

Working Toward Safer Drinking Water at Home, Work, and School

Tiong Aw

Assistant Professor
School of Public Health and Tropical Medicine
Tulane University

taw@tulane.edu

Core Team

MICHIGAN STATE UNIVERSITY

Our Project Goal

To better understand and predict water quality and health risks posed by declining water usage and low flows

Prepared by Andrew Whelton (Purdue)

plumb·ing

['pləmiNG] **NOUN**

the system of pipes, tanks, fittings, and other apparatus required for the drinking water supply, heating, and sanitation in a building

Prepared by Andrew Whelton (Purdue)

4000-3000 BCE

Copper water pipes in buildings (India)

1500 BCE -

Rainwater cisterns (Greece)

500 BCE- 250 AD

Lead & bronze pipes, marble fixtures, gold & silver fittings (Egypt)

1928

First US plumbing code

1966

Copper shortage enabled plastics entry

Building Water Use has Been Declining

Water Use Energy Policy Act of 1992

Water
Use has
Decreased
From
Lower-Flow
Faucets

Prepared by Andrew Whelton (Purdue)

Safe Water at the Tap

- While the SDWA addresses national water quality, it will be the collective efforts of the water utilities, building/ housing and plumbing professionals that achieve safe water for consumers at the tap.
- Where ever there is water there are microbes and the distribution system and premise plumbing are no exceptions.
- There is a great need to manage the microbial biofilm for pathogens that cause disease via the plumbing system.

Opportunistic pathogens are those naturally occurring microbes that opportunistically - can cause disease in humans especially those who are immunocompromised

Legionella pneumophila

Naegleria fowleri

Acanthamoeba

Mycobacterium avium complex (MAC)

Source: CDC

Opportunistic pathogens are now the primary source of waterborne disease outbreak in U.S.

Etiology of 885 drinking water-associated outbreaks, by year — U.S. 1971–2012

- Source: CDC
- **2011–2012**, 32 drinking water—associated outbreaks were reported 431 cases of illness, 102 hospitalizations, and 14 deaths
- Legionella was responsible for 66% of outbreaks and 26% of illnesses
- Most commonly identified deficiencies leading to drinking water—associated outbreaks were Legionella in building plumbing systems (66%) and untreated groundwater (13%)

Biofilms are common in all pipes

Source: The Biofilms Hypertextbook; http://biofilmbook.hypertextbookshop.co m/public_version/contents/chapters/chap ter001/section001/green/page001.html

Project Objectives

- 1. Improve the public's understanding of decreased flow and establish a range of theoretical premise plumbing flow demands from the scientific literature and expert elicitation with our strategic partners
- 2. Elucidate the factors and their interactions that affect drinking water quality through fate and transport simulation models for residential and commercial buildings
- 3. <u>Create a risk-based decision support tool</u> to help guide decision makers through the identification of premise plumbing characteristics, operations and maintenance practices that minimize health risks to building inhabitants.

Full-Scale Buildings

Efroymson Center, Indiana

ReNEWW House, Indiana

MSU Chemistry Building, Michigan

Avon Middle School, Indiana

Legacy renovated office building, 16 floors, Michigan

December Water Use, Month 3				
Water Sampling Location	Total Volume of Water Used, m ³	Number of Events	Average Stagnation Time, hr	Maximum Stagnation Time, hr
Service Line	5.2	3535	0.1	72
Basement- Cold	0.4	60	0.5	72
Basement- Hot	0.04	21	0.7	72
1st Floor- Cold	0.3	619	0.6	72
1st Floor- Hot	0.2	389	0.9	72
2nd Floor- Cold	0.1	145	2.0	72
2nd Floor- Hot	1.0	825	0.5	72

Early Results:
We monitored
water use at 4
locations in a
new green
building
during a 3
month period
(Oct to Dec)

Salehi et al. 2018.

During the same period, bacteria levels increased with time and bacteria were more numerous in hot water vs. cold water

We're currently sampling the same building for pathogens

10/16/2017

Indicates values are below limit of detection of qPCR assay

Sampling locations

*Mycobacterium log*₁₀ *gene copies /100mL*

10/10/2017

Indicates Values are below limit of detection of qPCR assay

CDC Legionella Toolkit

- Provide guidance for developing, implementing and evaluating a *Legionella* water management program for your building

Version 1.1

Developing a Water Management Program to Reduce *Legionella* Growth & Spread in Buildings

A PRACTICAL GUIDE TO IMPLEMENTING INDUSTRY STANDARDS

June 5, 2017

Top 10 Tips for Your Safety

- Clean your aerators
- 2. Do not drink water from a shower
- Do not drink hot water from a fixture
- 4. Water heater should be at least 120°F
- 5. Drain, flush-out your water heater
- 6. Flush unused faucets before use (i.e., guest bath, vacation)
- 7. Hotels, motels, hospitals? Flush taps before use
- 8. Determine what type of drinking water pipes are in your building
- 9. Do you have a lead pipe? Need a water filter
- When told to flush for a certain time period ask how that time period was determined

Learn more at www.PlumbingSafety.org

Thank You!

Acknowledgement:

Funding agency: US EPA

