Preliminary Results: Challenges and Solutions for Small Drinking Water Systems and Private Well Owners Impacted by the Marshall Fire

April 13, 2022

Andrew J. Whelton, Ph.D., Caroline Jankowski, Kris Isaacson, Christian Ley, Ph.D., Myles Cook, Madeline Larsen, Deepika Solamathu

Email: <u>awhelton@purdue.edu</u>

Web: www.PlumbingSafety.org

2214580 RAPID: Drinking Water System Contamination Response & Recovery Following the 2021 Colorado Fires

A PWS supplies >25 of the same people >6 months/year

A 'small' PWS serves <10,000 people

Small systems serve 78% of the U.S. population

Purpose

Support owners and users of small water systems and private drinking water wells in Boulder County after the Marshall Fire.

Goal

To better understand water infrastructure system damage and water contamination potential for small water systems and private well owners.

Objectives

- (1) Document experiences of the small water systems and review system data
- (2) Inspect private wells and conduct water testing to determine if *gross* volatile organic compound (VOC), semi-volatile organic compound (SVOC), or heavy metal contamination was present
- (3) Identify scientific and policy-gaps that inhibit better public health protection

Audience

Small water system and well owners and government sectors for improving their decision-making processes during incident response and recovery

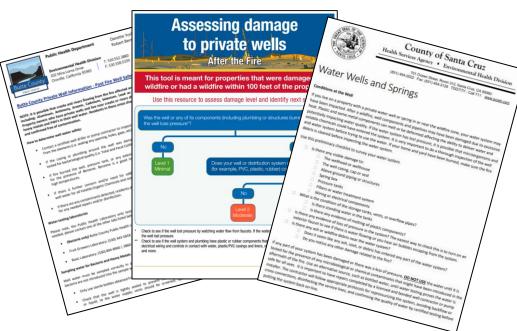
Name (population)	D/D Properties	Power Loss?	Chemical Contamination?	Mains, miles	Hydrants	Finished Water Storage, MG	Raw Water
EBCWD (300)	72 of 137	Yes	Yes	8	40	0.1	Lafayette
S.S. Mobile Home Park (150)	3, wind	Yes	No	<1	0	None	1 Well

PWS until early 2000s

Post-fire:

- Inoperable since Dec 30
- FEMA denied funding

8 homes, not an HOA


1 well, 1 chlorinator, flow,
pressure monitoring
2 concrete cisterns

780 ft HDPE (3") water main
No hydrants

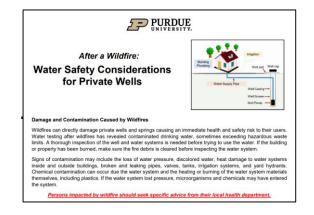
No water meters, no curb stops
1" HDPE service lines
160 ft max length

Private drinking water wells and the buildings they supply can be damaged by fire

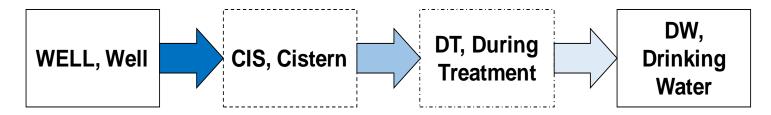
BCHD: Bacteria, Al, As, Cd, Pb, Sb, Se, PAH's

CDC: Bacteria, NO₃⁻; BTEX; local contaminants

WaDOH: Coliform bacteria


SCCHD: Coliform bacteria, turbidity, pH, conductivity, color, NO₃⁻; VOCs, SVOCs

OHA: Coliform bacteria, As, Pb, NO₃-; BTEX

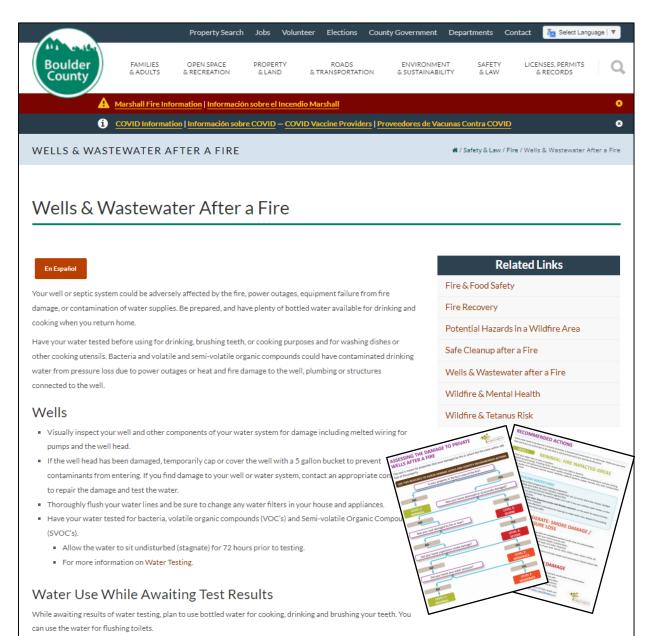

We Provided Support and Worked with the Boulder County Community and the Health Department

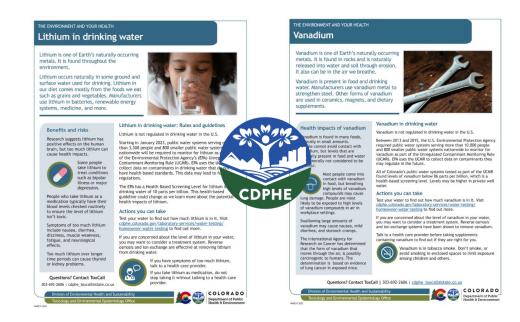
January 26 to 31, 2022 visits: 17 property contacts
Limitations discovered while onsite: Lack of power, sampling faucet, access, component condition
Complexity of in-home treatment was wide ranging

SVOCs

Contaminant	W7 (surface)	W7 (3-4 ft)	W13	W5
Azobenzene	-	-	-	0.3
2-Nitrophenol	0.15	0.11	-	-
1,2,3-Trichlorobenzene	0.14	0.16	-	-
Naphthalene	0.15 0.19		-	-
2-Methylnaphthalene	0.10	0.08	-	-
1-Methylnaphthalene	0.16	0.18	-	-
2-Nitroaniline	-	0.10	-	-
Acenaphthylene	0.19	0.23	-	-
1,2-Dinitrobenzene	0.14	0.11	-	-
Fluorene	0.10	0.13	-	-
4-Nitroaniline	0.10	-	-	-
Phenanthrene	0.14	0.25	-	-
Di- <i>n</i> -butylphthalate	5.9	0.48	-	-
Fluoranthene	0.13	1.0	0.19	-
Pyrene	0.14	0.19	-	-
Bis(2-ethylhexyl)adipate	9.3	4.9	-	-
Chrysene	0.12	0.12	-	-
Bis(2-ethylhexyl)phthalate	3.6	3.0	-	-
Anthracene	-	-	0.11	-

Inorganics


Data Description	Min	Max	Mean <u>+</u> Stdev
Wells & Cisterns – Marshall Fire (14)	12.4	105	42 <u>+</u> 26
Faucet – Marshall Fire (8)	4.2	89.3	34.8 <u>+</u> 25.1
PWS UCMR3 – Colorado (108)	0.9	1,700	20.3 <u>+</u> 54.1
PWS UCMR3 – Marshall Fire area (108)	1.6	131	25.8 <u>+</u> 23.7


USEPA Li Screening Level: 10 ppb

Data Description	Min	Max	Mean <u>+</u> Stdev
Wells & Cisterns – Marshall Fire (14)	9.3	243	69.4 <u>+</u> 73
Faucet – Marshall Fire (8)	15.5	86.5	59.3 <u>+</u> 30.4
PWS UCMR5 – ongoing	tbd	tbd	tbd

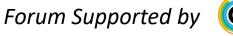
USEPA V Screening Level: 86 ppb

- 1. Assessing well damage
- 2. Permit requirements for well repair
- 3. Water testing
- CDPHE Factsheets: Lithium and vanadium
- Testing laboratories for VOCs, SVOC, and heavy metals
- 6. Home water filtration systems
- 7. Resources for well owners
- Resources for onsite wastewater treatment system owners

Preliminary Results: Challenges and Solutions for Small Drinking Water Systems and Private Well Owners Impacted by the Marshall Fire

April 13, 2022

Andrew J. Whelton, Ph.D., Caroline Jankowski, Kris Isaacson, Christian Ley, Ph.D., Myles Cook, Madeline Larsen, Deepika Solamathu


Email: <u>awhelton@purdue.edu</u>

Web: www.PlumbingSafety.org

2214580 RAPID: Drinking Water System Contamination Response & Recovery Following the 2021 Colorado Fires

1958 Subdivision founded

1960 Well drilled and 3 houses constructed

1960s/1970s 6 lots more developed, cistern and water

mains installed

1970s Classified as a regulated PWS

1974 House fire destroyed all records

Early 2000s Homeowner disconnected water system

(drops below legal PWS definition)

2009 Realized not legally in possession of water

rights assumed since 1960. Through law,

property owners transferred water rights to

the system

3.5 Months Post-wildfire

FEMA says they do not qualify for support CDHPE says their well is inactive and they were an HOA Depressurized since December 30, 2022 Unclear if there's mechanical damage or chemical contamination Waiting for debris removal before fixing the water system

