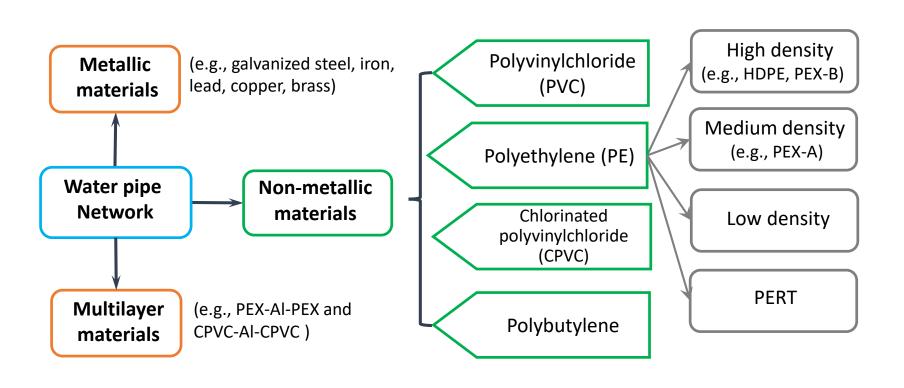




# Contaminant Accumulation and Release from Plastic Piping in Buildings

Xiangning Huang

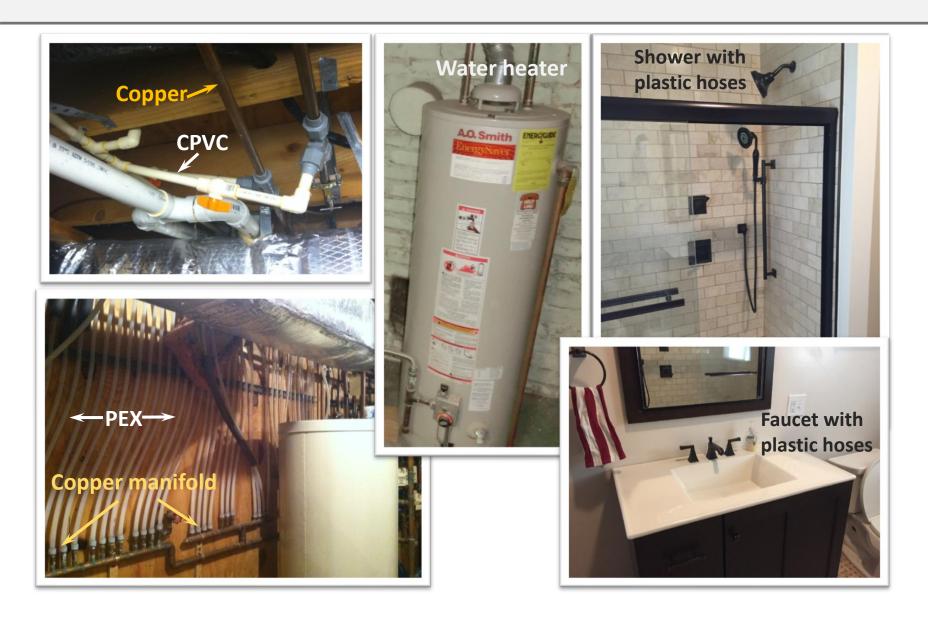

Maryam Salehi, Ph.D.

Karen S. Casteloes

Andrew J. Whelton, Ph.D.

14th Annual EPA Drinking Water Workshop August 22, 2017, Cincinnati, OH

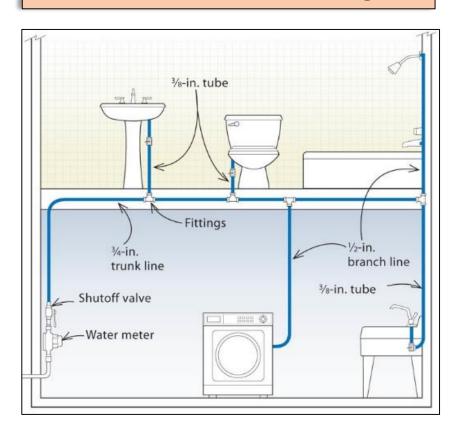
## Materials being used in drinking water systems




### Advantages of plastic pipes:

<u>Less expensive</u> and <u>more flexible</u> and can be <u>used for both cold and hot water supply</u>.

However the fate of organic and inorganic compounds within plastic piping systems has received little study...


## Building plumbing systems are complex



## Growing trend: Low-flow fixtures, different water flow designs, and plastics

### **Legacy Technology:**

Trunk-and-Branch Design



### **New** Technology:

Manifold Design

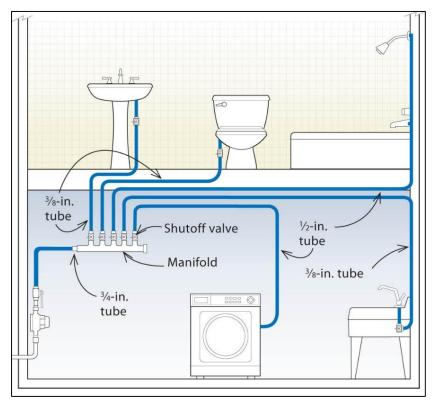



Image Source: Fine Home Building Magazine

### Outline

- Interaction of <u>organic contaminants</u> with plastic piping materials
  - Crude oil contamination with various piping materials
  - Decon of crude oil residuals through leaching only
  - Decon of crude oil residuals by other strategies
- Interaction of <u>inorganic contaminants</u> with plastic piping materials
  - Metal deposition onto plastic materials
  - Use biomass derived ligand to remove metals on plastics
- Update about the <u>plumbing research project</u> (funded by EPA)

# Crude oil constituents sometimes come into contact with drinking water plumbing pipes

|                    |         | Spill Details |              |                   | Water System Details |                            |
|--------------------|---------|---------------|--------------|-------------------|----------------------|----------------------------|
| Location           | Pop.    | Cause         | Product      | Est. Vol.,<br>gal | Alert?               | Assets                     |
| Nibley, UT         | 5,000   | Truck         | Diesel       | nr                | No                   | WTP, <b>DS</b> , <b>PS</b> |
| Mt Carbon, WV      | 2,000   | Rail          | Crude: Light | 378,000           | Yes                  | nc                         |
| Greenbrier Co., WV | 12,000  | Truck         | Diesel       | 4,000             | Yes                  | WTP                        |
| Longueuil, CAN     | 300,000 | AST           | Diesel       | 7,500             | No                   | WTP, DS, PS                |
| Glendive, MT       | 5,500   | Pipe          | Crude: Light | 30,000            | No                   | WTP, DS, PS                |

All incidents occurred in 2015

AST = Above ground storage tank; WTP = water treatment plant; DS = Distribution system;

PS = Building plumbing systems; nr = not reported; nc = not contaminated

Decontamination needed after short term contamination events (i.e., 2-5 days).

# Crude oils contain a variety of compounds that do and do not have regulated drinking water standards

- ☐ Crude oils and their related products are complex mixtures that contain **organic**, **inorganic**, and **radionuclide** compounds.
- Monoaromatic (MAHs) and polycyclic aromatic hydrocarbons (PAHs) are two classes of organic contaminants in oil products.

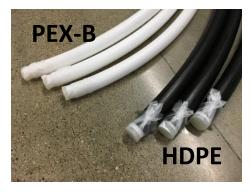
| • • • •                                  | A Deliabling Matery Consentration Reserved to Oil |                           |                               | Property                |                         |                               |  |
|------------------------------------------|---------------------------------------------------|---------------------------|-------------------------------|-------------------------|-------------------------|-------------------------------|--|
| Contaminant Detected in Oil              | Drinking Water<br>Limit, ppm                      | Concentration in Oil, ppm | Max Con. in Oil/<br>DWL Ratio | VP @ 25°C,<br>mmHg      | Sw @25°C,<br>ppm        | Log K <sub>ow</sub><br>@ 23°C |  |
| Monoaromatic Hydrocarbons (MAHs)         |                                                   |                           |                               |                         |                         |                               |  |
| Benzene                                  | 0.005                                             | 0-2866                    | 573,200                       | 94.8                    | 1,790                   | 2.13                          |  |
| Toluene                                  | 1                                                 | 136-5,928                 | 5,928                         | 28.4                    | 526                     | 2.73                          |  |
| Ethylbenzene                             | 0.7                                               | 58-1,319                  | 1,884                         | 9.6                     | 169                     | 3.15                          |  |
| <b>Total Xylenes</b>                     | 10                                                | 396-6,187                 | 618                           | 6.61                    | 178                     | 3.12                          |  |
| C <sub>3</sub> -Benzenes                 | _                                                 | 940-13,780                | -                             | -                       | -                       | -                             |  |
| Polynuclear Aromatic Hydrocarbons (PAHs) |                                                   |                           |                               |                         |                         |                               |  |
| Naphthalene                              | 0.02                                              | 3,939-20,852              | 1,042,600                     | 8.50 x 10 <sup>-2</sup> | 31                      | 3.30                          |  |
| Phenanthrene                             | _                                                 | 1,296-22,779              | -                             | 1.21 x 10 <sup>-4</sup> | 1.15                    | 4.46                          |  |
| Dibenzothiophene                         |                                                   | 609-2,033                 | -                             | 2.05 x 10 <sup>-4</sup> | 1.47                    | 4.38                          |  |
| Fluorene                                 | 0.04                                              | 513-4,986                 | 124,650                       | 6.00 x 10 <sup>-4</sup> | 1.69                    | 4.18                          |  |
| Chrysene                                 |                                                   | 167-11,887                |                               | 6.23 x 10 <sup>-9</sup> | 2.00 x 10 <sup>-3</sup> | 5.81                          |  |

### Short-term crude oil-piping material interaction

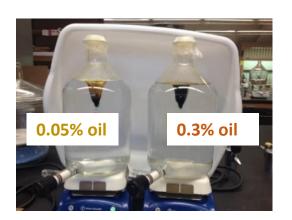
#### **Pipe materials examined** (cut into 5 ft. length):

PEX-A (medium density); PEX-B (high density); HDPE (high density); cPVC and Copper.

## Pipe disinfection protocol:


200 mg/L free chorine (diluted from 6% wt% of NaOCl, Fisher Chemical)

#### **Contamination:**


Louisiana light sweet crude (LLSC) solutions **Duration:** 3 days

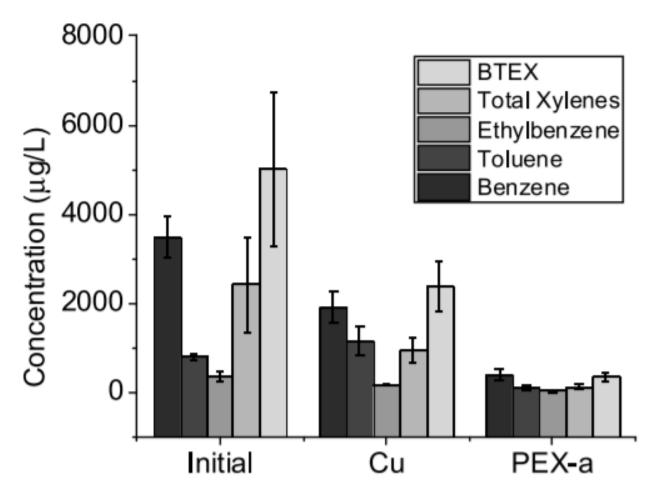
#### **Decontamination:**

Rinse, flushing and surfactant addition



<u>"Fill and drain method"</u>

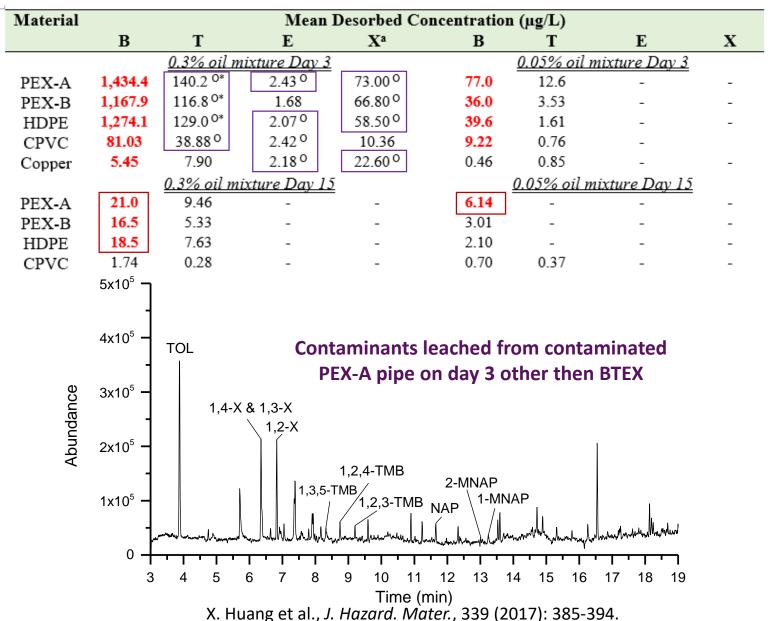



Oil mixing with synthetic water

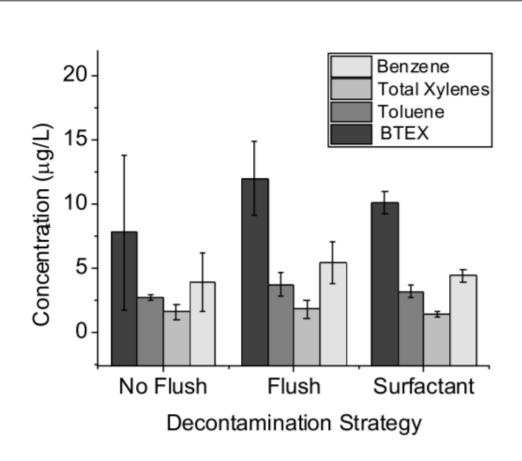
#### **Measurement Techniques**

HS-SPME-GC/MS
Liquid Injection-GC/MS
TOC analyzer
Statistical analysis

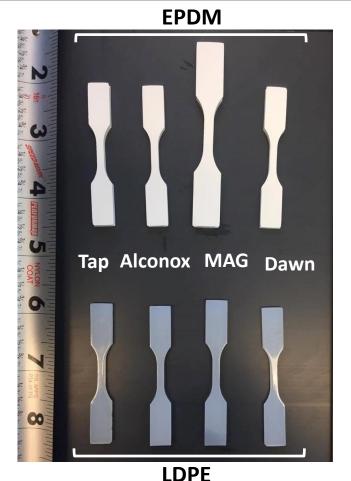
0.3% oil/water ratio was used by EPA to contaminate ductile iron and cement pipes


# Crude oil contaminated water interacted with both copper and plastic piping materials




Comparison of BTEX in initial crude oil mixture and those contacted with Cu and PEX-a piping materials after 3 days exposure period.

### Rinsing only required a long time to bring the water back in order


#### **BTEX leaching data**



# Short-term water flushing and addition of surfactant were not effective in removing crude oil residuals from plastics



Flush refers to 10 min flush at 2.5 gpm after the full removal of contaminated water. Alconox® solution (10%) was adopted as the decon surfactant.



Dimension changes of EPDM (top) and LDPE (bottom) samples exposed to various surfactants after 3 days

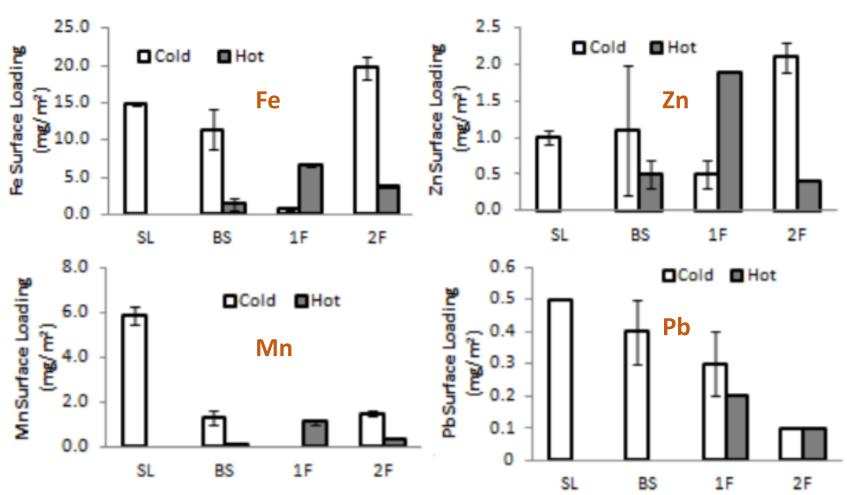
# As more plastic pipes are being installed, metal deposits are being found on their surface



**Utility HDPE Water Service Connection in Florida** 

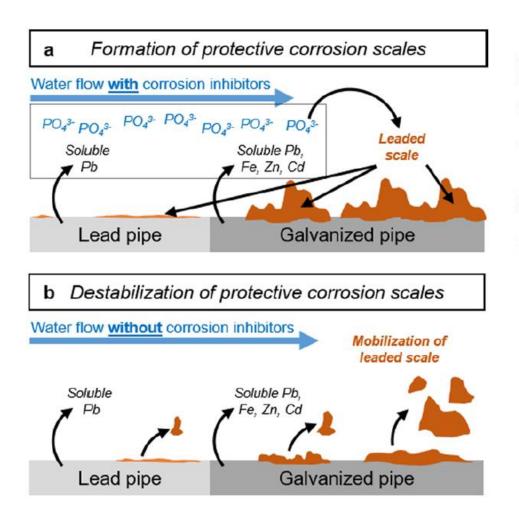


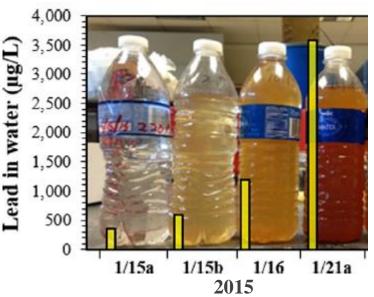
Utility PVC Water Main in Honduras




One year old PEX pipe pulled from the ReNEWW House



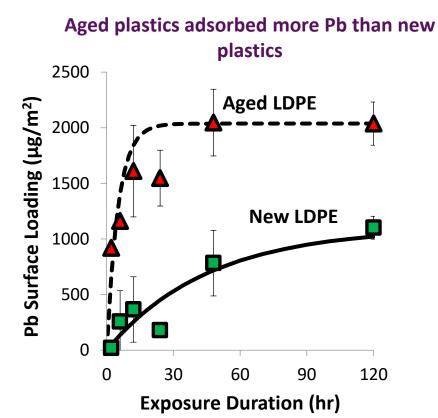

Premise Plumbing, Australia Polypropylene Pipe


Metal accumulation was found on the exhumed plastic pipes; unequal loads across the building were observed

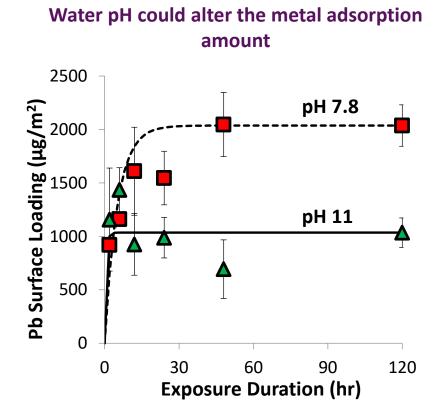


Selected metal loadings on PEX-a pipe surfaces (SL: Service Line, BS: Basement, 1F: 1st Floor, 2F: 2nd Floor).

### Elevated Pb was found from the past study

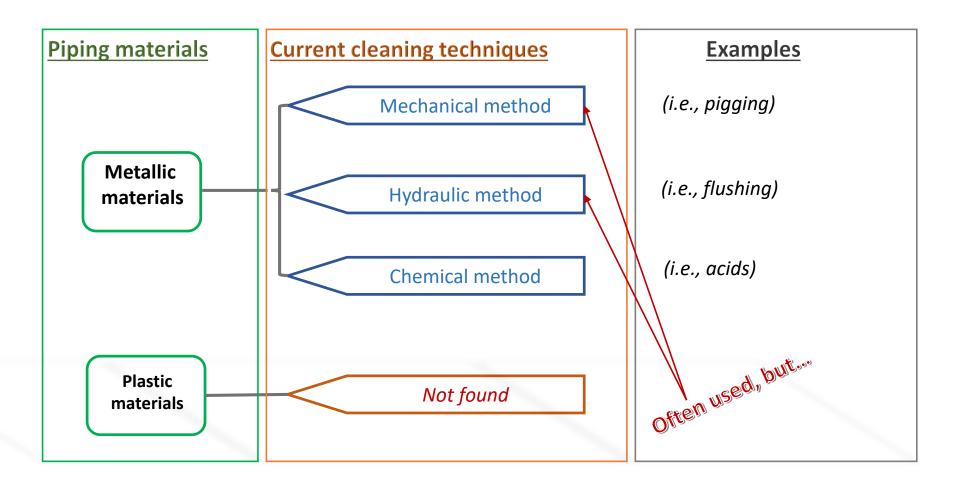




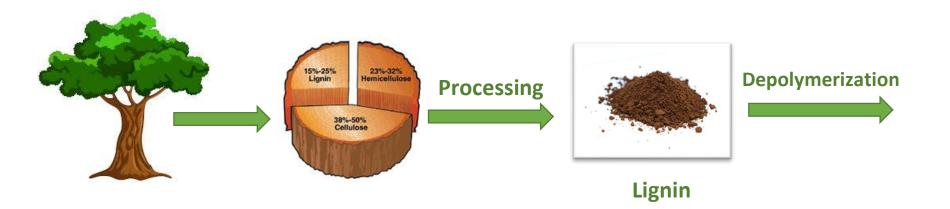


Lead drinking water action level is 15 μg/L

Change water conditions or flow patterns can affect metals released from metal piping scales into drinking water

# Bench-scale testing on Pb adsorbed onto polyethylene (LDPE) plastics and affected by different conditions



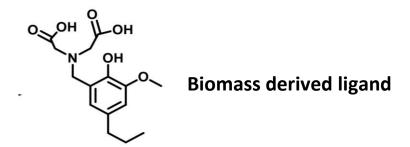

Experimental condition: PH was 7.8 with initial Pb concentration as 300 μg/L, at room temperature




Experimental condition: NEW LDPE pellets were used with initial Pb concentration as 300  $\mu g/L$ , at room temperature

# Overview of the current plumbing cleaning techniques, but no plastic pipe cleaning methods were found




### Synthesis of lignin derived DHEL



*Name:* 2,2'-((2-hydroxy-3-methoxy-5-propylbenzyl)azanediyl)diacetic acid

Abbreviation: DHEL

### Use DHEL to remove heavy metals from exhumed plastic pipes





**Exhumed pipes** were harvested from ReNEWW house.

Use simple *fill and drain method*.

DHEL concentration: 0-10 mM.

Experimental condition and duration:

At room temperature, pH = 7 for up to 7 days.

*Pipe digestion:* 2.5% HNO<sub>3</sub> for min. 48 hrs.

Measurement techniques: ICP-MS.

#### **Before treatment**



#### **Conditions**

**Control group** 

0.1 mM DHEL

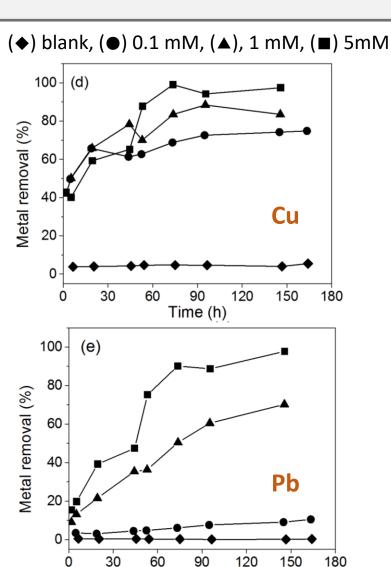
1.0 mM DHEL

5.0 mM DHEL

#### After treatment

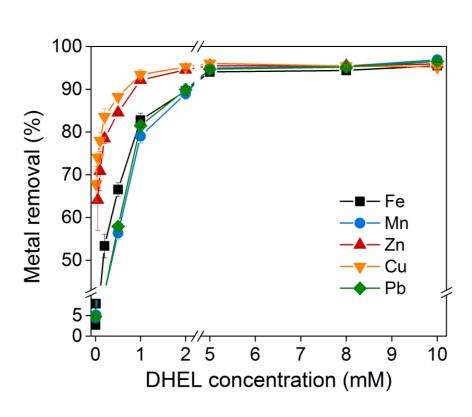


**Control group** 


0.1 mM DHEL

1.0 mM DHEL

5.0 mM DHEL


pH is unadjusted, the immersion duration was 7 days

## DHEL could achieve desired metal removal efficiency and showed preference to certain metals



Initial pH was at 7, room temperature

Time (h)



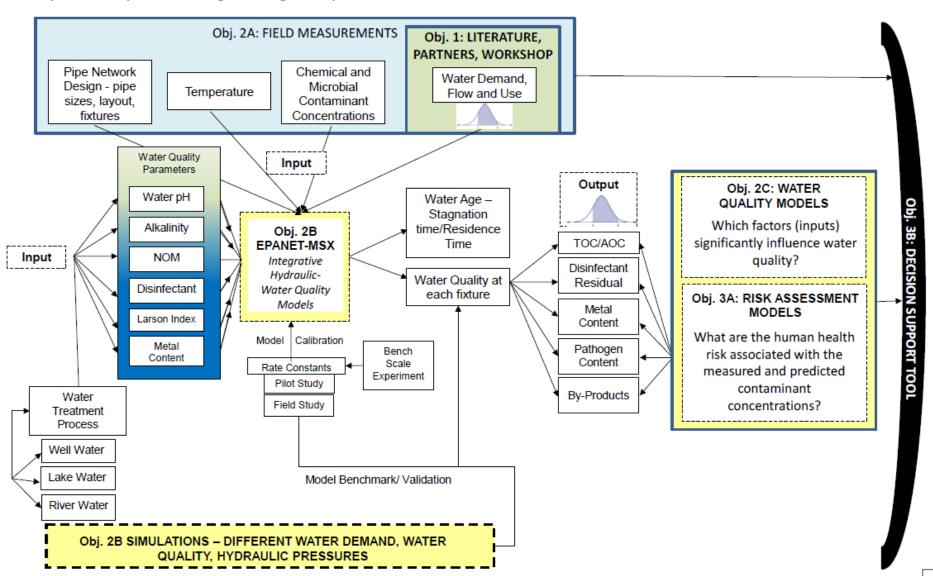

7 day exposure period: at room temperature; initial pH 7; error bars represent standard deviation for triplicates

Huang et al., J. Environ. Chem. Eng., 5 (2017): 3622-3631.

### The EPA Plumbing Project Core Team



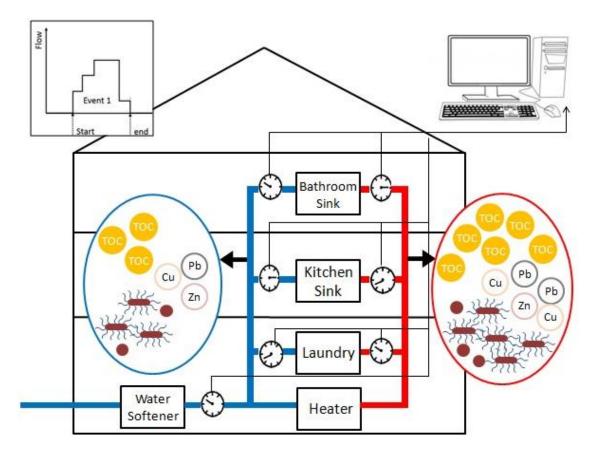







Please visit the website for more details:

https://cfpub.epa.gov/ncer\_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/10736/report/0


Develop integrative hydraulic-water quality and health risk models, and evaluate how indoor water quality would be affected by changing the water distribution system, plumbing design, operation, and fixture use conditions.



### Several full-scale buildings are being studied

| Characteristics                 | ReNEWW Net-<br>Zero Energy<br>Home, IN                                  | LEED<br>Platinum<br>Office Bldg, IN                                     | LEED Silver<br>Lab/Office<br>Bldg, MI | LEED<br>Middle<br>School, IN                  | Legacy<br>Renovated<br>Office Bldg, MI     |
|---------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------|--------------------------------------------|
| Area, square feet               | 3,000                                                                   | 22,500                                                                  | 30,000                                | 220,000                                       | 156,752                                    |
| Number of<br>Floors             | 2                                                                       | 3                                                                       | 5                                     | 1                                             | 16                                         |
| Potable water pipe type         | PEX-a plastic                                                           | Cu                                                                      | Cu & Galv.<br>Steel                   | Cu                                            | Brass (hot) &<br>galvanized Fe<br>(cold)   |
| Water heaters,<br>gal           | Two: 300 & 50                                                           | On-demand                                                               | Continuous recirculation              | Five: 300<br>each                             | Two: 75 & 115                              |
| Sample points                   | SL; 1Flr Kitchen<br>sink; 1Flr Island<br>sink; 1Flr, 2Flr<br>Bath sink  | SL; 1Flr, 2Flr,<br>3Flr Kitchen<br>sink                                 | SL; 1Flr to 5Flr<br>Bath sink         | SL; 1Flr<br>Kitchen sink;<br>1Flr Class<br>Rm | Basement, 2, 6,<br>14, 16 Flr Bath<br>sink |
| Sampling<br>approach            | For 1 wk period<br>every day,<br>1x/season;<br>then 1x/mo. for 6<br>mo. | For 1 wk period<br>every day,<br>1x/season; then<br>1x/mo. for 6<br>mo. | School start;<br>Aug-Dec<br>1x/mo.    | School start;<br>Aug-Dec<br>1x/mo.            | Apr-Sept<br>1x/mo.                         |
| Other building characteristics* | SW, SL, FF,<br>IBT, HWS,<br>LOW                                         | SL, FF, PT,<br>HWS, LOW                                                 | SL, FF, LOW,<br>HWS                   | HWS, VP,<br>LOW                               | HWS                                        |

### Preliminary water sampling results from the ReNEWW House



- ✓ The elevated metal concentrations (i.e., Zn Fe and Pb) inside of the building were due to plumbing system materials, valves and fixtures.
- ✓ Bacteria and organic carbon levels were increased within the building plumbing system.
- ✓ Compared to the cold water, more bacteria was detected in hot water samples.
- ✓ The maximum water stagnation time was found to be 3 days.

#### **HAPPENING NOW: Plumbing Safety Workshop, August 23-24, 2017**

Stewart Center, Purdue University, 128 Memorial Mall, West Lafayette, IN

#### **Goals:**

- Identify community research questions regarding water conservation and its water quality impact;
- 2. Solicit input on unpublished water use trends and conservation drivers; and
- 3. Gain feedback regarding available data to inform the project team's analysis and modeling efforts.

| Date      | Time        | Activity                                                                                                                                                                                                                    |  |  |
|-----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| August 22 | 3:00        | Optional pre-workshop site visit to the state-of-the-art ReNEWW house ( <a href="www.ReNEWW.com">www.ReNEWW.com</a> ), ride the Boilermaker; notify <a href="mailto:peters54@purdue.edu">peters54@purdue.edu</a> by July 31 |  |  |
| August 23 | 8:00-8:30   | Sign-in, food, and networking                                                                                                                                                                                               |  |  |
| _         | 8:30-9:15   | Welcome and opening remarks Overview of the group and introductions                                                                                                                                                         |  |  |
|           | 9:15-10:00  | Project Overview                                                                                                                                                                                                            |  |  |
|           | 9:45-10:45  | <ul> <li>Identifying challenges: Group Discussion Session 1</li> <li>What are the problems and challenges of greatest interest and concern to you regarding premise plumbing and water safety?</li> </ul>                   |  |  |
|           | 10:45-11:00 | Break                                                                                                                                                                                                                       |  |  |
|           | 11:00-12:00 | <ul> <li>Identifying challenges: Group Discussion Session 2</li> <li>Given these problems and challenges identified by the group, which could make the greatest difference to the future of plumbing safety?</li> </ul>     |  |  |
|           | 12:00-1:00  | Lunch                                                                                                                                                                                                                       |  |  |
|           | 1:00-2:15   | Prioritizing challenges: Group Discussion  Given these problems and challenges identified by the group, which are the highest priority for action?  What information/knowledge is needed to address these challenges?       |  |  |
|           | 2:15-2:30   | Break                                                                                                                                                                                                                       |  |  |

### Selected Whelton's group recent publication

- K.S. Casteloes et al., <u>J. Hazard. Mater.</u>, 325 (2017): 8-16.
- J.K. Hawes et al., *J. Am. Water Works Ass.*, 109.8 (**2017**).
- X. Huang et al., <u>J. Hazard. Mater.</u>, 339 (2017): 385-394.
- M. Salehi et al., <u>J. Am. Water Works Ass.</u>, 109.11 (2017).
- S. M. Teimouri Sendesi et al., *Environ. Sci. Tech. Let.*, (2017).
- A.J. Whelton et al., <u>Environ. Sci. Wat. Res. Technol.</u>, 3.2
   (2017): 312-332.

## Acknowledgements

Mian Wang, Zhe Sun, Jessica Yaputri, Devin Kelly, Stephane Andry, Jackson Coleman, Kyla Prendergast, and Yufei Zhang, *Purdue University* 

### **Special thanks to ...**

Michael Schock and Darren Lytle, EPA

David Ladner, Clemson University

Jian Zhang, John Hall, Kevin Morley and Say Kee Ong, WaterRF

Amir Pouyan Nejadhashemi, Jade Mitchell and Mohammad Abouali, Michigan State University

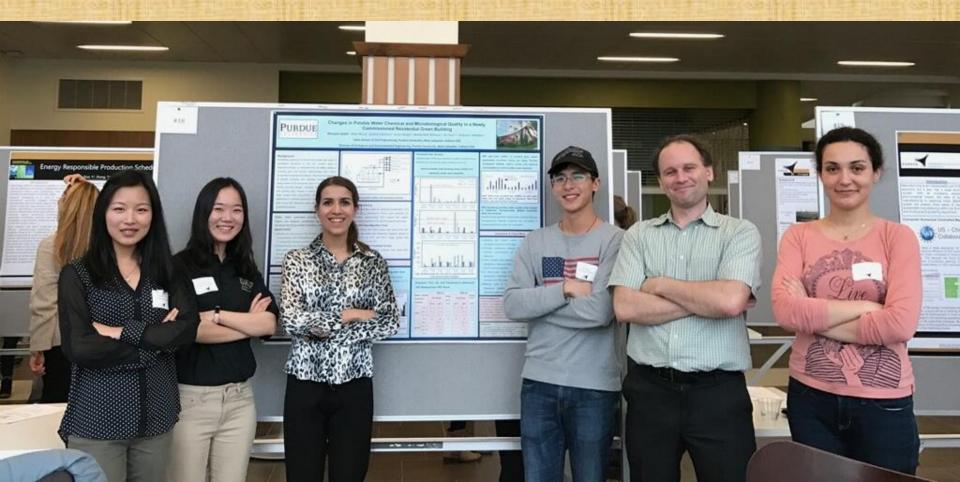
### Funded by:







Follow Us


@TheWheltonGroup

Andrew Whelton, Ph.D. T: (540) 230-6069 awhelton@purdue.edu

## Thank you!

### **Questions & Discussions**

Xiangning Huang huang250@purdue.edu

