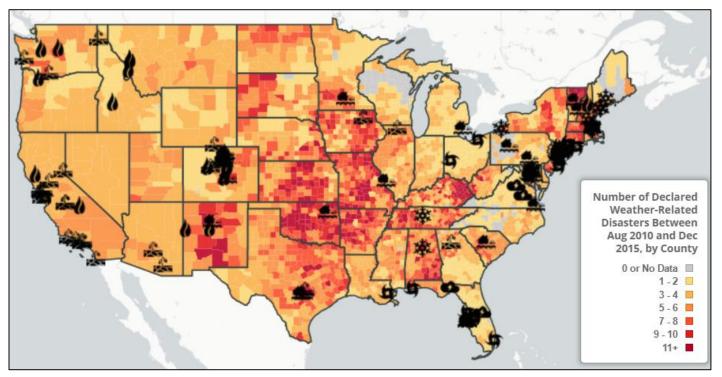
Public health lessons from disasters that affect drinking water utilities and plumbing

March 6, 2023 Andrew J. Whelton, Ph.D. Purdue University

NIPH, Oslo, Norway



Safe drinking water and infrastructure are critical to health, safety, and economic security

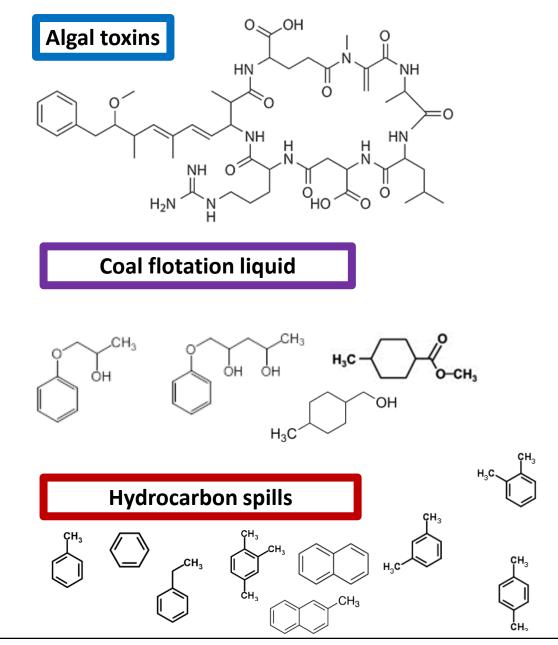
Floods, Hurricanes Tropical Storms, Tornadoes, Snow, Ice, And Wildfires

1,000s of communities each year are affected prompting drinking water safety risks

Wildland Urban Interface (WUI)

Human development intermingles with vegetative and wildland fuels Fastest growing land use 46M+ residences in 70,000 communities

EnvironmentAmerica.org


Contaminants

Organic chemicals Inorganic chemicals Radionuclides Microorganisms

A Few Examples

2023 (Chem spill and fires) East Palestine, OH, Pop. 5,000
2021 (Marshall wildfire) Boulder Co., CO, Pop: 40,000
2021 (Chem spill) Pearl Harbor, HI, Pop: 93,000
2021 (Petroleum backflow) San Angelo, TX, Pop: 101,000
2020 (Naegleria fowleri), Lake Jackson, TX, Pop: 172,000
2018 (Microcystins) Salem, OR, Pop: 199,000
2017 (E. Coli), Puerto Rico, Pop: 100,000

2013 (Naegleria fowleri) St. Bernard, LA, Pop: 44,000

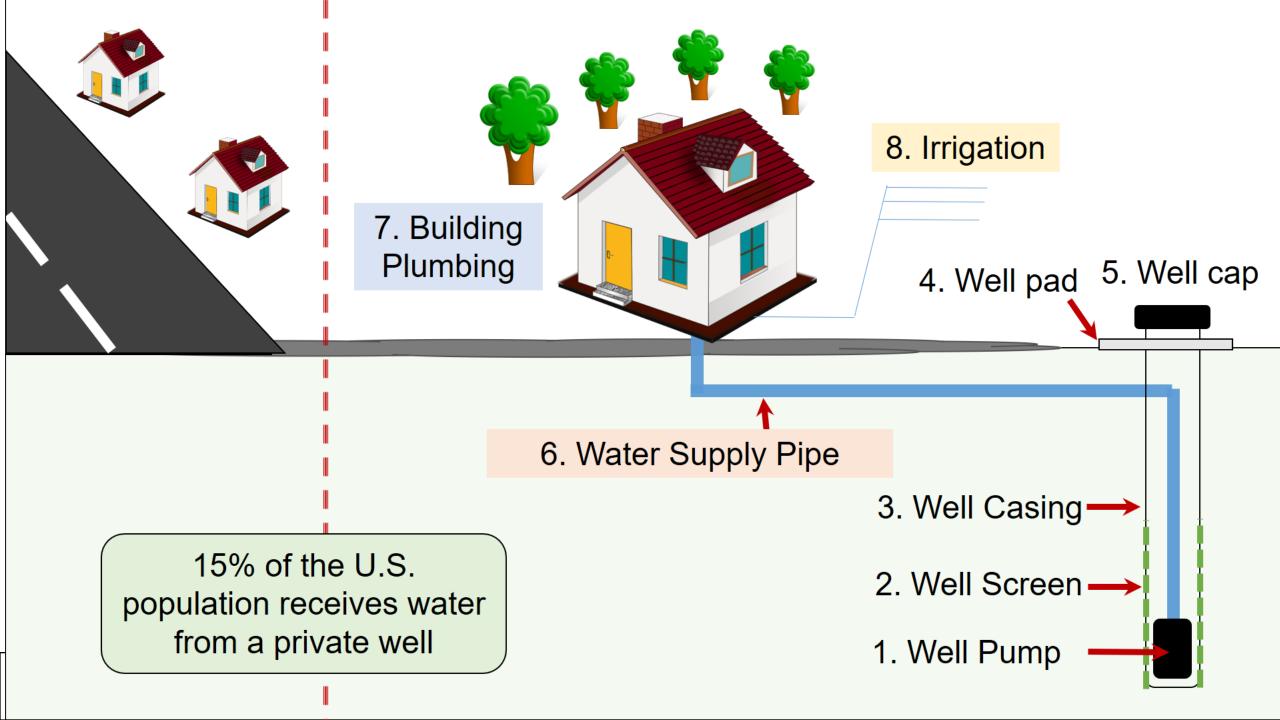
Max. Benzene	Wildfire Event / Location	Pop. Affected	System Name	Year
221	Marshall Fire/ Colorado	20,319	City of Louisville	2021
5.1	Marshall Fire/ Colorado	300	East Boulder County Water District	2021
5.5	Echo Mountain Fire/ Oregon	120	Whispering Pines Mobile Home Park	2020
11.3	Echo Mountain Fire/ Oregon	362	Hiland WC - Echo Mountain	2020
1.1	Echo Mountain Fire/ Oregon	760	Panther Creek Water District	2020
76.4	Almeda Fire/ Oregon	6,850	City of Talent	2020
44.9	Lionshead Fire/ Oregon	205	Detroit Water System	2020
1.8	CZU Lightning Complex Fire/ California	1,650	Big Basin Water Company	2020
42	CZU Lightning Complex Fire/ California	21,145	San Lorenzo Water District	2020
>2,217	Camp Fire/ California	26,032	Paradise Irrigation District	2018
38.3	Camp Fire/ California	924	Del Oro Water Co Magalia	2018
8.1	Camp Fire/ California	1,106	Del Oro Water Co Lime Saddle	2018
530	Camp Fire/ California	11,324	Del Oro Water Co Paradise Pines	2018
40,000	Tubbs Fire/ California	175,000	City of Santa Rosa	2017

			/\	Plumbing system decon	Population	Health	Duration,
Location	Year	Cause	Contaminant	method	affected	impacts	days
Nibley City, UT ⁴⁵	15	Truck spill	Diesel fuel	Flushing	5000	nr	1
Glendive, MT ⁴⁶	15	Pipe rupture, spill	Crude oil	Flushing	6000	Yes	5
Longueuil, QC, CN	15	Tank rupture,	Diesel fuel	None	230 000	No	2
		spill					
Washington, D.C. ⁴⁷	14	Unknown	Petroleum product	Flushing	Est. 370	nr	3
Toledo, OH ⁴⁸	14	Algal bloom	Microcystins ^c	Flushing	500 000	No	2
Charleston, WV ¹	14	Tank rupture,	Coal chemical	Flushing	300 000	Yes	9^b
		spill					
Jackson, WI ⁴⁹	12	Pipe rupture, spill	Petroleum product	nr	50	nr	30
Safed, Israel ³⁸	10	DS backflow	Diesel fuel	Flushing; surfactant	3000	nr	3
Boise, ID ⁵⁰	05	Unknown	TCE	Flushing	117	nr	nr
Stratford, ON, CN ⁵¹	05	DS backflow	2-Butoxyethanol	Flushing	32 000	Yes	Up to 7
Northeast Italy ⁵²	02	New pipe install	Cutting oil	Flushing	4 bldgs	nr	Months
Guelph, CN ⁵³	97	DS backflow	Petroleum product	nr	48 000	nr	3
Charlotte, NC ³⁶	97	DS backflow	Fire suppressant	Flushing	29 bldgs	No	nr
			$(AFFF)^d$				
Tucumcari, NM ^{32,54}	95	DS backflow	Toluene, phenol, <i>etc.</i> ^{<i>a</i>}	Flushing	nr	Yes	nr
Uintah Highlands,	91	DS backflow	TriMec; 2,4-D; dicamba	nr	2000 homes	Yes	nr
UT^{32}			1				
Hawthorne, NJ ³⁶	87	DS backflow	Heptachlor	Cl ₂ flush; replacement	63	No	nr
Gridley, KS ⁵⁴	87	DS backflow	Lexon DF	nr	10 homes, 1	nr	nr
			1		business		
Hope Mills, NC ³⁶	86	DS backflow	Heptachlor, chlordane	Flushing	23 homes	No	3
Pittsburgh, PA ⁵⁴	81	DS backflow	Heptachlor, chlordane	Flushing; replacement	300 (23 bldgs)	No	27
Lindale, Georgia ⁵⁵	80	DS construction	Phenolic compounds	Super-chlorination	Hospital	Yes	nr
Montgomery Cnty,	79	Tank rupture,	TCE	nr	500	Yes	nr
PA ³⁵		spill					
			` </td <td></td> <td></td> <td></td> <td></td>				

Chemical spills, backflows, algal blooms

Casteloes et al. 2015. Decontaminating chemically contaminated residential premise plumbing systems by flushing. <u>https://doi.org/10.1039/C5EW00118H</u>.

Public and private drinking water systems are vulnerable to wildfire caused chemical contamination



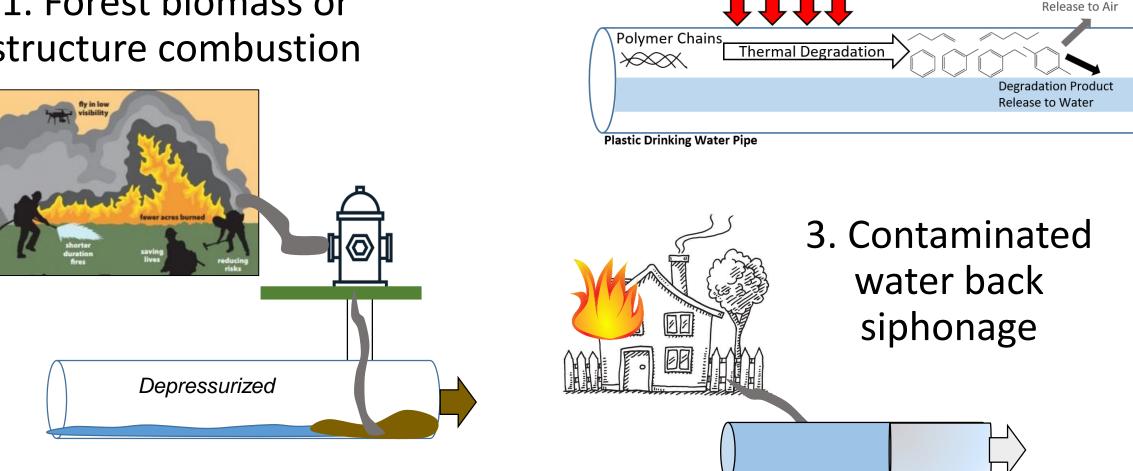
<u>Assets</u> Water source Treatment Distribution Plumbing

Damage

Loss of water pressure Water contamination Infrastructure contam. Plumbing contam.

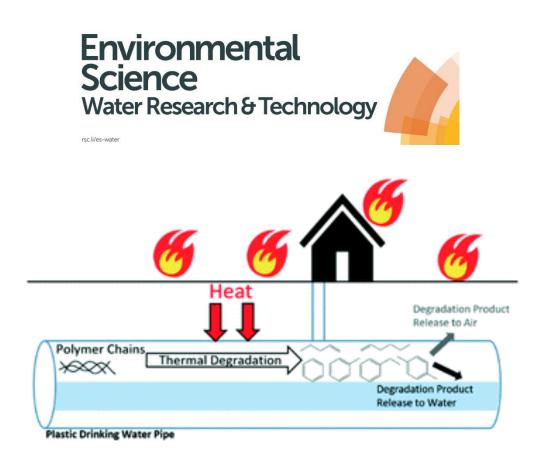
For the Tubbs Fire and Camp Fire, VOCs exceeded <u>acute</u> and <u>chronic</u> exposure limits

	Tubbs Fire (11 mo.)		Camp Fire (6 mo. post-fire)						
	Santa Rosa		PID		SWRCB	DOWC		Short-term USEPA	
Chemical	5.2 miles		172 miles		in PID	(3 systems)		1d-Health Advisory	
	n	Max	n	Max	<i>n</i> =1	n	Max	Exceeded	
Benzene	8,222	40,000	509	923	>2,217	41-26-82	8.1 -0- 46	Yes (200)	
Methylene chloride	-	< 5	р	15	-	р	р	No	
Naphthalene	661	6,800	р	278	693	р	р	Yes (500)	
Styrene	6,062	460	р	100	378	р	р	No	
TBA (NL)	339	29	р	13	-	р	р	-	
Toluene	8,222	1,130	р	100	676	р	р	No	
Vinyl chloride	6,062	16	р	1	-	р	р	No	


PID used 72 hr stagnation time; DOWC sometimes, but often used 0 hr

p = Utilities did not disclose enough information about their data

Potential PRIMARY Sources


1. Forest biomass or structure combustion

2. Plastic thermal degradation Heat **Degradation Product**

Secondary Sources: Infrastructure desorption

December 2020 Study: Thermally damaged plastic pipes can be a source of water contamination

Drinking water contamination from the thermal degradation of plastics: implications for wildfire and structure fire response, AWWA Water Science Download FREE here: https://doi.org/10.1039/D0EW00836B

Heating new HDPE, PEX, PVC, CPVC, and PP pipes < T_{deg} generated VOCs *and* SVOCs

Benzene generated by heating all pipes except PP

Once plastic cooled, chemicals leached into water

200 400°C	Con	firmatio	on of BI	Number of TICs in extract ^a		
200-400°C	Com	ponent	s in Wa			
Material	В	Т	Ε	Х	Water	<i>n</i> -Hexane
Cold water pipes	5					
PVC	\checkmark	\checkmark	_	_	4	41
HDPE	\checkmark	\checkmark	\checkmark	\checkmark	14	100
Hot and cold wa	ter pipe	es				
CPVC	\checkmark	_	_	_	3	32
PEX-a1-a	\checkmark	\checkmark	\checkmark	\checkmark	19	123
PEX-a1-b	\checkmark	\checkmark	\checkmark	\checkmark	16	122
PEX-a2	\checkmark	\checkmark	\checkmark	\checkmark	22	117
PEX-b	\checkmark	\checkmark	\checkmark	\checkmark	18	127
PEX-c1-a	\checkmark	\checkmark	\checkmark	\checkmark	19	133
PEX-c1-b	\checkmark	\checkmark	\checkmark	\checkmark	17	134
PEX-c1-EVOH	\checkmark	\checkmark	\checkmark	\checkmark	20	109
PP	_	\checkmark	_	_	6	95

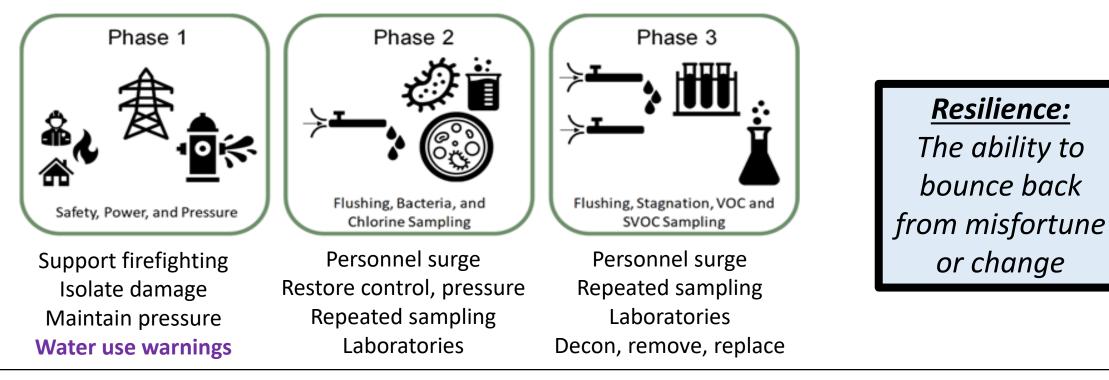
Fires are often >200°C, but ground temperature can be >100°C for hrs

Chemistry:

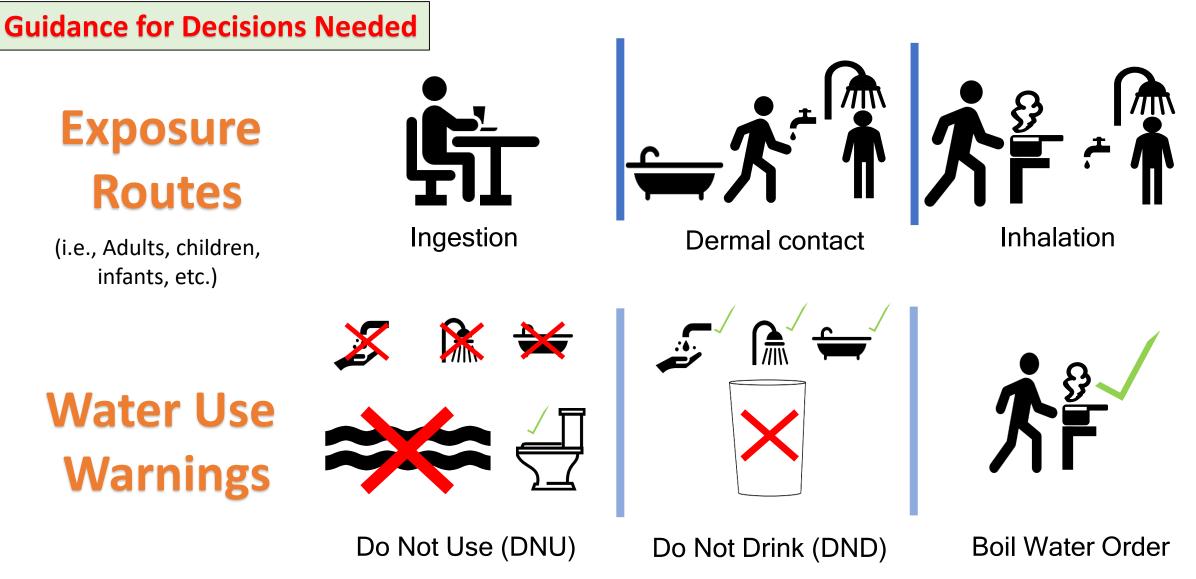
Polymer chain scission Aromatization The role of additives The role of temperature The role of RH The role of O₂ Partitioning after generation

Building codes <u>never</u> considered damaged plastic water system materials becoming a 1° or 2° source of drinking water contamination. (est. 300,000 structure fires per year in the U.S. - **NFPA**)

Water Systems Face Multiple Challenges During Wildfire Attack


Pressure, utility network and building plumbing: Leaking, destruction

Power: Electric poles down, shutoff by provider, natural gas generators destroyed, lacking fuel


Telecommunications: Outages inhibit tank level, pressure, chemical feed, and pump status monitoring

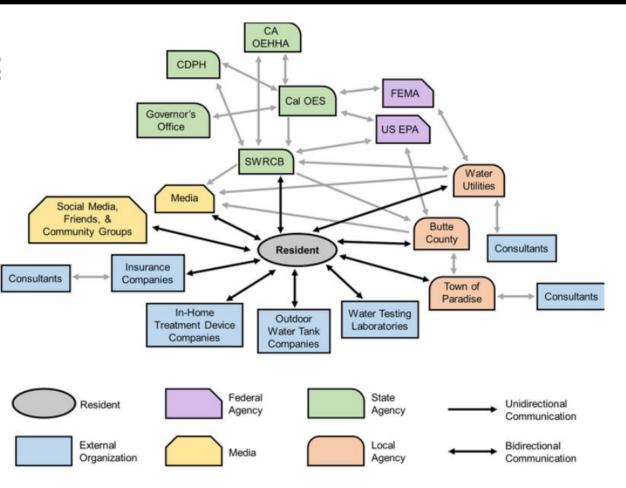
Personnel: Hazard situations, unable to respond due to staff availability

Contamination: Chemicals and microbiologicals drawn into the water system, immediate health risk

If you do not know the range of contamination, it is not advisable to use in-home water treatment devices. Those are NOT rated to make acutely contaminated water safe.

Water safety attitudes, risk perception, experiences, and education for households impacted by the 2018 Camp Fire

Natural Hazards, Published May 2021


https://doi.org/10.1007/s11069-021-04714-9

Household Public Health Support Not (yet) Based on Science

- 1) Water use restrictions
- 2) Plumbing sampling and testing
- 3) Plumbing decon and validation
- 4) Water tank selection and maintenance
- 5) In-home treatment device selection and maintenance

Rural communities are especially impacted

ERSITY

Discoveries

The Marshall Fire: Scientific and policy needs for water system disaster response


AWWA Water Science, Published January 2023 https://doi.org/10.1002/aws2.1318

- 1) Loss of power jeopardized fire-fighting and caused worker safety risks
- 2) Local/external resources were critical
- 3) SOPs for post-fire sampling, analysis, and rapid external labs are needed
- Contamination seemed to be related to depressurization and property damage, but more work is needed
- 5) Clarification on public health risks and water use conditions is needed

20 scientific and policy needs for improving water system disaster response and recovery

Water Distribution System Damage

Service lines, hydrants, and plumbing were damaged and

leaking (a,b,c,d). Some hydrants were left open, firefighting equipment was left behind (f). Water meters to properties with destroyed structures were removed (e).

Damage on Facility Property

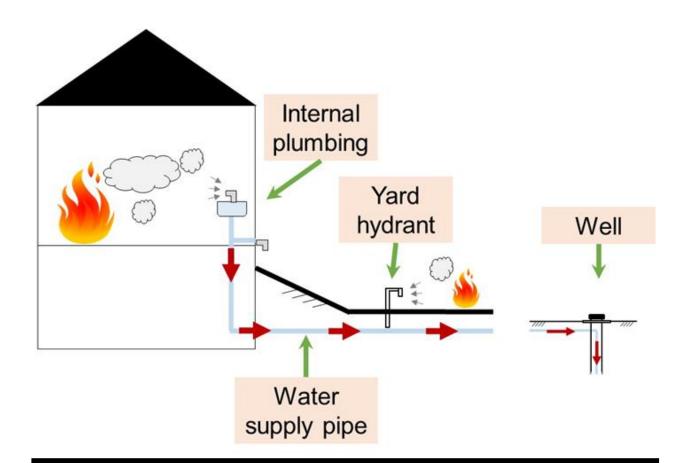
Ash was visible around and in the Superior reservoir (h), and the water treatment plant emergency generator was destroyed by fire (g). The EBCWD emergency generator air intake was clogged with debris and could not operate because of the gas shutoff (i).

Well testing after the Marshall Fire:

Evidence is lacking to inform decision making

No published data

20 different U.S. guidance documents: AK, AZ, CA, CO, KS, MN, NM, MT, OR, WA, CDC, and 2 universities (CO, IN)


- ✓ Microorganisms (20)
 ✓ Nitrate (8), Heavy metals (6)
 ✓ VOC: 9 (most said BTEX only)
- ✓ SVOC: 4 (some said PAH only)

Guidance also varied across Canadian agencies

To address this gap, we helped Boulder County and CDPHE after the 2021 Marshall Fire... but more to be done.

Wildfire damage and contamination to private drinking water wells

AWWA Water Science, Published January 2023

https://doi.org/10.1002/aws2.1319

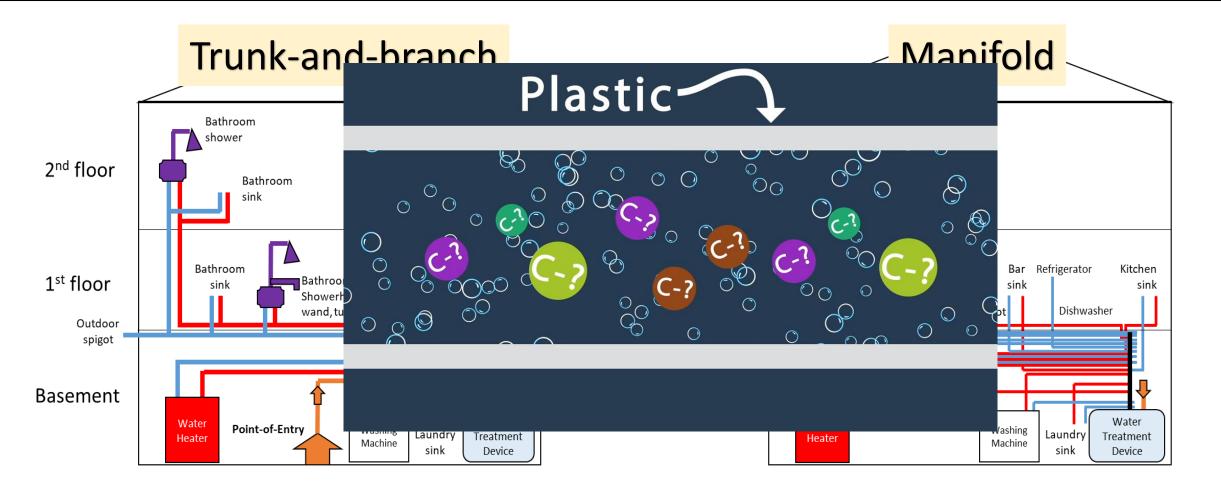
Recommendations are provided

- 1) Debris near wells had VOCs and SVOCs
- 2) Debris was found in some wells
- 3) SVOCs detected
- 4) Small water system 11 months without pressure.
- 5) Recommendations for
 - How to inspect
 - Water use considerations
 - What chemicals to look for
 - Repair considerations
 - Future research

No other wildfire drinking water wells study found in the literature

1 Example: A State primacy agency told a population they should use inhome activated carbon filters to treat wildfire contaminated drinking water

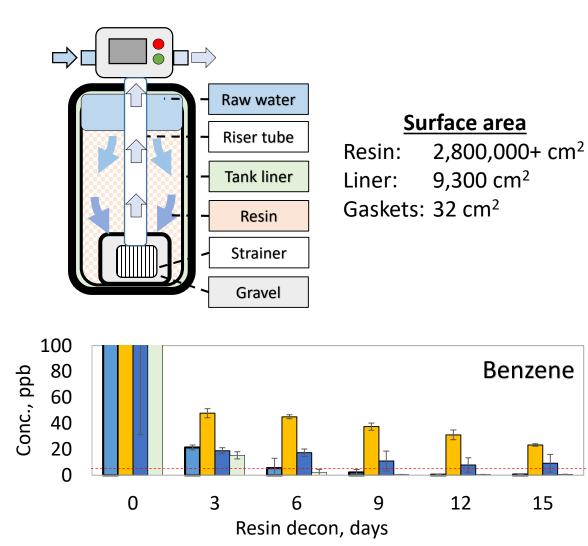
Water Collected	Preliminary Results, ppb						
and Analyze	Benzene	Toluene	Ethyl Benzene	Xylene			
Entering the filter	713	911	87	212			
Exiting the filter							
1 L	20	15	3	4			
1.5 L	33	30	5	9			
2 L	47	46	6	11			
3 L	64	75	10	21			
3.5 L	62	75	10	20			
4 L	24	22	4	5			
4.5 L	87	98	11	21			
5 L	37	37	5	8			


The devices are <u>NOT</u> designed for this. The range of contamination must be known + testing.

In 2019, CA OEHHA concluded that <u>short-term 26 ppb benzene exposure would</u> <u>prompt an increased risk of blood effects in children</u> such as a decrease in lymphocytes and white blood cells; Benzene has a 5 ppb Federal MCL, 1 ppb CA MCL

PURDUE UNIVERSITY

Discoveries


Where and how you sample (and decon) in the buildings must consider the plumbing layout and components

Discoveries

Hydrocarbon Contamination and **Decontamination of Water Softeners**

ERSITY

.... of Water Supply Connectors

After the 2014 West Va. chemical spill, the Health Department recommended discarding tubing at restaurants

Dishwasher connector – PVC

Multipurpose

tubing – PVC

Softener connector – PVC

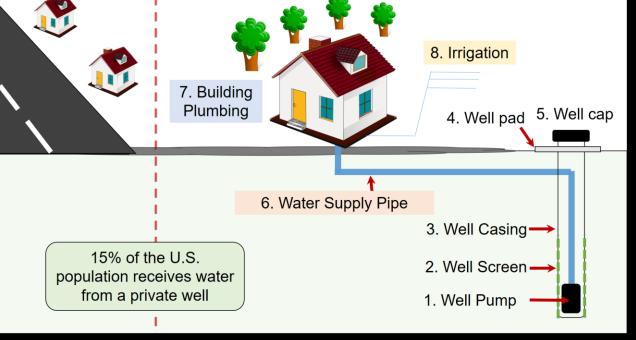
Ice-maker tubing – PE

Faucet supply line – PVC

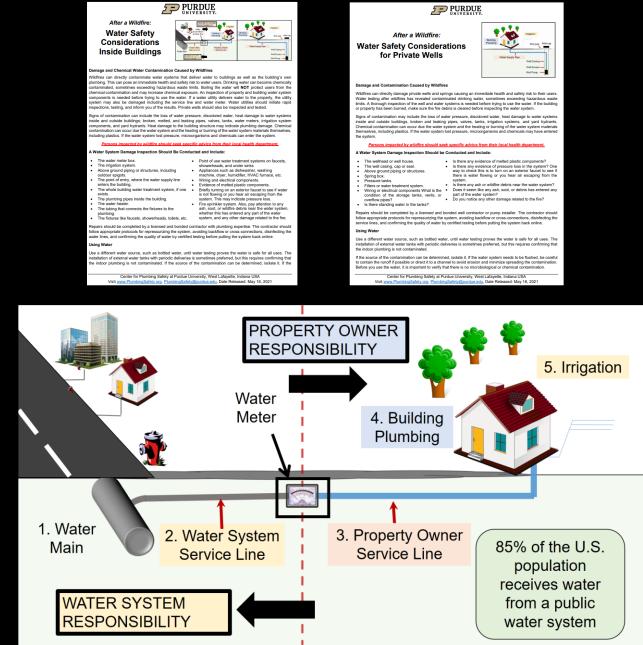
All plastics sorbed 93-100% of the BTEX in 24 hr

9 of 11 materials still exceeded the benzene MCL after 9 days of decon

Ice-maker tubing – PEX



Washing machine hose – EPDM



Jankowski, Le et al. In Prep.

We created two 1 page inspection and water testing guidance sheets for private wells and building water systems

Access here → [Click]

Ongoing Projects and Resources

East Palestine, Ohio Chemical Spill and Chemical Fires

 Feb 6

 "controlled"

 burn

149 rail cars, 38 derailed 11 derailed were combustible liquids, flammable liquids, and flammable gas.

More than 43,000 aquatic animals are dead near Ohio train derailment

Union rep: Employees reporting illness after working on cleanup for East Palestine derailment

What's on the train and caught fire?

Ethylhexyl acrylate Petroleum lube oil Semolina EGMBE Vinyl chloride **Butyl acrylate** PVC resin PE resin Frozen vegetables Propyl glycol **Diethylene glycol** Petro oil, NEC

Our Field Investigations Feb 25-27, Mar 3-4

Balls

Powder flakes

- Public not warned about contaminated creeks, no access controls
- Contractors blowing contamination into the air, no warnings or respiratory PPE
- Contamination not contained and still entering waterways 3 miles downstream
- Officials may not be testing for the right chemicals in water, lack transparency

3 weeks later

Gross contamination remains

Andrew Whelton, Ph.D. awhelton@purdue.edu

More Lessons Coming Soon

PURDUE Center for Plumbing Safety								
Home About Us - Current Project	cts - COVID-19 Response - Resources - Opinions News In	ntranet 🗸						
PURDUE / ENGINEERING / PLUMBING SA	FETY / RESOURCES	🔒 Pri						
Resources	Response and Recovery to Wildfire Caused Drinking Water							
Plumbing 101	Contamination							
Flushing Plans	Wildfires can damage buried drinking water systems as well as private drinking water wells and building plumbing, making them unsafe to u Since 2017, a growing number of wildfires have prompted chemical drinking water contamination in the United States. Levels found in som	ne water						
Plumbing Demonstrations - Camp Fire	systems have exceeded hazardous waste limits and posed an immediate health risk. To help households and building owners unders wildfire drinking water contamination public safety issues, resources were compiled below. These resources will also be of interest to officials, water providers, municipalities, emergency management, insurance companies, nonprofit agencies, elected officials, and co							
Video / Audio	Questions can be directed to Dr. Andrew Whelton at <u>awhelton@purdue.edu</u> .							
Presentations / Reports	Marshall Fire Homeowner Support							
Peer-Reviewed Publications	Letter to Homeowners Affected by the Marshall Fire in Unincorporated Boulder County (January 2022)							
Water Quality Risk Tools	Resources for Households, Private Well Owners, and Public Health Officials							
Water addity Hok 10010	Here is a list of chemicals to test for (as of May 2022) to find chemical contamination in wildfire impacted drinking water systems:							
Hawaii Response	List of Chemicals in Wildfire Impacted Water Distribution Systems [May 2022]							
Wildfire Response	These 1 page information sheets provide households and public health officials considerations for water system, inspection, testing, and po safe drinking water options when the plumbing is unsafe. These documents were developed based on firsthand experience investigating							
Survey - Camp Fire	contamination after wildfire, building plumbing, sampling, decontamination, and advising local, county state, and federal agencies. Informati these documents is partly based on practices from several health departments who have responded to wildfire caused drinking water	ion in						
FAQs - General Plumbing	contamination disasters and also influenced by our firsthand experiences and testing. After a Wildfire: Water Safety Considerations for Private Wells [May 16, 2021, Prepared by the Center for Plumbing Safety] 							
FAQs - Camp Fire Response	After a Wildfire: Water Safety Considerations Inside Buildings [May 16, 2021, Prepared by the Center for Plumbing Safety]							
	Attention: Persons impacted by wildfire should seek specific advice from their local health department.							
	Resources for Emergency Management, Water Utility, Public Health, and Elected Officials							

This video helps prepare officials for water system damage scenarios. Wildfires can damage water distribution system infrastructure both physically -and-chemically. Some damage may not be visible. Hazardous waste scale drinking water chemical contamination can be caused. This presentation does not cover all situations, but instead provides an introduction for the viewer. More information and help can be obtained by contacting the Center for Plumbing Safety.

- ✓ Post-fire chemicals to test for
- ✓ Brief videos for emergency managers and health officials
- ✓ Guidance for private well owners
- ✓ Guidance for building owners
- Federal and state government agency resources
- ✓ FEMA mitigation guidance
- Other training resources

www.PlumbingSafety.org

