

Safe drinking water and infrastructure are critical to the health, safety, and economic security

Floods, Hurricanes
Tropical Storms,
Tornadoes, Snow, Ice,
And Wildfires

1,000s of communities each year are affected prompting drinking water safety risks

Wildland Urban Interface (WUI)

Human development intermingles with vegetative and wildland fuels

Fastest growing land use

46M+ residences in 70,000 communities

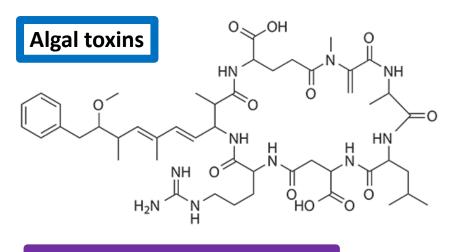
Contaminants

Organic chemicals
Inorganic chemicals
Radionuclides
Microorganisms

A Few Examples

2021 (Marshall wildfire) Boulder Co., CO, Pop: 40,000

2021 (Chem spill) Pearl Harbor, HI, Pop: 93,000


2021 (Petroleum backflow) San Angelo, TX, Pop: 101,000

2020 (Naegleria fowleri), Lake Jackson, TX, Pop: 172,000

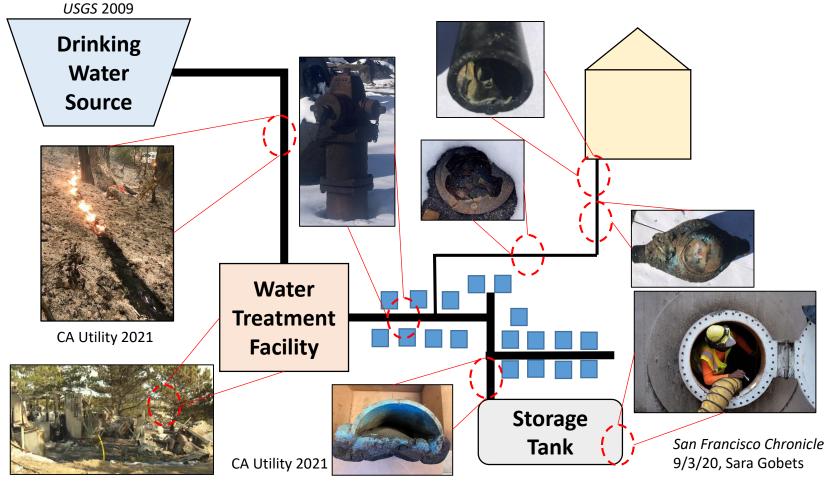
2018 (Microcystins) Salem, OR, Pop: 199,000

2017 (E. Coli), Puerto Rico, Pop: 100,000

2013 (Naegleria fowleri) St. Bernard, LA, Pop: 44,000

Coal flotation liquid

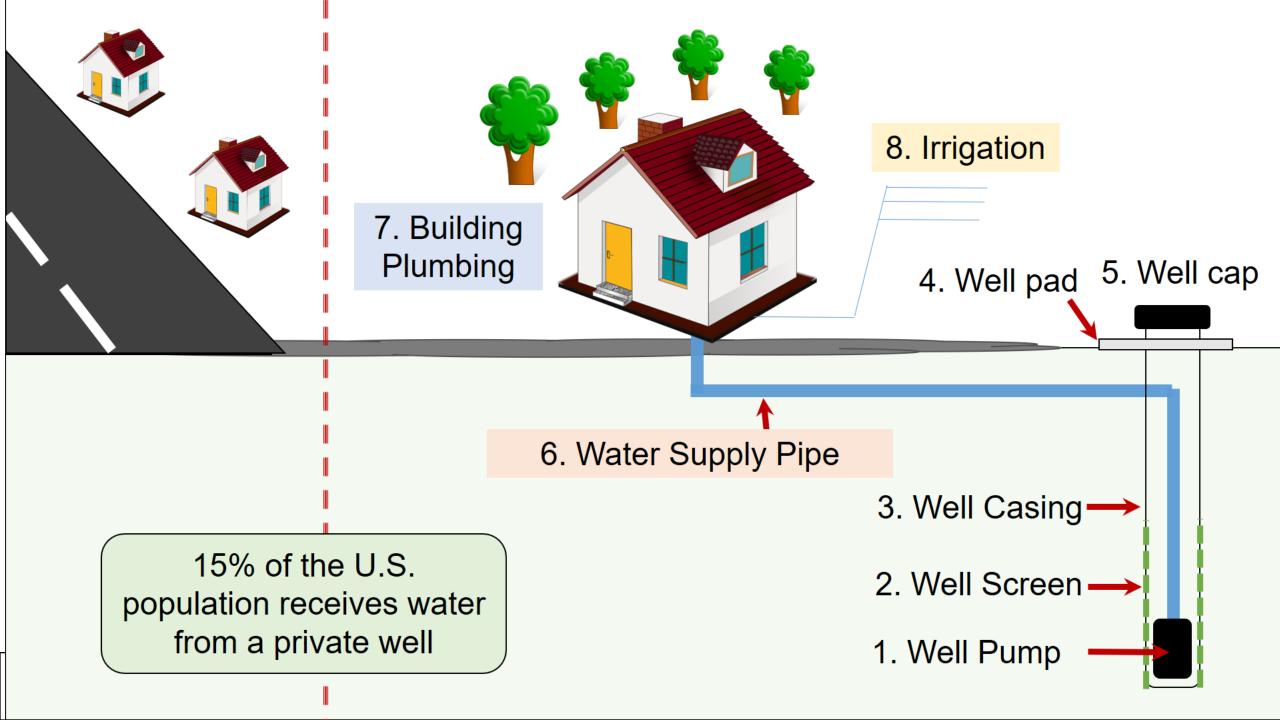
Hydrocarbon spills


Max. Benzene	Wildfire Event / Location	Pop. Affected	System Name	Year
221	Marshall Fire/ Colorado	20,319	City of Louisville	2021
5.1	Marshall Fire/ Colorado	300	East Boulder County Water District	2021
5.5	Echo Mountain Fire/ Oregon	120	Whispering Pines Mobile Home Park	2020
11.3	Echo Mountain Fire/ Oregon	362	Hiland WC - Echo Mountain	2020
1.1	Echo Mountain Fire/ Oregon	760	Panther Creek Water District	2020
76.4	Almeda Fire/ Oregon	6,850	City of Talent	2020
44.9	Lionshead Fire/ Oregon	205	Detroit Water System	2020
1.8	CZU Lightning Complex Fire/ California	1,650	Big Basin Water Company	2020
42	CZU Lightning Complex Fire/ California	21,145	San Lorenzo Water District	2020
>2,217	Camp Fire/ California	26,032	Paradise Irrigation District	2018
38.3	Camp Fire/ California	924	Del Oro Water Co Magalia	2018
8.1	Camp Fire/ California	1,106	Del Oro Water Co Lime Saddle	2018
530	Camp Fire/ California	11,324	Del Oro Water Co Paradise Pines	2018
40,000	Tubbs Fire/ California	175,000	City of Santa Rosa	2017

Location	Year	Cause	Contaminant	Plumbing system decon method	Population affected	Health impacts	Duration, days
Nibley City, UT ⁴⁵	15	Truck spill	Diesel fuel	Flushing	5000	nr	1
Glendive, MT ⁴⁶	15	Pipe rupture, spill	Crude oil	Flushing	6000	Yes	5
Longueuil, QC, CN	15	Tank rupture, spill	Diesel fuel	None	230 000	No	2
Washington, D.C. ⁴⁷	14	Unknown	Petroleum product	Flushing	Est. 370	nr	3
Toledo, OH ⁴⁸	14	Algal bloom	Microcystins ^c	Flushing	500 000	No	2
Charleston, WV ¹	14	Tank rupture, spill	Coal chemical	Flushing	300 000	Yes	9^b
Jackson, WI ⁴⁹	12	Pipe rupture, spill	Petroleum product	nr	50	nr	30
Safed, Israel ³⁸	10	DS backflow	Diesel fuel	Flushing; surfactant	3000	nr	3
Boise, ID ⁵⁰	05	Unknown	TCE	Flushing	117	nr	nr
Stratford, ON, CN ⁵¹	05	DS backflow	2-Butoxyethanol	Flushing	32 000	Yes	Up to 7
Northeast Italy ⁵²	02	New pipe install	Cutting oil	Flushing	4 bldgs	nr	Months
Guelph, CN ⁵³	97	DS backflow	Petroleum product	nr	48 000	nr	3
Charlotte, NC ³⁶	97	DS backflow	Fire suppressant $(AFFF)^d$	Flushing	29 bldgs	No	nr
Tucumcari, NM ^{32,54}	95	DS backflow	Toluene, phenol, etc.a	Flushing	nr	Yes	nr
Uintah Highlands, UT ³²	91	DS backflow	TriMec; 2,4-D; dicamba	nr	2000 homes	Yes	nr
Hawthorne, NJ ³⁶	87	DS backflow	Heptachlor	Cl ₂ flush; replacement	63	No	nr
Gridley, KS ⁵⁴	87	DS backflow	Lexon DF	nr	10 homes, 1 business	nr	nr
Hope Mills, NC ³⁶	86	DS backflow	Heptachlor, chlordane	Flushing	23 homes	No	3
Pittsburgh, PA ⁵⁴	81	DS backflow	Heptachlor, chlordane	Flushing; replacement	300 (23 bldgs)	No	27
Lindale, Georgia ⁵⁵	80	DS construction	Phenolic compounds	Super-chlorination	Hospital	Yes	nr
Montgomery Cnty, PA ³⁵	79	Tank rupture, spill	TCE	nr	500	Yes	nr

Casteloes et al. 2015. Decontaminating chemically contaminated residential premise plumbing systems by flushing. https://doi.org/10.1039/C5EW00118H.

Public and private drinking water systems are vulnerable to contamination


Assets

Water source
Treatment
Distribution
Plumbing

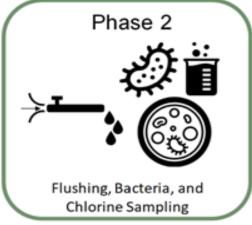
Damage

Loss of water pressure Water contamination Infrastructure contam. Plumbing contam.

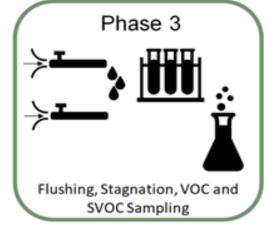
Water Systems Face Multiple Challenges During Response

Pressure, utility network and building plumbing: Leaking, destruction

Power: Electric poles down, shutoff by provider, natural gas generators destroyed, lacking fuel


Telecommunications: Outages inhibit tank level, pressure, chemical feed, and pump status monitoring

Personnel: Hazard situations, unable to respond due to staff availability


Contamination: Chemicals and microbiologicals drawn into the water system, immediate health risk

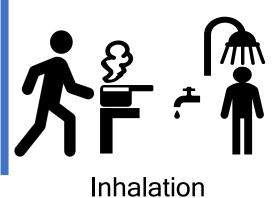
Support firefighting Isolate damage Maintain pressure Water use warnings

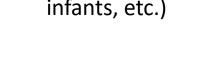
Personnel surge
Restore control, pressure
Repeated sampling
Laboratories

Personnel surge
Repeated sampling
Laboratories
Decon, remove, replace

Resilience:

The ability to bounce back from misfortune or change


Guidance for Decisions Needed


ExposureRoutes

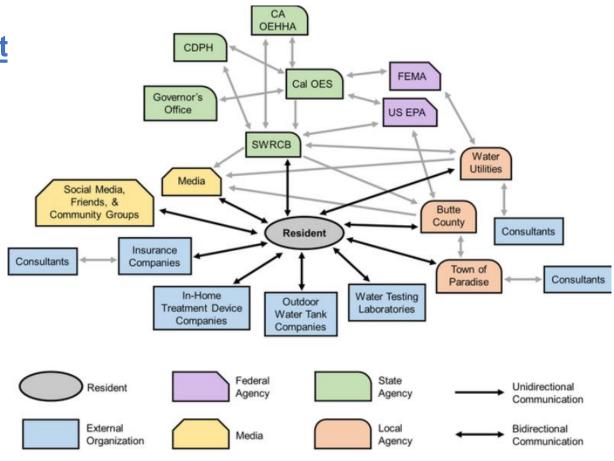
(i.e., Adults, children, infants, etc.)

Do Not Drink (DND)

Boil Water Order

If you do not know the range of contamination, it is not advisable to use in-home water treatment devices. Those are NOT rated to make acutely contaminated water safe.

Water safety attitudes, risk perception, experiences, and education for households impacted by the 2018 Camp Fire


Natural Hazards, Published May 2021

https://doi.org/10.1007/s11069-021-04714-9

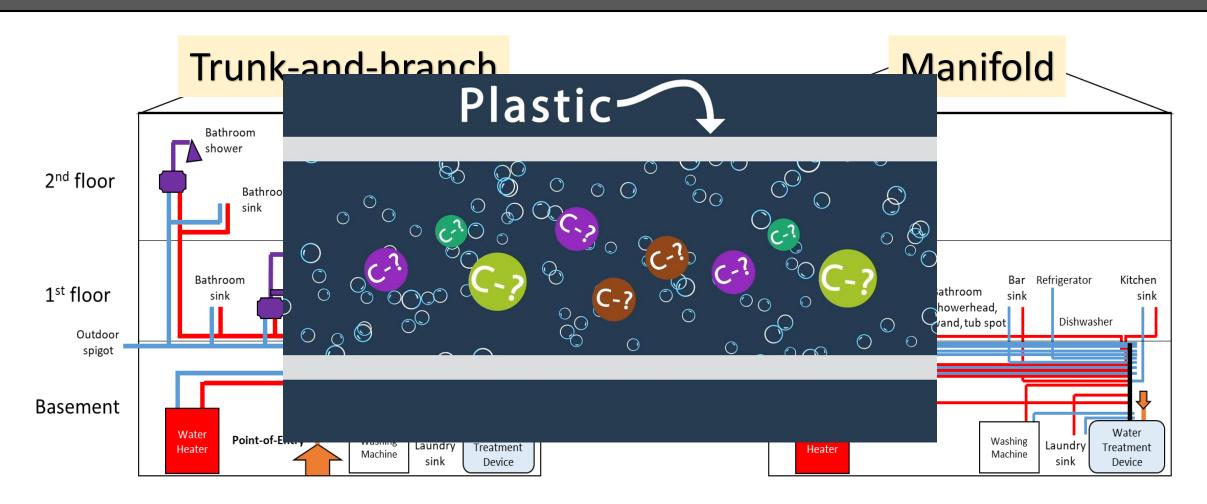
Household Public Health Support Not (yet) Based on Science

- 1) Water use restrictions
- 2) Plumbing sampling and testing
- 3) Plumbing decon and validation
- 4) Water tank selection and maintenance
- 5) In-home treatment device selection and maintenance

Rural communities are especially impacted

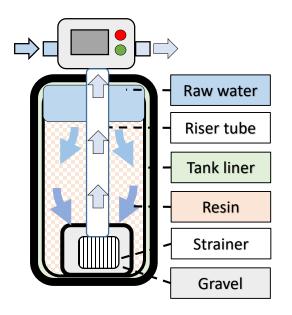
1 Example: A State primacy agency told a population they should use inhome activated carbon filters to treat wildfire contaminated drinking water

Water Collected	Preliminary Results, ppb					
and Analyze	Benzene	Toluene	Ethyl Benzene	Xylene		
Entering the filter	713	911	87	212		
Exiting the filter						
1 L	20	15	3	4		
1.5 L	33	30	5	9		
2 L	47	46	6	11		
3 L	64	75	10	21		
3.5 L	62	75	10	20		
4 L	24	22	4	5		
4.5 L	87	98	11	21		
5 L	37	37	5	8		


In 2019, CA OEHHA concluded that <u>short-term 26 ppb benzene exposure would</u> <u>prompt an increased risk of blood effects in children</u> such as a decrease in lymphocytes and white blood cells; Benzene has a 5 ppb Federal MCL, 1 ppb CA MCL

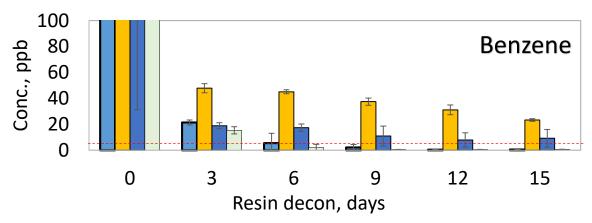
The devices are <u>NOT</u> designed for this.

The range of contamination must be known + testing.



Sampling buildings and decontamination activities needs to take into considerations the plumbing

Hydrocarbon Contamination and Decontamination of Water Softeners



Surface area

Resin: 2,800,000+ cm²

Liner: 9,300 cm²

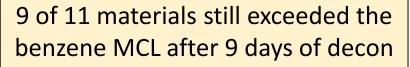
Gaskets: 32 cm²

.... of Water Supply Connectors

After the 2014 West Va. chemical spill, the Health Department recommended discarding tubing at restaurants

Dishwasher connector – PVC

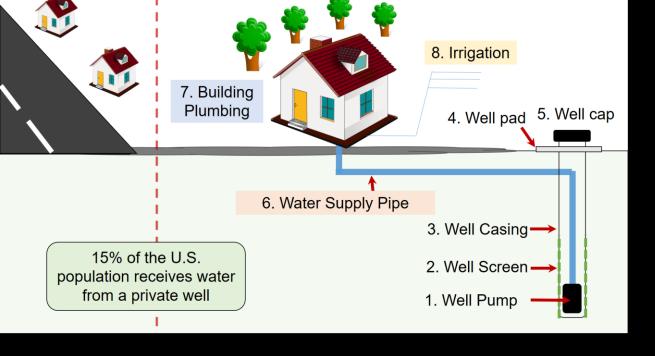
Multipurpose tubing – PVC

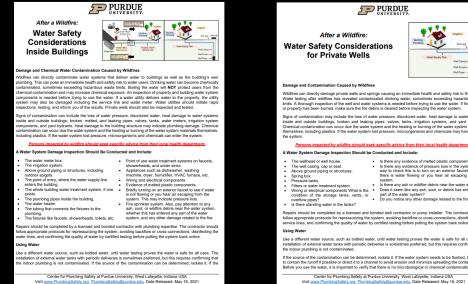

Softener connector – PVC

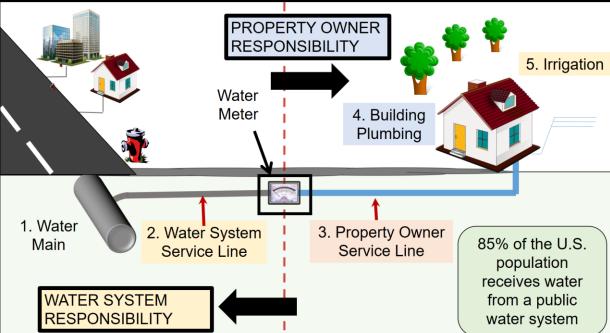
Faucet supply line – PVC

All plastics sorbed 93-100% of the BTEX in 24 hr

Ice-maker tubing – PE


Ice-maker tubing – PEX


Washing machine hose – EPDM



We created two 1 page inspection and water testing guidance sheets for private wells and building water systems

Access here → [Click]

Learn about 'Building Water Essentials' 10 Hour, Online Self-Paced Short-Course

Input from practicing engineers, scientists, utilities and public health officials.

A training tool, an encyclopedia, and an extensive FAQ, designed to be immediately applicable in the field.

Modules do not have to be taken in sequence.

If interested e-mail awhelton@purdue.edu
Info and registration: https://cutt.ly/Sg4RXJv

Andrew Whelton, Ph.D. awhelton@purdue.edu

PURDUE Center for Plumbing Safety COVID-19 Response ▼ PURDUE / ENGINEERING / PLUMBING SAFETY / RESOURCES Response and Recovery to Wildfire Caused Drinking Water Resources Contamination Plumbing 101 Wildfires can damage buried drinking water systems as well as private drinking water wells and building plumbing, making them unsafe to use. Flushing Plans Since 2017, a growing number of wildfires have prompted chemical drinking water contamination in the United States. Levels found in some water systems have exceeded hazardous waste limits and posed an immediate health risk. To help households and building owners understand key Plumbing Demonstrations - Camp wildfire drinking water contamination public safety issues, resources were compiled below. These resources will also be of interest to public health officials, water providers, municipalities, emergency management, insurance companies, nonprofit agencies, elected officials, and consultants. · Questions can be directed to Dr. Andrew Whelton at awhelton@purdue.edu Video / Audio Marshall Fire Homeowner Support Presentations / Reports Letter to Homeowners Affected by the Marshall Fire in Unincorporated Boulder County (January 2022) Peer-Reviewed Publications Resources for Households, Private Well Owners, and Public Health Officials Water Quality Risk Tools Here is a list of chemicals to test for (as of May 2022) to find chemical contamination in wildfire impacted drinking water systems: Hawaii Response · List of Chemicals in Wildfire Impacted Water Distribution Systems [May 2022] These 1 page information sheets provide households and public health officials considerations for water system, inspection, testing, and potential Wildfire Response safe drinking water options when the plumbing is unsafe. These documents were developed based on firsthand experience investigating contamination after wildfire, building plumbing, sampling, decontamination, and advising local, county state, and federal agencies. Information in Survey - Camp Fire these documents is partly based on practices from several health departments who have responded to wildfire caused drinking water contamination disasters and also influenced by our firsthand experiences and testing. FAQs - General Plumbing . After a Wildfire: Water Safety Considerations for Private Wells [May 16, 2021, Prepared by the Center for Plumbing Safety] FAQs - Camp Fire Response . After a Wildfire: Water Safety Considerations Inside Buildings [May 16, 2021, Prepared by the Center for Plumbing Safety] . Attention: Persons impacted by wildfire should seek specific advice from their local health department Resources for Emergency Management, Water Utility, Public Health, and Elected Officials This video helps prepare officials for water system damage scenarios. Wildfires can damage water distribution system infrastructure both physically

contacting the Center for Plumbing Safety.

-and- chemically. Some damage may not be visible. Hazardous waste scale drinking water chemical contamination can be caused. This presentation does not cover all situations, but instead provides an introduction for the viewer. More information and help can be obtained by

More Lessons Coming Soon www.PlumbingSafety.org

- ✓ Post-fire chemicals to test for
- Brief videos for emergency managers and health officials
- ✓ Guidance for private well owners
- Guidance for building owners
- Federal and state government agency resources
- ✓ FEMA mitigation guidance
- ✓ Other training resources

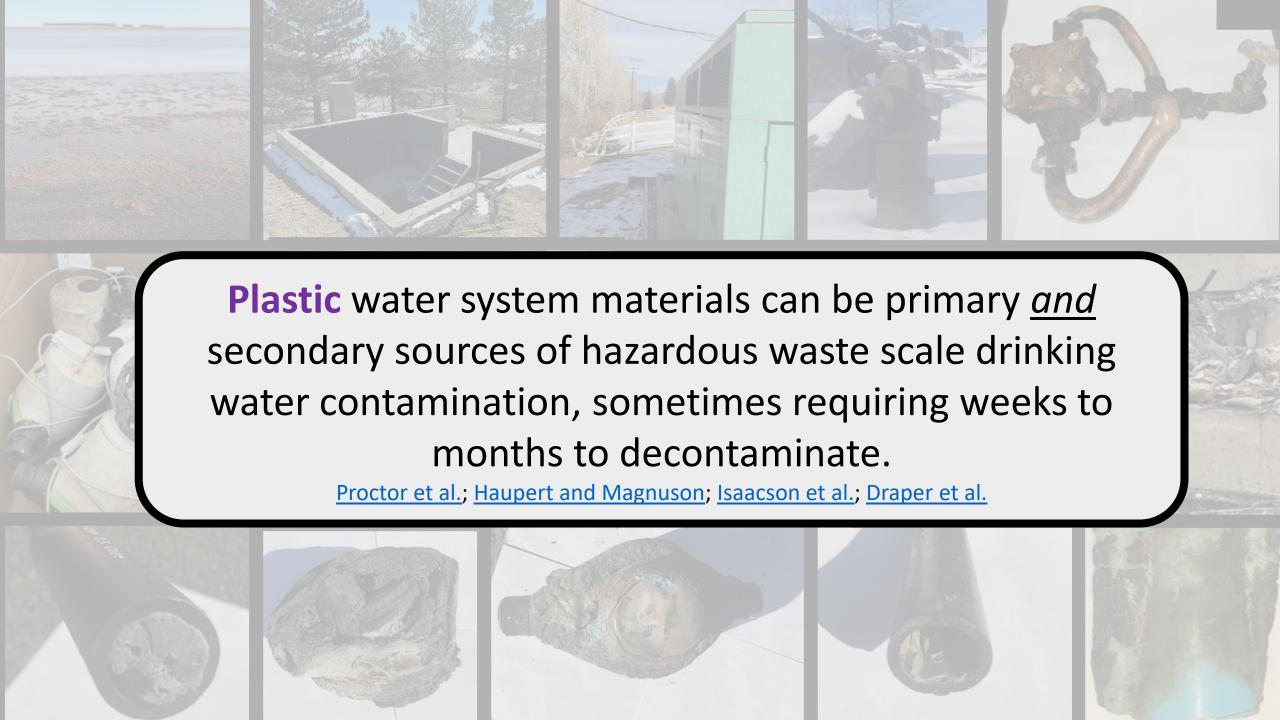
www.PlumbingSafety.org

Additional Slides

Well testing after the Marshall Fire: Evidence is lacking to inform decision making

No published data

20 different U.S. guidance documents: AK, AZ, CA, CO, KS, MN, NM, MT, OR, WA, CDC, and 2 universities (CO, IN)


- ✓ Microorganisms (20)
- ✓ Nitrate (8), Heavy metals (6)
- ✓ VOC: 9 (most said BTEX only)
- ✓ SVOC: 4 (some said PAH only)

Guidance also varied across Canadian agencies

To address this gap, we helped Boulder County and CDPHE after the 2021 Marshall Fire... but more to be done.

