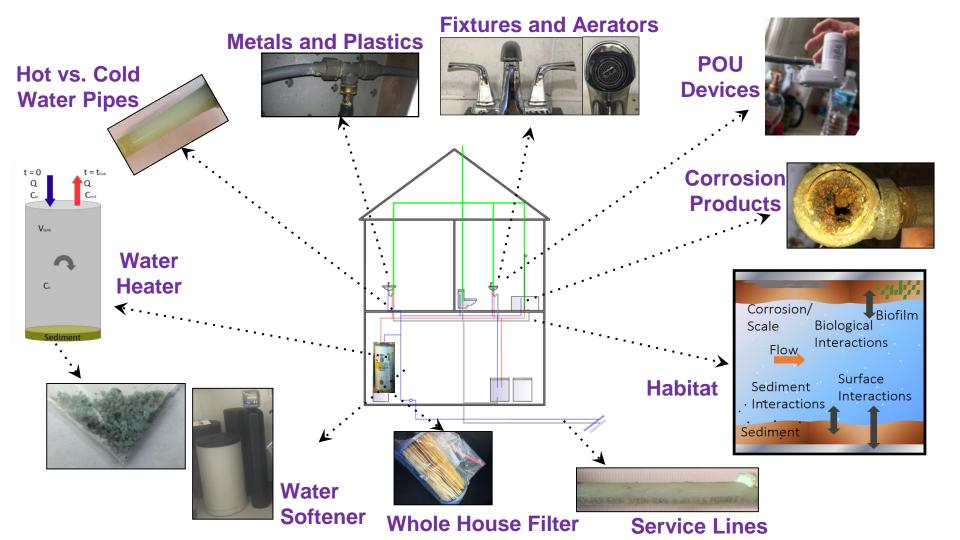
1500 BCE

Rainwater cisterns (Greece)

500 BCE- 250 AD

Lead & bronze pipes, marble fixtures, gold & silver fittings (Egypt)

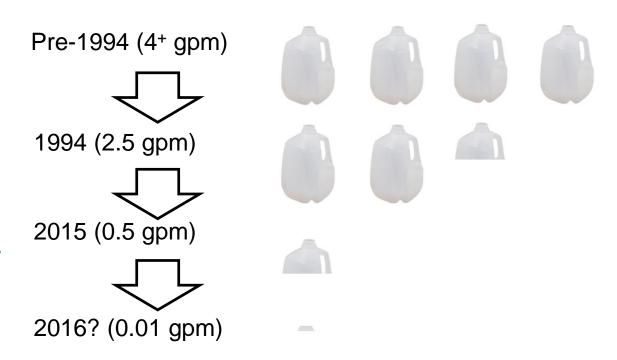

1928


First US plumbing code

1966

Copper shortage enabled plastics entry

Building plumbing is complex



Some images courtesy of: Gordon & Rosenblatt, LLC

Building Water Use has Been Declining

Energy Policy Act of 1992

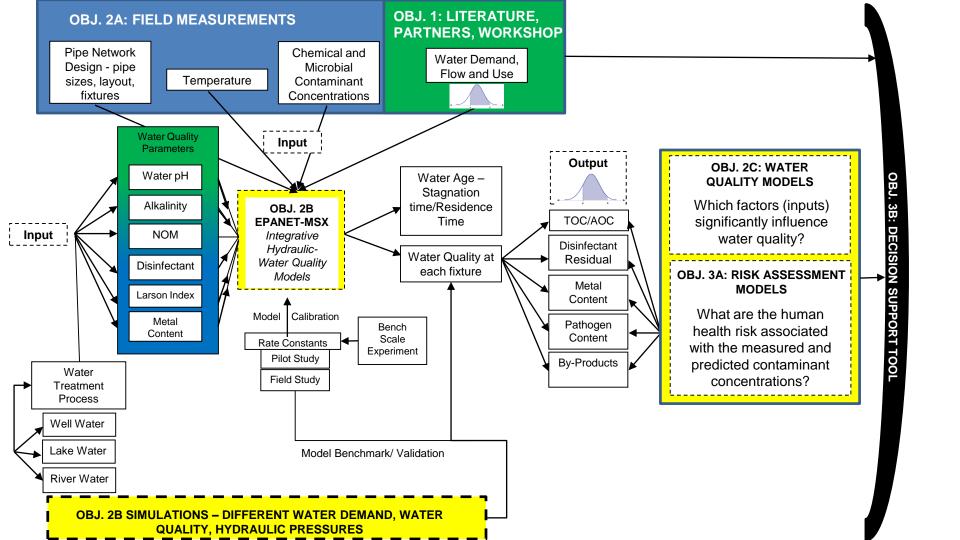
Water Use has **Decreased** From **Lower-Flow Faucets**

How old is your water before reaching the faucet?

Volume of water stored in pipes
Flowrate of water exiting the Faucet

...our water systems are not designed to handle lower use

Rebecca Ives, Kyungyeon Ra, Christian Ley, Tolu Odimayomi, Sruthi Dasika, John Mayo, Xianzhen Li, Xiangning Huang, Kara Dean, Ryan Julien, Erica Wang, Miriam Tariq, Emerson Ringger, Bill Schmidt, Kim Petersen, Caitlin Proctor, Mohammad Abouali, Paul Robinson, Jennifer Sturgis



Project Goal and Objectives

To better understand and predict water quality and health risks posed by declining water usage and low flows

- 1. <u>Improve the public's understanding of decreased flow</u> and establish a range of theoretical premise plumbing flow demands from the scientific literature and expert elicitation with our strategic partners
- 2. Elucidate the factors and their interactions that affect drinking water quality through fate and transport simulation models for residential and commercial buildings
- 3. <u>Create a risk-based decision support tool</u> to help guide decision makers through the identification of premise plumbing characteristics, operations and maintenance practices that minimize health risks to building inhabitants.

Partners, Supporters, and Participants

Visit www.PlumbingSafety.org

Obj 1. Our Industrial Stakeholders Workshop, 2017

Stakeholder Questions from the Workshop

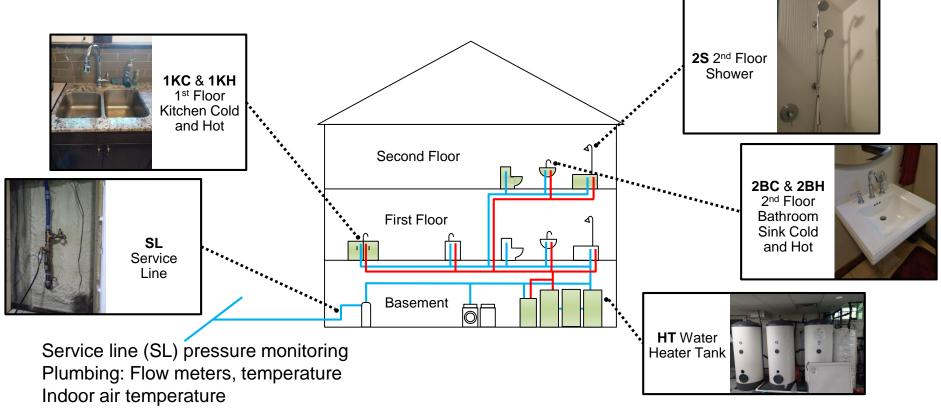
Research Theme	Priority Research Questions
Stagnation	How does stagnation affect water quality? How does stagnation affect microbial growth? How can microbial growth in the plumbing system be minimized? How can a simple experimental setup be used to study all the effects that could affect water quality in general?
Water use	How does water use vary by building type, within buildings, and with season? How is water use related to water quality? What are effective protocol(s) for collecting water use and quality data that capture variability? Do certain patterns of use or plumbing systems, such as recirculating hot water systems, pose an increased health risk?
Standards	What are the hazardous conditions in the plumbing system? What control measures are needed to address the hazardous conditions? What is the limit of acceptance? How will the system be monitored?
Risk & Disease Modeling	Do the pathogens of interest have good dose response models? What are the thresholds of safe conditions to be used for the models? How should variability and risk across different communities, such as competent versus immunocompromised, be addressed? What number of each building or community type should be investigated before we have statistical confidence that we can model risk?
Safety & Sustainability	How does water quality degrade in standard vs water-efficient buildings problems are created for different building types when low-flow fixtures are installed? What changes to standards are required to increase water use efficiency while maintaining effective sanitation and supply? When and where is it safe and practical to use reclaimed water?

To view these download our newsletter at www.PlumbingSafety.org

What is the Most Monitored Home in America?

Solar panels
Net-zero waste
Energy efficient appliances
Rainwater catchment
Greywater recycling
Online monitors throughout bldg

ReNEWW House = Retrofit Net Zero Energy, Water, and Waste


West Lafayette, Indiana
Less than 100 yards from lab
3 Bedroom, 1.5 baths
Water saving fixtures
Trunk-and-Branch design
PEX piping
Renovated in 2014

October 2017 to October 2018

Continuous monitoring of water flow, air and water temperature at service line and all plumbing components

Pressure monitoring

[Online water quality monitoring at service line]

Sampling locations 50x, hot & cold water, 7am, 12pm, 3pm

Drinking Water Quality Monitoring

Chemical

Chlorine residual, pH, temperature,
Dissolved oxygen (DO)
Total and dissolved organic carbon (TOC, DOC)
Total and dissolved metals
Ions
Total trihalomethanes (TTHM)

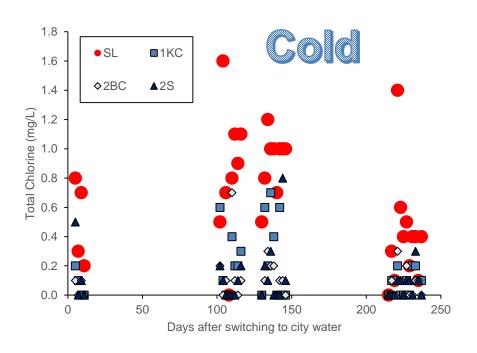
Microbial

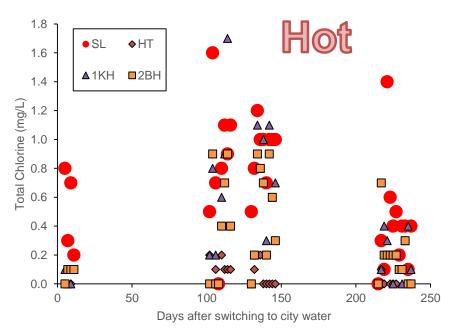
Culture-based heterotrophic Plate Count (HPC)
Assimilable Organic Carbon (AOC)
Quantitative Polymerase Chain Reaction (qPCR)

ReNEWW Home Preliminary Results

30,000+ individual water quality measurements completed - does not include flow monitoring, pressure monitoring, or qPCR

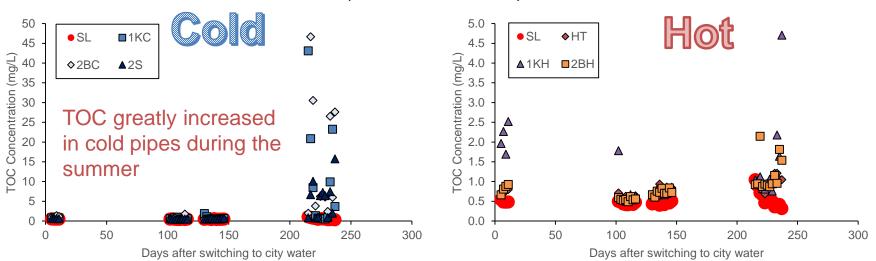
600+ million online plumbing related measurements


Water in pipes equilibrates to ambient temperature quickly (<4 hours)


Usage events are short; ~70% of events are less than 5 seconds

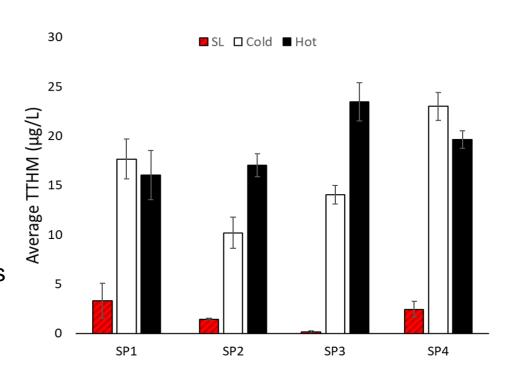
Snapshot of Preliminary Total Chlorine Results

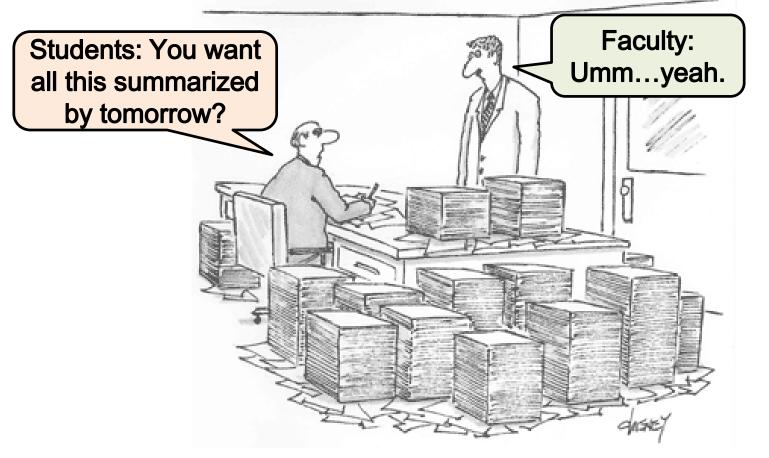
(Service line = red)


not found in more than 50% of water samples exiting the water heater, at the 1st floor kitchen sink cold, 2nd floor bathroom sink cold, and 2nd floor shower

Snapshot of Preliminary Organic Carbon Results

(Service line = red)

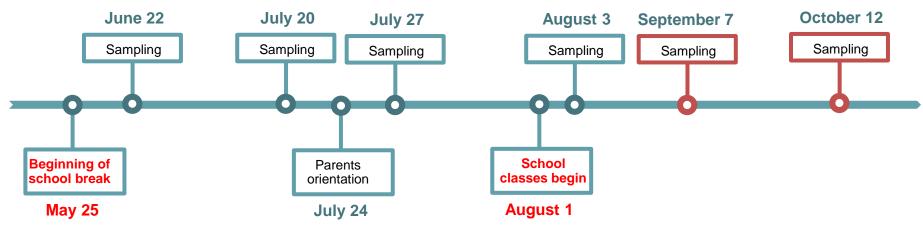

Often >70% organic carbon was dissolved

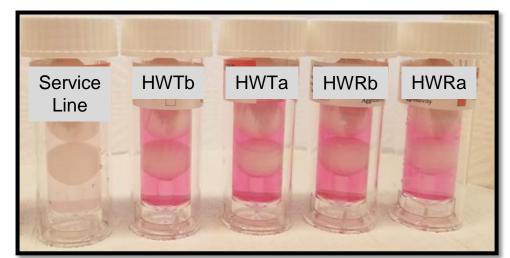

Snapshot of Disinfectant Byproduct (DBP) Results

Total Trihalomethane (TTHM) levels were consistently greater within the house when compared to city water entering the house

The concentration of TTHMs was greater in cold pipes during warmer months and in hot pipes during cooler months

98.5% of TTHMs were generated within the house


30,000+ individual water quality measurements completed **600+** million online plumbing related measurements

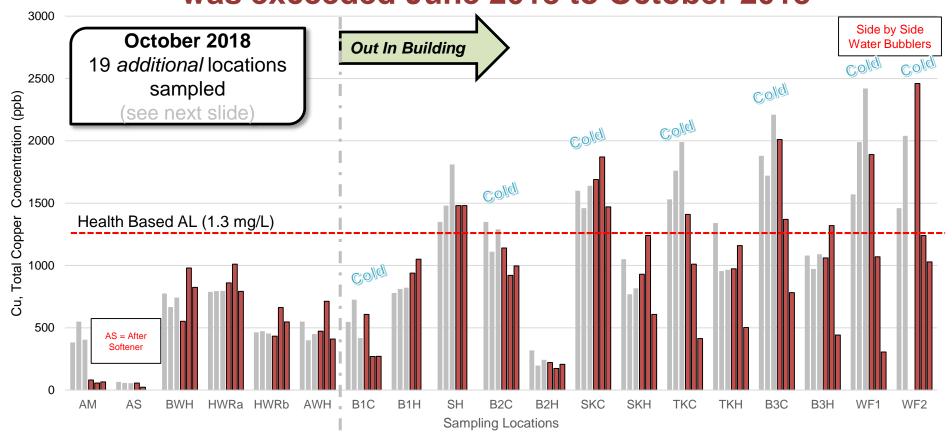

7 year old LEED middle school receives chloraminated water from a public water system; Copper plumbing, water softener, hot water recirculation system - 4 zones.

Study Goal: Understand how drinking water chemical and microbial parameters change during the <u>transition from Summer to Fall</u>

Service line, staff kitchens, bathrooms, showers, classroom, water bubblers

Preliminary Analysis: More than 4,500 Tests

Nitrifying bacteria detected in hot water system Free ammonia detected


Total chlorine_{service line} > Total chlorine_{In-building} Hot water organic carbon > Cold water

- In-building water pH: 7.2 to 8.4
- AOC <20 μg/L to about 200 μg/L
- Many more chemical, physical, & microbial parameters

Copper drinking water action level was exceeded June 2018 to October 2018

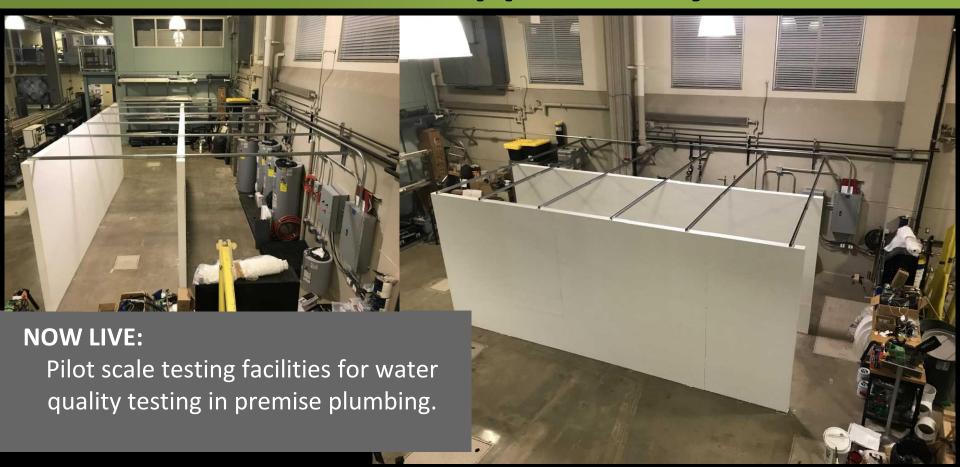
Routine Sampling	1 st grab		Our Experience with Locations		New Sampling Locations in October	1 st grab (mg/L)	2 nd grab (mg/L)
Locations in October	(mg/L)				SRS - shower room right sink	0.123	0.149
B2C		6 1.470	3 of 7 prior samples exceeded the AL		SLS - shower room left sink	0.479	0.164
	0.996			3	B2CR - bathroom 2 cold right	0.949	1.403
					B2CL - bathroom 2 cold left	1.164	1.452
SKC	1.470	0.561	7 of 7 prior samples exceeded the AL	3	SKD - student kitchen sink D	1.32	0.832
					SKF - student kitchen sink F	1.58	0.529
None of our other routine locations exceeded the copper AL FK - faculty kitchen - A108						0.831	0.120
duri	ing the Octo	ber samplin	g event		ARRS - art room right sink - F105	0.424	0.638
	4				WF3 - water fountain 3 - F112 (choral room)	1.773	1.360
of 19 R	outine S	Sampling	Locations		WF4 - water fountain 4 - F115W	1.047	0.902
		9			WF5 - water fountain 5 - B103B	0.945	0.374
					ABS - auditorium back sink	1.141	1.314
		la Ostobor wa			B3LS - bathroom 3 left sink	0.898	0.866
		In October we added 19 new cold water sampling locations			B4 - bathroom 4 - C124G - next to sink 2	1.141	0.868
					B5 - bathroom 5 - B103B	0.275	0.216
					B6 - bathroom 6 - B124B	1.097	0.819
	63				B7 - bathroom 7 - B112W - staff bathroom	0.649	0.618
	Sa				B8 - bathroom 8 - C112W - staff bathroom	0.697	0.646
					B9 - bathroom 9 - A108M - in office	0.142	0.105

- ✓ You cannot flush away this problem. It exists other places too.
 - Discarding first 250 mL of water did not consistently reduce copper levels
 - Flushing 1.5 Liters of water at each location (3-5 minutes) did not consistently reduce copper levels
 - Flushing can remove large volumes of stagnant water, but rebound likely
- ✓ POU devices likely needed and/or in-building treatment
- ✓ Additional water testing needed

Summer water quality was more degraded than fall drinking water quality after students returned

Where we are headed: Anticipate this situation through building design to avoid contaminated water

Our Plumbing Testing Facility is Ready: Plumbing, Water Use, and Water Quality Relationships



This is an opportunity.

Plumbing for Innovation and Prosperity

Questions: Andy Whelton, awhelton@purdue.edu

Learn more at www.PlumbingSafety.org

Follow us on Twitter @PlumbingSafety

Funding: Environmental Protection Agency grant R836890

