VOC Fate in Water Systems

Discussion to Support the Water Systems Task Force

11:30 AM EST (8:30 AM PST) March 4, 2019

Convener: Andrew Whelton, awhelton@purdue.edu
Caitlin Proctor, Juneseok Lee, Amisha Shah
Purdue University & Manhattan College

CALL IN INFO

Time: Mar 4, 2019 11:30 AM Eastern Time (US and Canada)

Join Zoom Meeting

https://zoom.us/j/710128445

One tap mobile

+16465588656,,710128445# US (New York)

+16699006833,,710128445# US (San Jose)

Dial by your location

+1 646 558 8656 US (New York)

+1 669 900 6833 US (San Jose)

Meeting ID: 710 128 445

Find your local number: https://zoom.us/u/adsJGYs1YG

Agenda

5 min Review of some PID water contamination data

5 min Purdue's work on building plumbing and plastics

5 min EPA's work relating water systems

45 min + Open discussion

Only a few slides will be touched upon by Purdue/EPA. Other slides provided for background.

KEY TERMS

PID = Paradise Irrigation District VOCs = Volatile organic compounds SVOCs = Semi-volatile organic compounds

Review of some PID water contamination data

Andrew Whelton, awhelton@purdue.edu Caitlin Proctor, Juneseok Lee, Amisha Shah

Review of PID's Water Contamination Data: Let's First Compare PID and the City of Santa Rosa Fire Damage Areas

Fire Impact Characteristics	PID, 2018 Camp Fire	City of Santa Rosa, 2017 Tubbs Fire	
# of People	26,032	932 (35 in standing homes)	
# of Service Lines	10,480	542 (13 remained)	
Types	HDPE, copper, PB	HDPE, copper, PB	
Water Mains, miles	172	5.2	
Types	PVC (35%), Steel (33%), CML (19%), AC (10%), Irons (6%)	PVC (85%), AC (15%)	
# of Hydrants	1,400	64	
Storage Tanks	6 for 10 Million Gallons	0	
Pump Stations	1 of 1	0	

Santa Rosa serves 175,155 people. Less than 0.5% were affected by the Tubbs Fire

Review of PID's Water Contamination Data:

So far benzene has exceeded the drinking water limit, but PID results are too limited to predict the future

Chemical Detected	PID as of Feb. 13		DDW 1 sample	City of Santa Rosa as of Feb. 23	
Detected	n	Max	in PID	n	Max
Benzene	118	410	2,217	8,222	40,000
Naphthalene	35	278	693	661	6,800
Styrene	35	30.0	378	6,062	460
TBA (NL)	0	-	-	339	29
Toluene	35	90	676	8,222	1,130
Vinyl chloride	35	ND	1	6,062	16

CA Notification levels
(NL): health-based
advisory levels
established by DDW
for chemicals in
drinking water that lack
maximum contaminant
levels (MCLs).

- <u>Santa Rosa:</u> Highest levels typically found at meters
- <u>PID:</u> Not many meter samples yet

TBA, tert-butyl alcohol has a health based drinking water limit, is an EPA Method 524.2 compound, but PID has not tested for it

Other Chemicals were Found during Santa Rosa's Exploratory Testing

VOCs

- 18 others found in Santa Rosa and tentatively identified compounds (TICs)
- PID has not tested for 5 VOCs or TICs
 Waterboard analyzed TICs for 1-2 samples

SVOCs

- Santa Rosa tested for SVOCs during exploratory testing
- PID has not tested for SVOCs

After the exploratory phase was complete, Santa Rosa decided on 33 specific chemicals (wide scan VOC) for recovery testing

Chamical Datastad	PID		DDW in	City of Santa Rosa		
Chemical Detected	n	Max	PID + TICs	n	Max	
Acetone	0	-	-	660	880	
Acetonitrile	0	-	-	339	9.1	
Acrylonitrile	0	-	-	660	7,300	
N-Butyl benzene	35	1.4	-	661	2.3	
Chlorobenzene	35	5	-	6,062	50	
Chloroethane	35	nd	-	661	1.6	
<i>o</i> -Dichlorobenzene	35	0.5	-	6,062	2.2	
<i>p</i> -Dichlorobenzene	35	1	-	6,062	nd	
Ethyl benzene	35	24.6	76.0	8,222	106	
Isopropyl benzene	35	0.6	-	661	5.1	
N-Propyl benzene	35	nd	-	661	2.2	
MEK, Methyl ethyl ketone	0	-	-	660	230	
MTBE	35	nd	-	6,062	2.5	
THF	0	-	-	339	1,100	
1,3,5-Trimethylbenzene	35	1.3	-	661	2.1	
1,2,4-Trimethylbenzene	35	3.2	-	661	12	
<i>o</i> -Xylene	35	18.4	27.6	8,222	77	
<i>m-,p</i> -Xylene	35	50	39.5	7,883	55	

Purdue University's Work on Building Plumbing and Plastics

Andrew Whelton, awhelton@purdue.edu Caitlin Proctor, Juneseok Lee, Amisha Shah

Visit <u>www.PlumbingSafety.org</u>

plumb·ing

['pləmiNG] **NOUN**

the system of pipes, tanks, fittings, and other apparatus required for the drinking water supply, heating, and sanitation in a building

4000-3000 BCE

Copper water pipes in buildings (India)

1500 BCE

Rainwater cisterns (Greece)

500 BCE- 250 AD

Lead & bronze pipes, marble fixtures, gold & silver fittings (Egypt)

1928

First US plumbing code

1966

Copper shortage enabled plastics entry

A single faucet can contain a variety of metal and plastic materials

Inside of a single faucet (pictured left), one can find many different materials (right), including several types of plastic.

Residential Plumbing **7** Commercial Plumbing

- Flow demands
- Fixture use (stagnation) frequency
- Pipe size and device layouts
- Types of contact materials (SA/V)
- In-building storage volumes
- In-device temperatures and profiles
- And more...

Commercial

Schools Offices

Multi-Family

Hospitals

Daycares

Extended Care

Government Buildings

Correctional Institutions

Hotels & Motels

Sports & Entertainment

Venues

Summer Communities,

Casinos,

and more...

Premise plumbing is complex

Where plastics can be in building drinking water plumbing

At Fixtures

- Faucets
- Faucet connectors
- Showerheads
- Shower/tub wand

Drinking water pipe – cold

HDPE, PVC

Drinking water pipe – cold/hot

• PB, PEX, CPVC, PP, multilayer Interior pipe coatings

Appliances

 Water heaters, dishwashers, washing machines, humidifiers, refridgerators

In-building devices

Water softeners, filters, tanks

Other places

 Valves, fittings, couplings, refrigerator lines, gaskets

And more...

Water Stagnates Differently in Different Parts of the Plumbing

Location in Single Family 3 Bed, 1.5 Bath Home	Daily <u>Average</u> Stagnation Time	
Building Service Line	0.1 to 0.5 hours	
1 st Floor Kitchen Sink Cold	1.0 to 2.2 hours	
2 nd Floor Bathroom Sink Cold	2.2 to 5.3 hours	
Water Heater	0.4 to 0.7 hours	
1 st Floor Kitchen Sink -Hot	1.0 to 1.6 hours	
2 nd Floor Bathroom Sink Hot	1.1 to 2.5 hours	
2 nd Floor Shower	2.3 to 5.7 hours	

More than 1 million measurements per location, 2017-2018, Indiana

Stagnation can allow time for chemicals to DIFFUSE into and out of plastics.

After a disaster, in-building stagnation can increase because of less water use

VOCs and SVOCs can be difficult to remove from plastic materials

- Purdue (2017): VOCs more easily removed from copper pipes than plastic. 30 days for benzene removal from PEX pipe after only short 24 hr exposure. Less time needed for CPVC pipe. 6 days for copper pipe.
- Purdue (2017): Surfactant solution found to catastrophically damage plumbing gaskets and PEX pipe
- Purdue (2017): Procedure for water heater decontamination by flushing
- Purdue (2015): Plumbing decontamination by flushing not always effective
- Others (2015): PVC resists VOC (BTEX) permeation at low concentrations
- Circa Purdue (2009/2011): Chemicals diffused *into* older plastic pipes faster than newer pipes, PB, HDPE, PEX vulnerable
- Pennsylvania (1981) and New Jersey (1987): Flushing unable to reduce pesticide plumbing chemical levels below acceptable exposure limits.
 - Hot water had significantly greater pesticide concentrations than cold water
 - Service lines and plumbing components were replaced.

Directly relevant studies can be found here...

Case study: the crude MCHM chemical spill investigation and recovery in West Virginia USA. 2017. *Environmental Science: Water Research & Technology*. DOI: http://doi.org/10.1039/C5EW00294J

Investigation of the factors that influence lead accumulation onto polyethylene: Implication for potable water plumbing pipes. *Journal of Hazardous Materials*. DOI: https://doi.org/10.1016/j.jhazmat.2017.12.066

Crude oil contamination of plastic and copper drinking water pipes. 2017. *Journal of Hazardous Materials*. DOI: https://doi.org/10.1016/j.jhazmat.2017.06.015

Predicting Contaminated Water Removal from Residential Water Heaters under Various Flushing Scenarios. 2017. *Journal of the American Water Works Association*. DOI: https://doi.org/10.5942/jawwa.2017.109.0085

Tap Water And Indoor Air Contamination Due To An Unintentional Chemical Spill In Source Water. 2016. Interaction between Theory and Practice in Civil Engineering and Construction. https://www.isecsociety.org/ISEC PRESS/EURO MED SEC 01/pdf/AW-11 v2 297.pdf

Residential Tap Water Contamination Following the Freedom Industries Chemical Spill: Perceptions, Water Quality, and Health Impacts. 2014. *Environmental Science & Technology*. DOI: http://doi.org/10.1021/es5040969

Case study: the crude MCHM chemical spill investigation and recovery in West Virginia USA. 2017. Royal Society of Chemistry Environmental Science: Water Research and Technology. DOI: http://doi.org/10.1039/C5EW00294J

Metal Accumulation in Representative Plastic Drinking Water Plumbing Systems. 2017. *Journal of the American Water Works Association*. DOI: https://doi.org/10.5942/jawwa.2017.109.0117

In-situ cleaning of heavy metal contaminated plastic water pipes using a biomass derived ligand. 2017. *Journal of Environmental Chemical Engineering*. DOI: http://doi.org/10.1016/j.jece.2017.07.003

We have field- and pilot-scale plumbing studies ongoing for other efforts

Center for Plumbing Safety

Home

About Us +

Current Projects -

Resources -

Intranet -

News Paradise water contamination widespread, could affect home plumbing (Chico News & Review) Scientists warn everyday activities may be infecting humans with dangerous bacteria (Daily Mail) Scientists warn poor plumbing is fueling harmful micro organism (Infosurhoy) Plumbing research newsletter - September 2018 Check out the September 2018 issue of Tapped Into Plumbing, featuring a variety of articles on plumbing safety and research.

Project focuses on reducing pathogen threat in low-flow water systems

Thank you for visiting. This website is designed to provide information to persons who drink water in buildings, as well as building construction, plumbing, water utility, education, and public health sectors. Together, we are working to understand how to make certain the water you use at home, at work, and at schools is safe. Please contact us if you have any questions at PlumbingSafety@purdue.edu.

Partner Institutions:

Questions: Andrew Whelton, awhelton@purdue.edu Learn more at www.PlumbingSafety.org

Caitlin Proctor, Andrew Whelton

Stages of Santa Rosa water quality response to the Tubbs Fire

- Q1 (Oct Dec 2017). Immediately after fire, discovering problem.
- Q2 (Jan Mar 2018). Deep into response phase, figuring out approach for sampling. Many samples taken with wide analysis.
- Q3 (Apr Jun 2018)
- Q4 (July Sept 2018)
- Q5 (Oct Dec 2018)
- Q6 (Jan Mar 2019)

Samples	These chemicals exceeded health-based limits						
Taken	Benzene	Naphthalene	TBA	Toluene	Styrene	Vinyl chloride	
Q1	481	1	0	481	1	1	
Q2	3375	660	339	3375	2089	2089	
Q3	1739	0	0	1739	1345	1345	
Q4	1782	0	0	1782	1782	1782	
Q5	703	0	0	703	703	703	
Q6	142	0	0	142	142	142	

Was benzene a "good indicator" in Santa Rosa's WATER DISTRIBUTION SYSTEM?

- Looking at the 51 chemicals that were detected:
- For 17 chemicals, Benzene was a reasonably good indicator.
 - Whenever a sample was "benzene clear", the other chemical was **not** detected.
 - In at least one sample, benzene and this chemical co-occurred.
- For 15 chemicals, Benzene was a very bad indicator.
 - The highest concentrations were in samples that were "benzene clear".
 - For TBA, this included several samples which exceeded notifiable limits.
- For 19 chemicals, the relationship was unclear, but likely bad.
 - Detected even if "benzene clear", but not in its highest concentration.
 - For 5 analytes, at least one "benzene clear" sample had a concentration in the same range (within 50%) as the highest concentration measured.

Seemed good for:

1,1-Dichloroethane
1,1,1-Trichloroethane (TCA)
1,2-Dichlorobenzene
1,2-Dichloropropane
1,2,3-Trichlorobenzene
1,2,4-Trimethylbenzene
1,3-Dichloropropane
1,3,5-Trimethylbenzene
Bromomethane
Chlorobenzene
Chloroethane
<i>n</i> -Butylbenzene
<i>n</i> -Propylbenzene
<i>p</i> -Isopropyltoluene
Tetrachloroethene (PCE)
trans-1,3-Dichloropropene
1,2-Dichloroethane (EDC)

Seemed bad for:

Unclear relationship for:

Acetone
Acrylonitrile
Bromoform
Chloromethane
Ethylbenzene
Isopropylbenzene
<i>m+p</i> -Xylene
Naphthalene
<i>o</i> -Xylene
Styrene
Toluene
Vinyl chloride
Xylenes (total)

"benzene clear" sample in same range as max seen:

Chloroform
Dibromochloromethane
Iodomethane
Methyl ethyl ketone
Total Trihalomethanes

www.PlumbingSafety.org

Our website has historically been dedicated to answering plumbing safety questions for our other efforts.

Because of public demand, we will begin providing educational information to respond to Camp Fire plumbing questions.

A Camp Fire area continuing problem: There are no representative <u>building plumbing</u> testing results to make public health or safety decisions with.

