

Disasters & Plumbing Contamination Decisions: Wildfires, Floods, Chemical Spills & More

ASPE Convention and Exposition Indianapolis, Indiana

Andrew J. Whelton, Ph.D.

Civil, Environmental, and Ecological Engineering

awhelton@purdue.edu

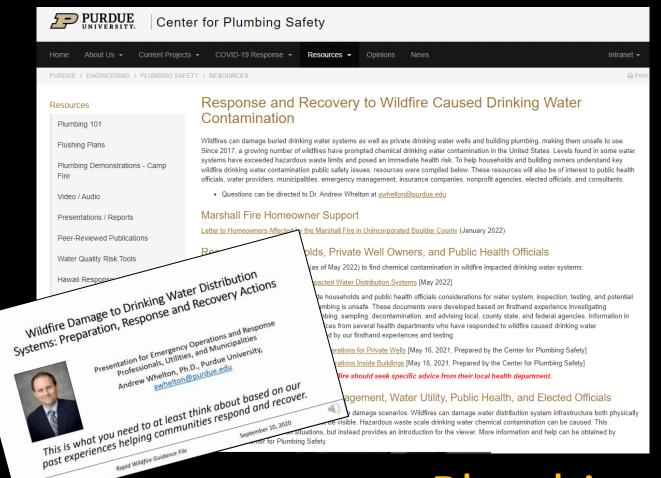
www.PlumbingSafety.org

Our Focus

Water Safety and Disasters

Infrastructure Construction and Repair Technologies

Waste Materials and Management Solutions



Disaster Response and Recovery Guidance for Municipalities, Public Health and Elected Officials

PURDUE

- ✓ Post-fire chemicals to test for
- ✓ Brief videos for emergency managers and health officials
- Guidance for private well owners
- ✓ Guidance for building owners
- ✓ Federal and state government agency resources
- ✓ FEMA mitigation guidance
- ✓ Other training resources

www.PlumbingSafety.org

System Basics

Building water system public health risks

Exposure Routes of Concern: Ingestion, Dermal, Inhalation

Routine Operations

Disinfectant residual may not be replenished

Heavy metals can leach (Cu, Mn, Ni, Pb, Zn..)

Organics can leach/form (VOCs, SVOCs, DBPs)

Scale can destabilize and suspend

Harmful organisms can grow (e.g., *L. pneumophila, MAC, P. aeruginosa* ...)

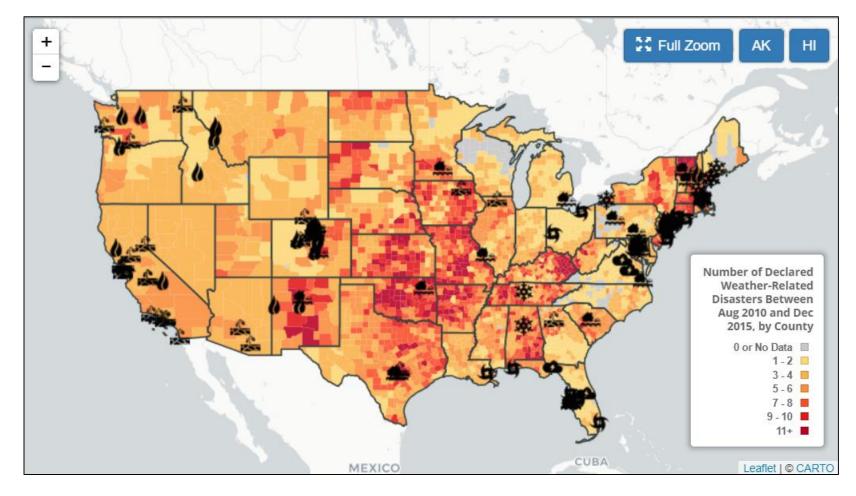
Accident and Post-Disasters

Pressure loss, backflow, chemical spill, hurricane, flooding, wildfire, intentional attack, and more

From 2004-2014, 351,000+ chemical spills affected water resources, National Response Center

351,000+: incidents or chemical spills

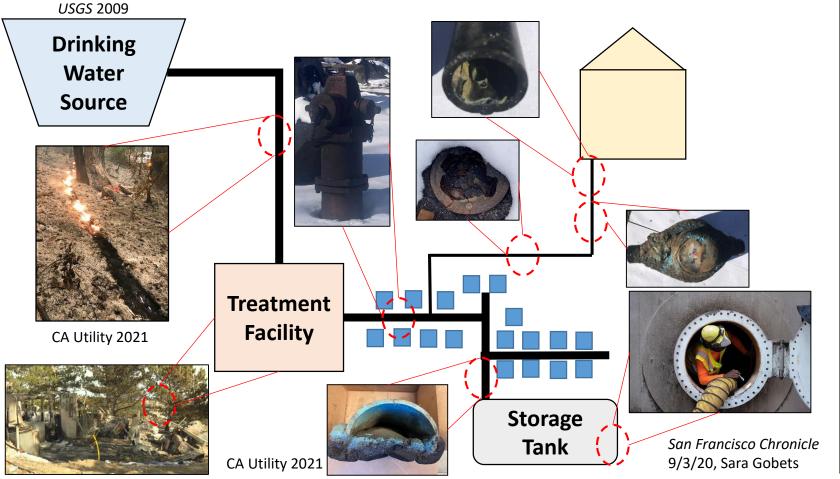
172,000+: impacted US water bodies in areas with higher population centers


88,000: petroleum and natural gas

8,000: chemicals with known and limited toxicity information available

Weidhass et al. 2016. Enabling Science Support for Better Decision-Making when Responding to Chemical Spill. https://www.doi.org/10.2134/JEQ2016.03.0090

Wildfires
Droughts
Floods
Tornadoes
Snow & Ice
Tropical Storms
Severe Storms
Hurricanes


Natural disasters affect 1,000s of communities each year prompting microbial and chemical risks

EnvironmentAmerica.org

Wildfires damage public and private drinking water systems

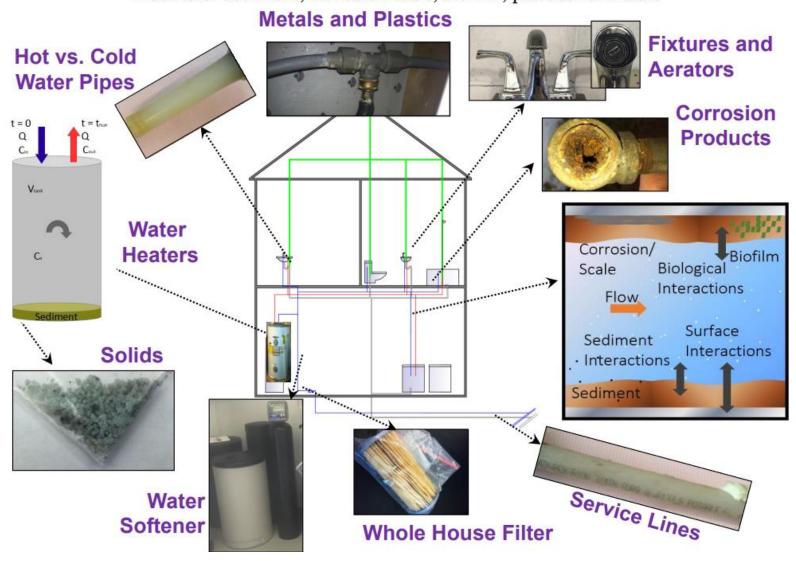
Assets

Water source
Treatment
Distribution
Plumbing

Damage

Loss of water pressure Water contamination Infrastructure contam. Plumbing contam.

Year	Fire Event / Location	Max. Benzene, ppb	Pop.	System
2021	Marshall Fire/ Colorado	221	20,319	City of Louisville
	Marshall Fire/ Colorado	5.1	300	East Boulder County Water District
	Echo Mountain Fire/ Oregon	5.5	120	Whispering Pines Mobile Home Park
	Echo Mountain Fire/ Oregon	11.3	362	Hiland WC-Echo Mountain
	Echo Mountain Fire/ Oregon	1.1	760	Panther Creek Water District
2020	Almeda Fire/ Oregon	76.4	6,850	City of Talent
	Lionshead Fire/ Oregon	44.9	205	Detroit Water System
	CZU Lightning Complex Fire/ California	1.8	1,650	Big Basin Water Company
	CZU Lightning Complex Fire/ California	42	21,145	San Lorenzo Valley Water District
	Camp Fire/ California	>2,217	26,032	Paradise Irrigation District
2019	Camp Fire/ California	38.3	924	Del Oro Water CoMagalia
2018	Camp Fire/ California	8.1	1,106	Del Oro Water CoLime Saddle
	Camp Fire/ California	530	11,324	Del Oro Water CoParadise Pines
2017	Tubbs Fire/ California	40,000	175,000	City of Santa Rosa



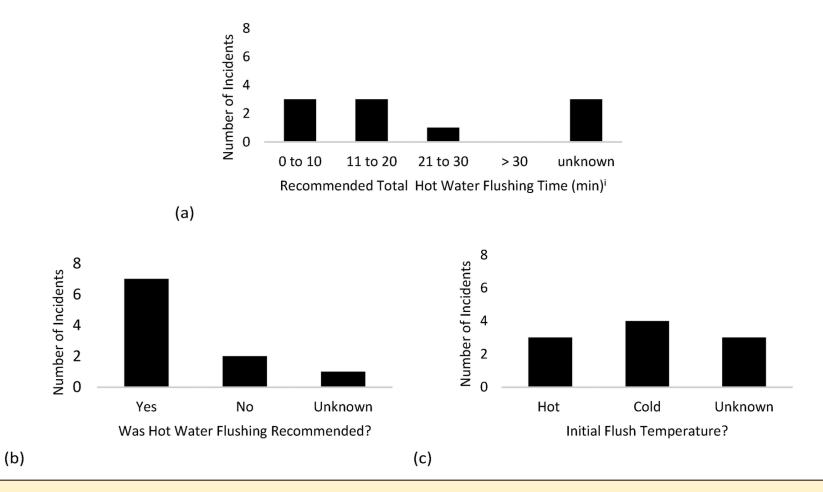
Location	Year	Cause	Contaminant	Plumbing system decon method	Population affected	Health impacts	Duration, days
Nibley City, UT ⁴⁵	15	Truck spill	Diesel fuel	Flushing	5000	nr	1
Glendive, MT ⁴⁶	15	Pipe rupture, spill	Crude oil	Flushing	6000	Yes	5
Longueuil, QC, CN	15	Tank rupture, spill	Diesel fuel	None	230 000	No	2
Washington, D.C. ⁴⁷	14	Unknown	Petroleum product	Flushing	Est. 370	nr	3
Toledo, OH ⁴⁸	14	Algal bloom	Microcystins ^c	Flushing	500 000	No	2
Charleston, WV ¹	14	Tank rupture, spill	Coal chemical	Flushing	300 000	Yes	9^b
Jackson, WI ⁴⁹	12	Pipe rupture, spill	Petroleum product	nr	50	nr	30
Safed, Israel ³⁸	10	DS backflow	Diesel fuel	Flushing; surfactant	3000	nr	3
Boise, ID ⁵⁰	05	Unknown	TCE	Flushing	117	nr	nr
Stratford, ON, CN ⁵¹	05	DS backflow	2-Butoxyethanol	Flushing	32 000	Yes	Up to 7
Northeast Italy ⁵²	02	New pipe install	Cutting oil	Flushing	4 bldgs	nr	Months
Guelph, CN ⁵³	97	DS backflow	Petroleum product	nr	48 000	nr	3
Charlotte, NC ³⁶	97	DS backflow	Fire suppressant $(AFFF)^d$	Flushing	29 bldgs	No	nr
Tucumcari, NM ^{32,54}	95	DS backflow	Toluene, phenol, etc.a	Flushing	nr	Yes	nr
Uintah Highlands, UT ³²	91	DS backflow	TriMec; 2,4-D; dicamba	nr	2000 homes	Yes	nr
Hawthorne, NJ ³⁶	87	DS backflow	Heptachlor	Cl ₂ flush; replacement	63	No	nr
Gridley, KS ⁵⁴	87	DS backflow	Lexon DF	nr	10 homes, 1 business	nr	nr
Hope Mills, NC ³⁶	86	DS backflow	Heptachlor, chlordane	Flushing	23 homes	No	3
Pittsburgh, PA ⁵⁴	81	DS backflow	Heptachlor, chlordane	Flushing; replacement	300 (23 bldgs)	No	27
Lindale, Georgia ⁵⁵	80	DS construction	Phenolic compounds	Super-chlorination	Hospital	Yes	nr
Montgomery Cnty, PA ³⁵	79	Tank rupture, spill	TCE	nr	500	Yes	nr

Casteloes et al. 2015. Decontaminating chemically contaminated residential premise plumbing systems by flushing. https://doi.org/10.1039/C5EW00118H.

Residential Systems are Complex

Objects: Fixtures, pipes, tanks, fittings, valves, gaskets Materials: Sediment, corrosion scale, biofilm, plastics vs. metals

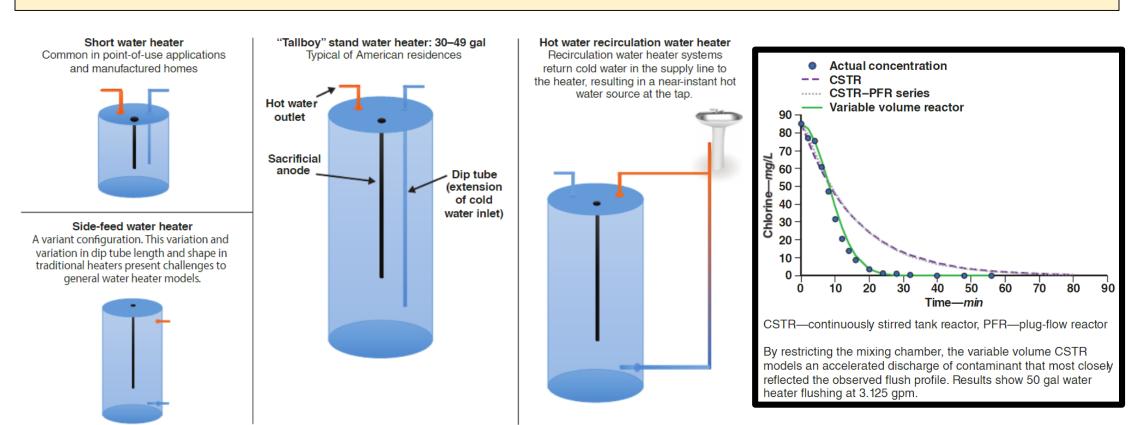
2015 Study: Flushing as a plumbing decontamination approach for chemical contamination


Decontaminating chemically contaminated residential premise plumbing systems by flushing

Download FREE here: https://doi.org/10.1039/C5EW00118H

Minimal data available on flushing protocol design and effectiveness.

Plumbing design, operational conditions, contaminants present and their properties, as well as building inhabitant safety have not been fully considered in flushing protocol design.



When you look back at U.S. incidents, flushing guidance for single family homes varied drastically, would likely not work, nor was it followed up with confirmatory sampling

Flushing protocols often did not consider water heater volume or fluid dynamics

Hawes et al. 2016. Predicting Contaminated Water Removal From Residential Water Heaters Under Various Flushing Scenarios. https://doi.org/10.5942/jawwa.2017.109.0085

Plumbing Replacement and Surfactants have been Used

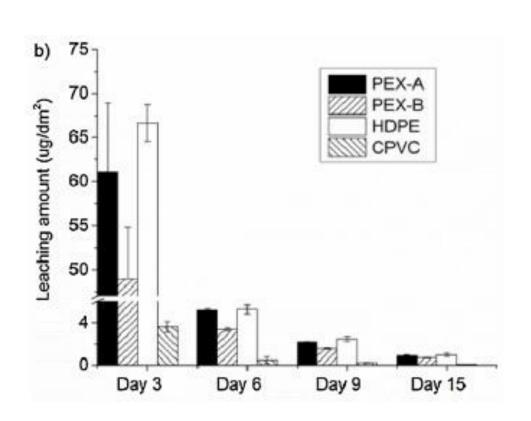
Elk River Chemical Spill, January 2014

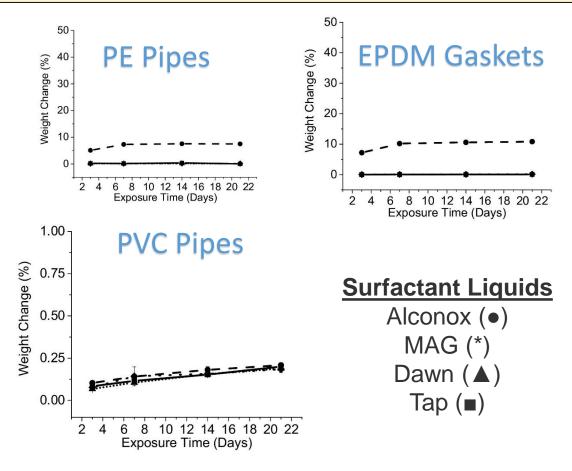
Statement by environmental activist:

- "...the amount of chemical likely destroyed your home water treatment system."
- "...if you had an RO system, the chemical likely ate the membrane."
- "...your [plumbing] pipe material will not be impacted..."

Statement by scientist:

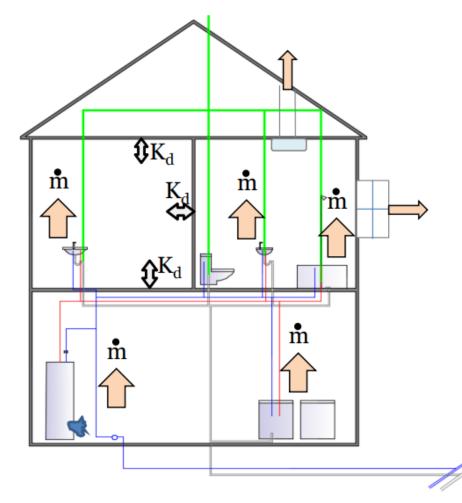
"It's a hydrophobic molecule like oil. You can't just flush it out of a system, a substance like that. It sticks to surfaces, and you have to use soap and water."




Q: Will surfactants solutions damage the piping system?

Not Considered: VOCs Diffuse In and Out of Plastic Plumbing Slowly

Surfactant-Plastic Interactions are Not Trivial



Casteloes et al. 2016. Crude oil contamination of plastic and copper drinking water pipes. https://doi.org/10.1016/j.jhazmat.2017.06.015

Huang et al. 2017. The interaction of surfactants with plastic and copper plumbing materials during decontamination. https://doi.org/10.1016/j.jhazmat.2016.11.067

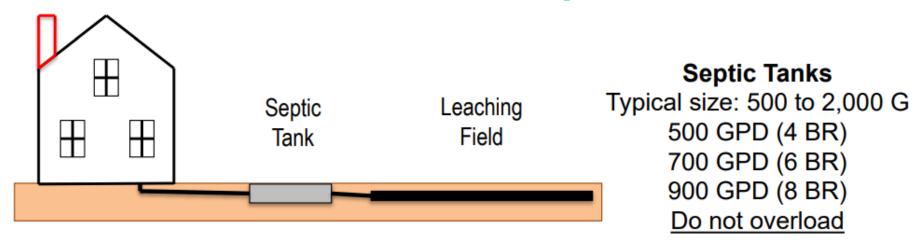
Building Inhabitant Protection During Flushing

Protect most sensitive population

Appropriate PPE

Building evacuation

Models to predict contaminated air


Expel air by opening windows and doors/use fans

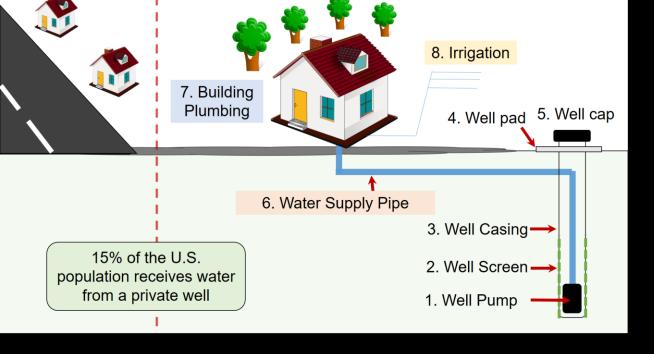
Shutoff water heaters?

"I ran it for about ten minutes and had to open up the door for five minutes to get the smell out," she said. "My God, did I end up getting a headache." – 2015, Glendive, MT

Wastewater Treatment and Disposal

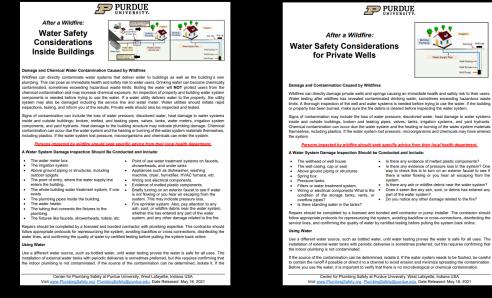
Contaminated water disposal / ecotoxicity: Soil, waterways, air, WWTP, septic tank, tanker trucks, NPDES permit(s)

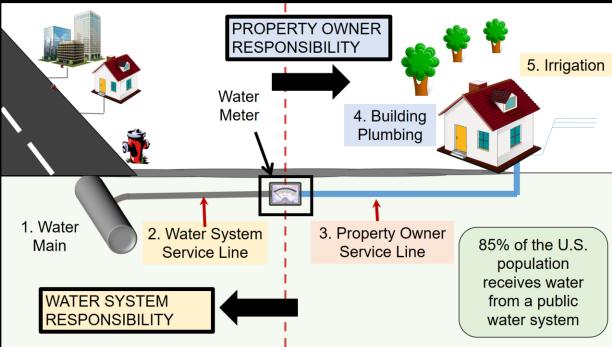
Downstream impacts of flushing


Hydraulic capacity of system

Corrosivity and toxicity of wastewater

Health and safety


Chemical fate (i.e., Volatilization, transformation, sorption)



There are two 1 page inspection and water testing guidance sheets for building owners and well owners

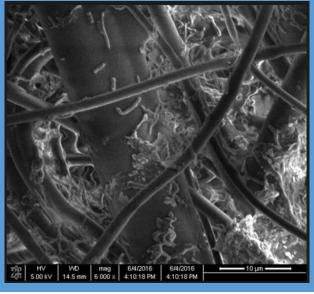
Access here → www.PlumbingSafety.org

Emerging Discoveries

ASPE Convention and Exposition Indianapolis, Indiana

Andrew J. Whelton, Ph.D.

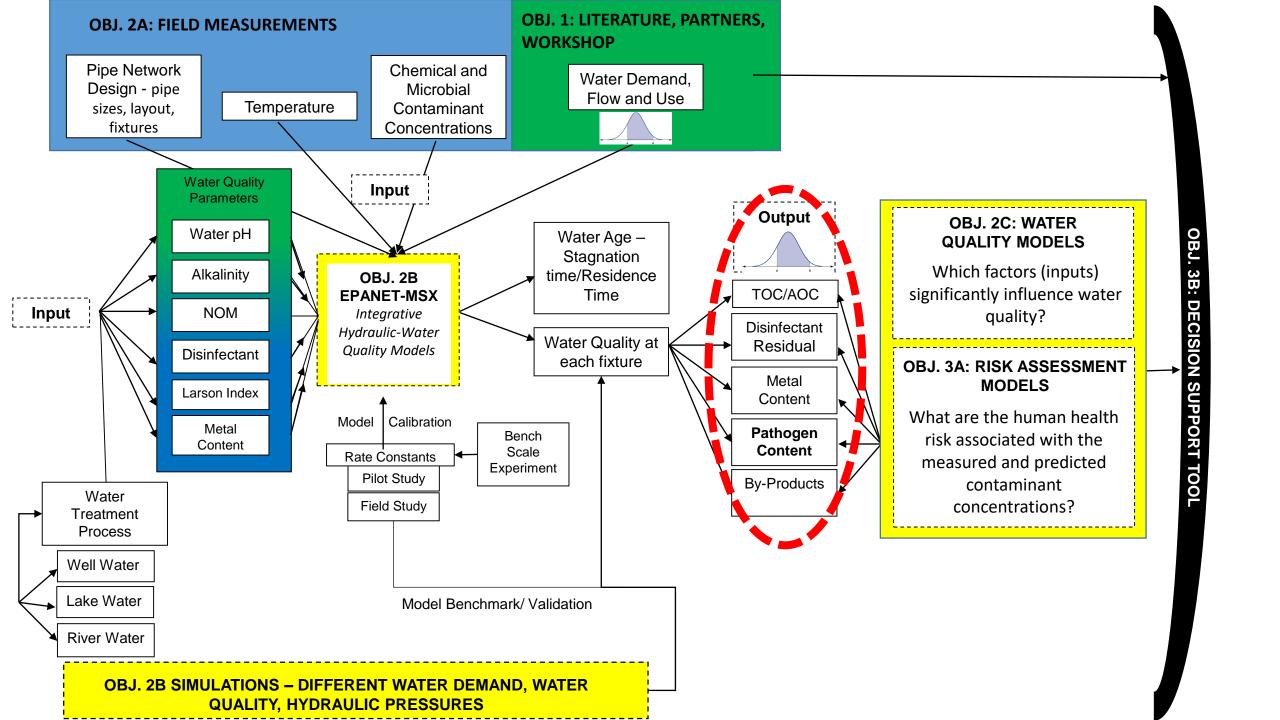
Civil, Environmental, and Ecological Engineering


awhelton@purdue.edu

Right Sizing Tomorrow's Water Systems for Efficiency, Sustainability, & Public Health

Completed: 2017-2022

Andrew Whelton, Jade Mitchell, Joan Rose, Juneseok Lee, Pouyan Nejadhashemi, Erin Dreelin, Tiong Gim Aw, Amisha Shah, Matt Syal, Maryam Salehi



Thermocouples throughout piping, 1x /sec Indoor air temperature, 1x /sec Flowrates at every fixture, 1x /sec Energy use per device, 1x /sec

www.ReNEWWHouse.com

The Most Monitored Home in America

West Lafayette, Indiana
Less than 100 yards from Purdue
3 Bedroom, 1.5 baths
Water saving fixtures
Trunk-and-Branch design
PEX piping
Renovated in 2014

October 2017-October 2018

30,000+ individual water quality

measurements completed - does not include flow monitoring, pressure monitoring, or qPCR

2.64 billion online plumbing

related measurements

Water microbiology varied seasonally and spatially through the low-flow residential building

Legionella spp. and Mycobacterium spp. were highest during summer months.

Eivturo	Legion	ella spp.	% pos	Mycobacterium spp. % pos			
Fixture	Sum	Fall	Winter	Sum	Fall	Winter	
SL	12.5	30.8	14.3	87.5	38.5	37.5	
KC	100	61.5	62.5	100	69.2	87.5	
ВС	100	69.2	50	100	69.2	75	
WH	100	100	50	100	92.3	87.5	
KH	100	84.6	75	85.7	76.9	75	
ВН	100	92.3	87.5	100	69.2	87.5	
SH	100	92.3	100	100	76.9	100	

HPC were correlated with TCC, Legionella spp., Mycobacterium spp.

Reduced water use weakly correlated with TCC, Legionella spp., and Mycobacterium spp.

Ley et al. 2020. Drinking water microbiology in a water-efficient building: stagnation, seasonality, and physicochemical effects on opportunistic pathogen and total bacteria proliferation. ES:WR&T. https://www.doi.org/10.1039/d0ew00334d

Using advanced statistical approaches, relationships between plumbing use and water quality were investigated

				Percentile (natural scale)			Number of
Variable name	Variable description	Units	Log transformed	2.5%	50.0%	97.5%	observations
pН	pН	NA	No	7.36	8.00	9.04	406
Temp	Temperature	C	No	15.63	22.90	26.30	406
DO	Dissolved oxygen	mg/L	No	4.30	8.40	10.56	406
Total.Cl	Total chlorine	mg/L	Yes	BDL	0.10	1.00	406
Free.Cl	Free chlorine	mg/L	Yes	BDL	0.01	0.75	259
TOC	Total organic carbon	mg/L	Yes	0.42	0.81	15.36	406
DOC	Dissolved organic carbon	mg/L	Yes	0.42	0.73	18.97	371
Alka	Alkalinity	mg/L as CaCO ₃	Yes	264.15	287.25	332.65	377
TTHM	Total trihalomethanes	mg/L	No	0.05	15.57	31.55	399
TCC	Total cell count	#cells/ml	Yes	1.54E+03	3.77E+04	1.56E+06	406
HPC	Heterotrophic plate count (by culture)	CFU/100 ml	Yes	4.03E+00	1.01E+04	3.60E+07	390
Leg.sp	Legionella spp. (by qPCR)	Gene copies/100 ml	Yes	2.29E+01	4.02E+03	1.78E+05	258

Increased water age prompted:

↓↓ DO, FAC

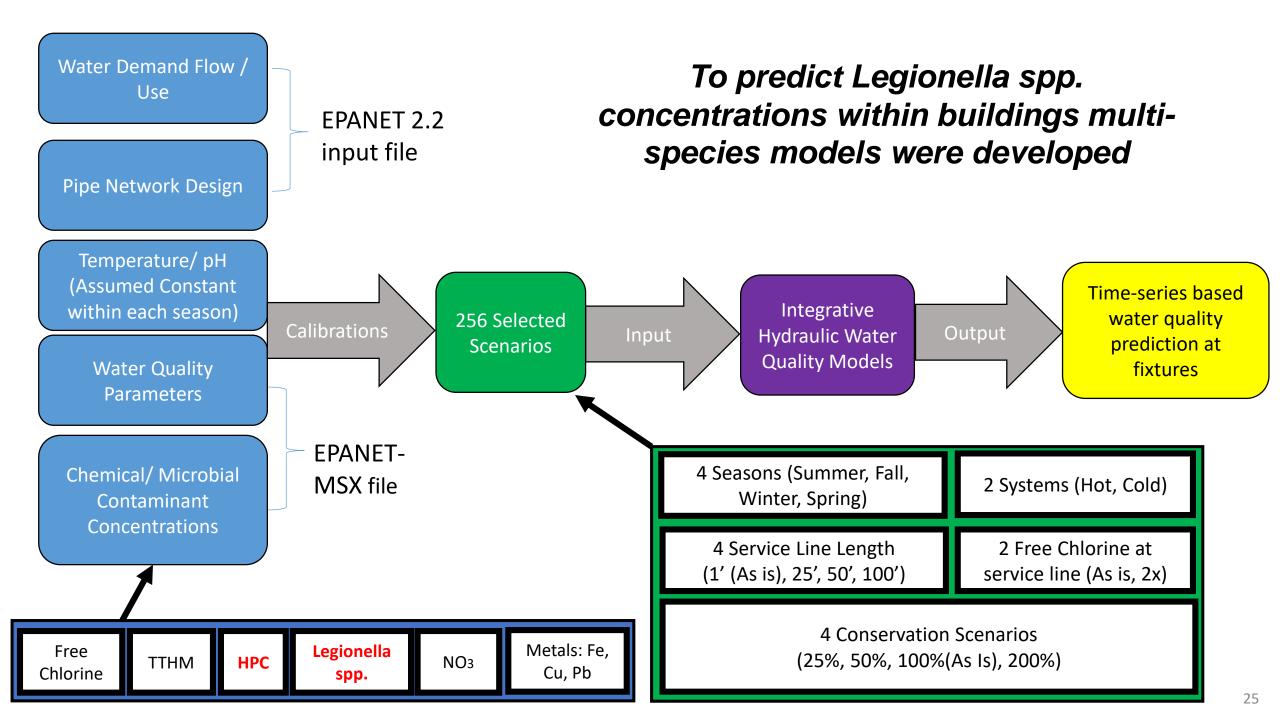
↑↑Temp, TOC,

TTHM, TCC,

HPC....

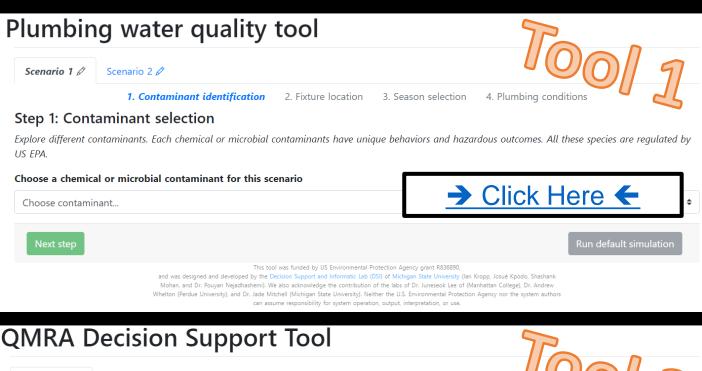
Legionella spp.
concentration
primarily driven
by water age

Julien et al. 2022. Identifying water quality variables most strongly influencing Legionella concentrations in building plumbing. AWWA Water Science. https://www.doi.org/10.1002/aws2.1267



8 Integrated hydraulic-water quality models were created to predict fixture water quality: They're free to use online!

For microbiology, the models revealed ...


Water use reduction by 25% increased HPC and *Legionella spp.* by a factor of 100,000 As service line length increased, *Legionella* spp. concentrations increased by 1,000,000 GNC/L (in the Summer).

Limitations

No other full-scale models are available for predictions
Carrying capacity of *Legionella spp.* (and other organisms) in other buildings unknown
This study was extremely labor intensive, technology innovations needed

Palmegiani et al. 2022. New integrative hydraulic-water quality models can predict *Legionella spp.* concentrations at fixtures. *AWWA Water Science*. https://doi.org/10.1002/aws2.1280

Scenario 1 🖉 Scenario 2 🗸

Step 1: Hazard Identification Step 2: Exposure A

Step 2: Exposure Assessment

Step 3: Dose-response

Step 1: Hazard Identification

To determine the risk of this scenario, the microbial hazard must be defined to focus the subsequent steps in the QMRA. Explore different plumbing-based microbes, and choose the one you're interested in measuring.

Choose a hazard for this scenario

Next step

This tool was funded by US Environmental Protection Agency grant R836890,

and was designed and developed by the Decision Support and Informatic Lab (DSI) of Michigan State University (Ian Kropp, Josué Kpodo, Shashank Mohan, and Dr. Pouyan Nejadhashemi). We also acknowledge the contribution of the labs of Dr. Juneseok Lee of (Manhattan College), Dr. Andrew Whelton (Perdue University), and Dr. Jade Mitchell (Michigan State University). Neither the U.S. Environmental Protection Agency nor the system authors can assume responsibility for system operation, output, interpretation, or use.

Usefulness

Multiple contaminants: *Legionella spp.*, HPC, Cl₂, Cu, Fe, Pb, NO₃⁻, TTHM

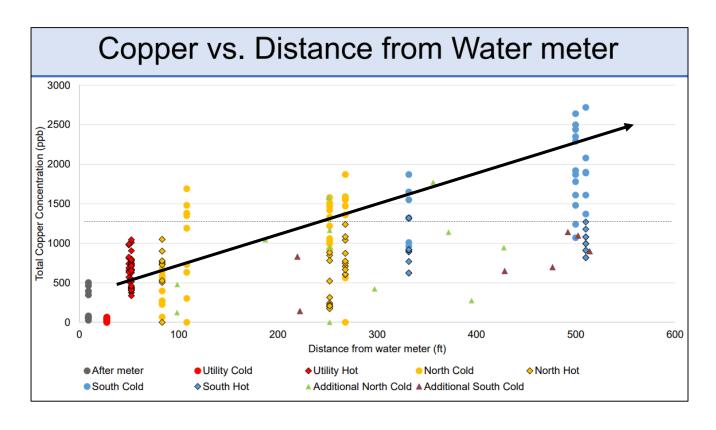
Compare exposure scenarios

Examine plumbing design impacts

Examine water use impacts

Run default simulatio

Water Age Strongly Influences Water Quality

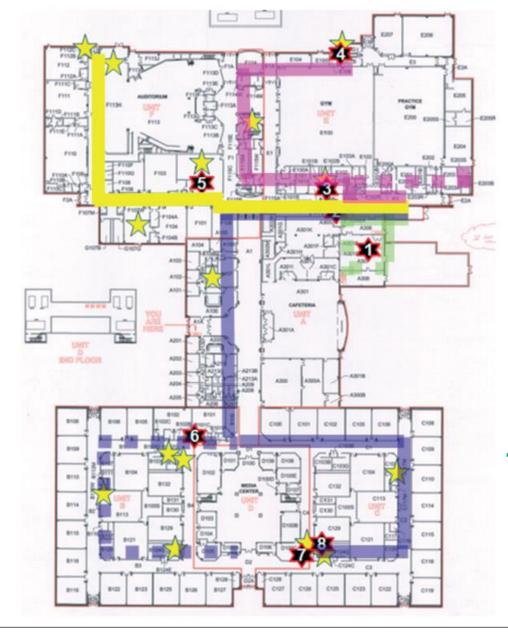

A 7 year old LEED School in Indiana (250+ outlets, 1 floor, 3 recirc loops, chloramines)

Summer 2019

↓

Fall 2019

Prior testing: Lead only


Ra et al. 2020. Finding building water quality challenges in a 7 year old green school: implications for building design, sampling, and remediation. *ES: WR&T*. https://doi.org/10.1039/D0EW00520G

Detected:

<u>Legionella</u> spp. 100%; <u>Mycobacterium</u> spp. 99% <u>M. avium</u> 75%; <u>Acanthamoeba</u> spp. 17.5%

Cultivable Legionella during low water use.

NOT detected:

L. pneumophila, Naegleria fowleri

Summer → Fall: Levels statistically ↓↓↓ Legionella spp., Mycobacterium spp., M. avium

The water softener was an incubator for growth

Aw et al. 2022. Prevalence of opportunistic pathogens in a school building plumbing during periods of low water use and a transition to normal use. IJHEH. https://doi.org/10.1016/j.ijheh.2022.113945

A Large School in Ohio (450+ outlets, 2 floors, no recirc loops, yes showers)

Sample type	Fixture type	L. pneumophila Concentration (MPN/100 mL)	Suggested L. pneumophila Limit (CFU/mL)	
	Water fountain (cold)	239.6	106	
	Staff sink (cold)	1,289.6	106	
Initial stagnation	Cafeteria sink (cold)	3.5	106	
	Cold faucet (distal end)	1	106	
	Cold faucet (central)	1.1	106	
Pre-shock chlorination	Various	0	106	
Immediately after shock chlorination	Various	0	106	
Immediately after shock	Fountain (cold)	3.9	106	
chlorination	Bathroom sink (cold)	7.9	106	
72 hours post-shock	Various	0	NA	
1 month post-shock chlorination	Various	0	NA	

Stagnation:

Approximately 5.3% (5/94) of fixtures positive for *L.* pneumophila

Right after shock:

L. pneumophila was detected at two fixtures (drinking fountain and TMV sink)

1 month after shock:

No *L. pneumophila* was detected

Nickel exceeded health based limits in kitchen

A small school in Indiana...multiple buildings

3 buildings, built in the 1960s

3 months of **low/no** water use

Characteristics

POE free chlorine residual <0.2 to 1.3 mg/L

Per building: 1 service line, 1 heater, Cu plumbing

No recirc loops, no showers, no cooling towers

Stagnant water: 1-2 *L. pneumophila* detects/building (<188 MPN/ 100mL). Total cold (4 of 25 locations), Hot (1 of 21 locations)

Flushed water: No detects

2 weeks later: Several detects at new locations (<61

MPN/ 100mL); 5 of 7 detects were hot water

Ra et al. In Prep. The role of flushing on reducing low levels of L. pneumophila from a stagnant school building water system

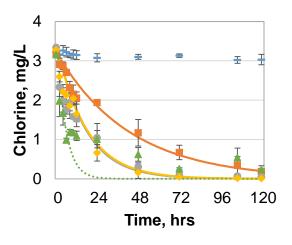
School and childcare center drinking water: Copper chemistry, health effects, occurrence, and remediation

- 1. Only 0.2% of 598,000 schools and childcare centers had copper testing data
- 2. Where present, widely different sampling and remedial actions were reported
- 3. Plumbing and fixture flushing was unreliable, copper quickly rebounded
- 4. Building treatment systems have been used, but some were not effective
- 5. A national drinking water testing campaign and field studies are recommended

Watch out for elevated alkalinity levels with near neutral pH!

Montagnino et al. 2022. School and childcare center drinking water: Copper chemistry, health effects, occurrence, and remediation. AWWA Water Science. https://doi.org/10.1002/aws2.1270

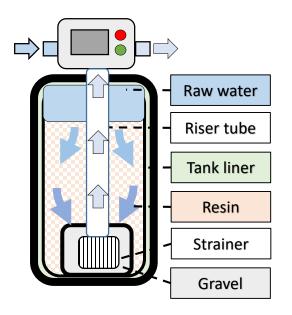
NEW: Plumbing Testing Facility


1,000 sqft, online water quality and flow monitoring, auto-flushing, 4 replicate systems, POE/POU treatment, storage, municipal source, expansion primed

Impact of New Water Softeners on Drinking Water Quality

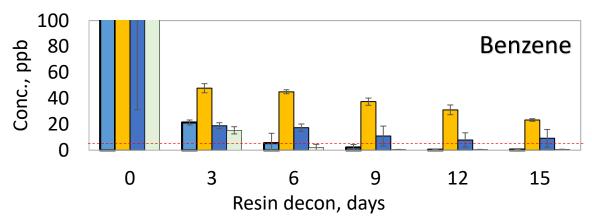
1st flush 937 mg/L as C (40% POC) 1,200 mg/L as S

When 3.1 mg/L as Cl₂
3-5 days before it is
nondetectable



After 1 week of use, the softener was still prompting TOC and total cell count levels to be 4x above background levels

Hydrocarbon Contamination and Decontamination of Water Softeners



Surface area

Resin: 2,800,000+ cm²

Liner: 9,300 cm²

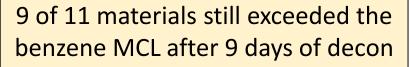
Gaskets: 32 cm²

.... of Water Supply Connectors

After the 2014 West Va. chemical spill, the Health Department recommended discarding tubing at restaurants

Dishwasher connector – PVC

Multipurpose tubing – PVC


Softener connector – PVC

Faucet supply line – PVC

All plastics sorbed 93-100% of the BTEX in 24 hr

Ice-maker tubing – PE

Ice-maker tubing – PEX

Washing machine hose – EPDM

The Healthy Plumbing Consortium (2021 – Pres)

Mission:

To advance health and quality of life by innovating new and existing technologies and providing transformative education.

- 1. Technological and operational approaches for maximizing building water health
- 2. Smart technology for improved building water health
- 3. Education of systems and technology

...Interested? Contact Me.

Building Water Essentials 10 Hour, Online Short-Course

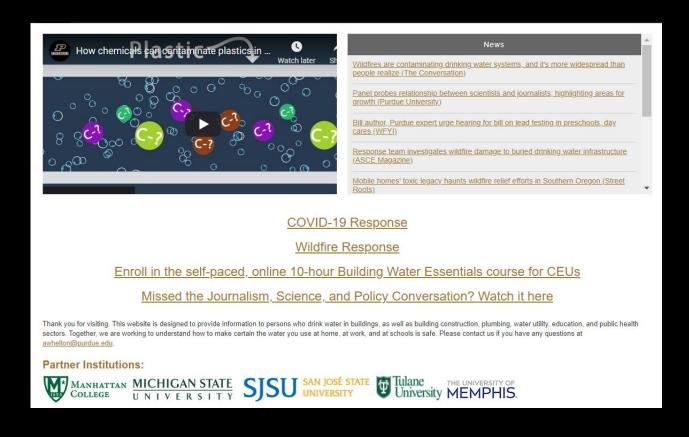
Learn the basics:

8 modules do not have to be taken in sequence.

A training tool, an encyclopedia, and an extensive FAQ, designed to be immediately applicable in the field.

If interested e-mail awhelton@purdue.edu

Info and registration: https://cutt.ly/Sg4RXJv



Thank you.

Andrew Whelton, Ph.D. <u>awhelton@purdue.edu</u> @TheWheltonGroup

- ✓ Online short-course
- ✓ Plumbing education videos
- ✓ Flushing plans
- ✓ Plumbing explainers
- ✓ List of projects
- ✓ Scientific opinions
- ✓ Resources → presentations
- ✓ Scientific reports
- ✓ External plumbing docs
- ✓ YouTube Channel

10 hr, 1 CEU, Self-paced, Online Building Water Essentials Short-Course:

https://engineering.purdue.edu/online/certifications/building-water-essentials

www.PlumbingSafety.org

