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ABSTRACT 
Twenty first century product development is driven 
by reduction in cost/time, specialization of industry, 
globalization, outsourcing and geographically 
distributed companies. Designers spend a significant 
amount of time searching for information that is 
available but cannot be located through traditional 
methods. Rectification of errors that have been 
committed due to lack of information is a costly way 
to learn. Nevertheless this has become a de facto 
process for new product design. A significant amount 
of information generated during the lifecycle of a 
product is associated with 3D models. Reuse of this 
information can significantly shorten lead times and 
reduce costs during a product’s lifecycle. Since 
design knowledge and context are intimately related 
to 3D geometry, text-based search cannot satisfy 
many requirements. This paper proposes a novel 
shape representation that can be used for similar 3D 
shape retrieval. The shape representation is 
hierarchical in nature and represents the shape at 
multiple levels of detail. It also preserves geometry 
and topology of 3D models with good fidelity. 
Additionally, the representation has local shape 
information such as lengths and angles which can be 
used for finer discrimination between 3D shapes. An 
example demonstrating similar shape retrieval is 
provided. 
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1. INTRODUCTION 
Computer-aided design (CAD) and solid modeling 
have become essential elements in modern design 
and manufacturing. 3D CAD models of product 
information are ubiquitous throughout the lifecycle 
of a product. In order for companies to remain 
competitive, reducing product development costs and 
lead time are critical success factors. Conservative 
estimates suggest that about 75% of all design 
activity is case-based design, i.e. reuse of previous 
design knowledge to address a new design problem. 
Two types of knowledge reuse have been identified:  

a. Internal knowledge reuse: a designer reusing 
knowledge from his/her own personal 
experiences (internal memory) 

b. External knowledge reuse: a designer reusing 
knowledge from an external knowledge 
repository (external memory). 

Whereas internal knowledge reuse is effective, 
external knowledge reuse often fails. One of the key 
reasons is that there are no mechanisms from both 
the information technology and organizational 
viewpoints for capturing, finding, and retrieving 
reusable knowledge (Fruchter, R., and Demian, P., 
2002). It is estimated that designers spend about 60% 
of their time searching for the “right” information 
(Leizerowicz, W., et al., 1996). Often designers have 
to make “assumptions” while designing, which may 
lead to problems at a later stage of the design. Such 
unforeseen errors can lead to allocation of scarce 
resources for solving unanticipated problems or 
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putting out “fires.” Nevertheless, fire-fighting has 
become the de facto process for developing new 
products in industry (Repenning, N.P., 2001). Design 
and associated knowledge reuse is the key to 
reducing new product development time and cutting 
down costs. 

Text based searching of 3D models is not robust 
primarily for the following reasons: 

a. All models will not have a well-defined attached 
context. 

b. Keywords such as project names or part names 
may be unknown to the user. 

c. Context may be too narrow or too broad to 
retrieve relevant models. 

d. Context changes with time, such as when 
designers or naming conventions change. 

The Internet has facilitated newer business models 
along with geographically-distributed design and 
manufacturing. Hence, 21st century designers may 
not be familiar with design history and context, 
making a keyword-based search an unattractive 
option. The motivation for this research is based on 
enabling new possibilities and associated 
applications, specifically: 

a. Allowing for the retrieval of past knowledge and 
previous parts that are similar. 

b. Enabling better quotation support, including 
reducing risk and improving time of response. 

c. Being able to locate suppliers through neutral 
secure locations where geometry-related 
manufacturing capabilities can be determined 
without revealing part geometry. 

d. Being able to overcome limitations of knowing 
part history, part names, project names, and 
context that are often forgotten. 

e. Using distributed repositories at other locations 
whose histories one may not be familiar with. 

f. Reducing the search time for parts and even 
finding unknown relations or knowledge from 
earlier projects across the extended enterprise. 

g. Enabling the association of context by relating 
the shape and text-based index structures in 
multi-dimensional queries. 

1.1. Previous Work 
All related methods for matching 3D shapes 
decompose a shape into a shape representation. 
Based on the methods used to convert a shape into a 
shape representation, they can be classified into the 
following categories (Iyer, N., et al., submitted): 

1. Invariant/Descriptor based: These methods use 
invariants or descriptors of the 3D shape such as 
volume, surface area, aspect ratio, higher order 
moments or moment invariants as signatures. 

2. Harmonics based: These approaches use a set of 
harmonic functions of a shape as its signature. 
Spherical or Fourier functions are usually used to 
decompose a discrete 3D model into an approximate 
sum of its (first n) harmonic components. 

3. Statistics/Probability based: Osada, R. et al. 
(2001) use shape functions and construct a shape 
distribution by random sampling of points. Ankerst, 
M. et al. (1999) use shape histograms to approximate 
and search for a 3D model.  

4. 3D Object Recognition based: Some 3D object 
recognition approaches that have been used for 3D 
shape searching are Aspect Graphs (Cyr, C.M., and 
Kimia, B.B., 2001) and Geometric Hashing 
(Lamdam, Y., and Wolfson, H.J., 1988). 

5. Graph based: Graph based approaches have 
employed subgraph isomorphism for matching B-
Rep graphs (El-Mehalawi, M., and Miller, R., 2003) 
and matching eigenvalues of a model signature graph 
(MSG) constructed from the B-Rep graph 
(McWherter, D., et al., 2001). 

6. Feature Recognition based: Ramesh, M. et al. 
(2001) decompose a part into cells which are further 
processed to identify machining features and their 
spatial relationships to calculate similarity between 
parts. 

7. Group Technology based: A two step Group 
Technology (GT) method was developed in (Iyer, S., 
and Nagi, R., 1997) to compare similarity between 
parts. 

An extensive review of various approaches to 3D 
shape searching is available in (Cardone A., et al., 
(2003) and Iyer, N., et al., submitted). Most previous 
approaches are bipolar - too granular (categories 4, 5, 
6) or too lumped (categories 1, 2, 3, 7). Granular 
approaches represent the shape in great detail making 
the search intractable, while lumped approaches 
combine all shape characteristics into a single 
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quantity.  The input to most systems is a detailed 
model or a detailed drawing, which is unrealistic in 
an engineering design situation. The designer, 
depending on the stage of design may not know the 
detailed shape of the model he/she is searching for. 
Importantly, an application domain is not considered 
in most methods. The notion of similarity for 
engineering shapes is cognitively different than that 
for other shapes such as in bioinformatics or 
computer vision. 

2. DEFINITIONS 
The physical shape of any object can be regarded at 
least from a topological, a morphological, and a 
geometric point of view. Although, these aspects of a 
shape are a synergetic entirety, definitions can be 
formulated that identify related properties. 

2.1. Informal description 
Shape has been studied by philosophers, 
psychologists, scientists and engineers. However, 
there has been no unique definition of shape 
proposed as yet. Merriam-Webster Dictionary 
defines the noun shape as: “the visible makeup 
characteristic of a particular item or kind of item”, “a 
spatial form or contour” or “a standard or universally 
recognized spatial form”. Although this describes 
what is commonly understood by the word ‘shape’ in 
the English language, it is not sufficient in the 
context of analysis and representation of shapes. 
Marr, D. (1982) described a shape as: “We shall 
reserve the term shape for the geometry of an 
object’s physical surface. Thus, two statues of a 
horse, cast from the same mold have the same 
shape.” Another definition of shape was proposed by 
Kendall, D.G. (1977): “Shape is all the geometrical 
information that remains when location, scale, and 
rotational effects are filtered out from an object.” 
Another way to state the above is to say that a shape 
is all information contained in a geometry that is 
invariant to Euclidean transformations. 

2.2. Formal definition 
Suppose we have a database of designs D and want 
to estimate the similarity between two designs 1d  
and 2d  from the database. The similarity between 
two designs can be calculated based on various 
design attributes. As an example, let 

{ }1 2, ,..., nA a a a= be the set of attributes that are 
stored in the database. The set of design attributes for 

a design can consist of various features including 
geometry of the design, materials used in the design, 
processes employed in the design, supplier 
information, tooling, cost data, assembly instructions 
and recycling information. We will use ( )i ja d  to 

denote the value of the attribute ia  for design jd . 
The similarity between 1d  and 2d  based on a 
particular design attribute ia  can be found by 
comparing the attributes of both designs ( )1ia d  and 

( )2ia d . The overall similarity between both designs 

is simply ( ) ( )1 2
1

n

i i
i

a d a d
=
∑ ∼  where the ∼  operator 

denotes comparison between two attributes. 

 
The geometry or “shape” of the design is an 
important design attribute. In this paper we describe 
a method to evaluate similarity between two designs 
based on their shape. The characterization of a 
physical shape needs the simultaneous consideration 
of geometrical, morphological and topological 
aspects of the shape. Some definitions regarding the 
above aspects are given in (Horváth, I., 1998). 

Definition 1: Geometric shape GS  related to an 
object O  is the set GS  of all points 3

jp ∈ℜ  that 
build up the physical extent of a shape, that is 

j

G j
p O

S p
∈

= ∪ . 

Definition 2: Morphological shape MS  related to an 
object O  is the composition of a family { }kz  of 

subsets kz  of points jp  of 3E , so that 
1

N

M k
k

S z
=

=∪  

forms a weak morphological covering of the physical 
shape and 

j k

k j
p z

z p
∈

= ∪ . 

Definition 3: Topological shape TS  related to an 
object O  is a Hausdorff space TS  in which each 
point i Tt S∈  has a neighborhood homeomorphic to 

3ℜ , so that 
1

T i
i

S t
∞

=

=∪ , such that ( ) 0iU t ≥ , where 

( )iU t  is the number of neighbors of point it . 

According to these definitions, the lowest level of 
feature information is related to the geometric shape. 
To depict shape information on a part level, besides 
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the geometric and morphological interpretations, 
topological shape has to be also considered in order 
to provide continuity.  

3. SHAPE REPRESENTATIONS 
Any method employed for shape matching and 
analysis reduces a shape into a simpler shape 
representation. Detailed reviews of various shape 
representation techniques are available in Loncaric, 
S. (1998) and Alt, H., and Guibas, L.J. (1996). Below 
we describe the difference between a shape 
representation and a shape description. 

Marr, D. and Nishihara, H.K. (1978) define a shape 
representation as: “A formal scheme for describing 
shape or some aspects of shape together with rules 
that specify how the scheme is applied to any 
particular shape. The result of using a representation 
to describe a given shape is a description of the shape 
in that representation. A description may specify a 
shape only roughly or in fine detail.”  

Loncaric, S. (1998) distinguishes between a shape 
representation and a description in this way: “Shape 
representation methods result in a non-numeric 
representation of the original shape (e.g. a graph) so 
that the important characteristics of the shape are 
preserved. The word important in the above sentence 
typically has different meanings for different 
applications. Shape description refers to the methods 
that result in a numeric descriptor of the shape and is 
a step subsequent to shape representation. A shape 
description method generates a shape descriptor 
vector (also called a feature vector) from a given 
shape. The goal of description is to uniquely 
characterize the shape using its shape descriptor 
vector.” 

Woodham, R.J. (1987) discriminates between shape 
representation and description thus: “The term 
representation is used to identify a formalism, or 
language, for encoding a general class of shapes. The 
term description is restricted to mean a specific 
expression in the formalism that identifies an 
instance of a particular shape, or class of shapes, in 
the representation.”  

In other words, shape description is an instantiation 
of a shape representation. We will use this definition 
for a shape representation. 

3.1. Criteria for a Shape Representation  
The following criteria have been commonly cited by 
researchers such as Marr, D. and Nishihara, H.K. 

(1978), Woodham, R.J. (1987) and Brady, M. (1983) 
regarding criteria while formulating or evaluating a 
shape representation: 

(a) Scope: The shape representation must be able to 
describe all classes of shapes. For example, a shape 
representation designed to describe planar surfaces 
and junctions between perpendicular planes would 
only have cubical solids within its scope, but would 
be unable to describe spherical solids or solids with 
curved surfaces. 

(b) Uniqueness: There should be a one-to-one 
mapping between shapes and descriptions of shape 
within a representation. This is particularly important 
because at some point during searching, the difficult 
problem of deciding whether two shape descriptors 
represent the same shape would arise. 

(c) Stability: For a particular shape representation, 
the shape descriptor must be stable to small changes 
in shape. In other words, small changes in shape 
must produce small changes in the description. 

(d) Sensitivity: The shape representation must be 
capable of capturing even subtle details of the shape. 
This is a contradictory condition to the stability 
criterion above. These opposing conditions can only 
be satisfied if it is possible to de-couple the stable 
information that captures the more general and less 
varying properties of a shape from information that is 
sensitive to the finer distinctions between shapes 
(Marr, D., 1982). 

(e) Efficiency: It must be possible to efficiently 
compute and compare descriptors within a shape 
representation from input data. In the context of 
shape searching, it may either be comparison of 
feature vectors or comparison of other data 
structures. 

(f) Multi-scale Support: The representation must 
describe shape at multiple scales as a hierarchical 
structure. Details are suppressed until they are 
required. Further, hierarchical structures are also 
efficient in terms of storage and are rich in 
information. The representation should define a 
natural semantic segmentation and coarse-to-fine 
levels of detail. As an example, a pinhole in a metal 
casting is not significant when the task is part 
identification. But it is significant in identifying 
defects in parts. 

(g) Local Support: The representation must be 
information preserving and, if required, should be 
able to be computed locally. Local means the scale at 
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which the representation is computed. This may be 
essential for detailed inspection. 

3D Model Voxelization Skeletonization Skeletal
graph

Hierarchical
Skeletal
graph

Variable
voxel

resolution

Local shape
information

 

Figure 1 Conversion of a 3D model into a skeletal graph 
and a hierarchical skeletal graph representation 

Both geometry and topology have to be considered 
separately to completely describe a shape. 
Additionally, multi-scale support and local shape 
information are important for similarity comparisons. 
The next section describes a hierarchical skeletal 
graph representation which is capable of 
simultaneously handling geometry and topology 
along with multi-scale and local support. 

4. HIERARCHICAL SKELETAL GRAPH 
A Client-Server-Database architecture for 3D shape 
searching was proposed in our earlier papers. A 
skeletal graph representation was used as the shape 
representation for a 3D model (Iyer, N., et al., 2003, 
Lou, K., et al., 2003). This paper develops the 
skeletal graph into a hierarchical representation rich 
with local shape information. The process of 
converting a 3D model into a skeletal graph is 
explained in Figure 1. 

L1

L3L2
E2

E1
L1

L3L2
E2

E1

 
Figure 2 (a) 3D model, (b) Skeleton, and (c) Skeletal 

graph for a bearing block. L represents loop 
entity while E represents line entity in the 
skeletal graph 

A 3D model is converted into a voxel model. 
Voxelization is defined as the process of converting a 
geometric representation of a synthetic model into a 
set of voxels (volume elements) that best represent 
the synthetic model within the discrete model space. 
The voxel model is then converted into a skeleton 
model (Palagyi, K., and Kuba, A., 1998). A marching 
algorithm is used to identify the various entities in 
the skeleton model (Iyer, N., et al., 2003). Formally, 
a skeleton is an object S  in 3D digital space, 
composed of skeletal points and skeletal entities. A 
skeletal entity can be a line or a loop entity. Below, 

we define basic terminology used in defining a 
skeleton. 

Skeletal Points: A skeletal point 3
ip ∈#  is a point 

with integer coordinates in 3D digital space. A 
skeletal point can be a junction point or an end point. 
A junction point is a point in 3D space where two or 
more skeletal entities meet. An end point is a free 
end of a skeletal entity. Let ( )1 2 3, ,p p p p=  and 

( )1 2 3, ,q q q q=  be two points in 3D digital space and 
let us consider the Euclidean distance 

( )
3

2

1
i i

i
p q p q

=

− = −∑ . The points p  and q  are 

said to be 26-adjacent if 3p q− ≤ . ( )26 iN p  is the 
set of points 26-adjacent to ip  and is called the 26-
neighborhood of ip . A set of points { }iP p=  is 

continuous if ( )( )26  ,  i j j i jp P p p N p p P∀ ∈ ∃ ∈ ∈ . 

Line Entities: Line entities can be characterized by 
their curvature. Every line entity is defined in terms 
of a parametric equation ( ) ( ) ( ) ( ), ,R s x s y s z s=   

$
. 

We define the curvature function ( ) ( )s R sκ ′′=
$

 as a 

function of arc length s  of the line entity. If 
( ) 0sκ =  for all points belonging to an entity, we 

characterize it as a straight entity. If ( ) 0sκ ≠  for all 
points belonging to an entity, we characterize it as a 
curved entity. 

Straight Entities: A straight entity Sε  is a collection 
of continuous skeletal points ip  that form a skeletal 
entity with zero curvature, that is 

i

S
i

p S

pε
∈

= ∪   

such that ( ) 0  S
i ip pκ ε= ∀ ∈  and 

( )( )S S
26  i j j i jp p p N p pε ε∀ ∈ ∃ ∈ ∧ ∈ . 

Curved Entities: A curved entity Cε  is a collection of 
continuous skeletal points ip  that form a skeletal 
entity with non-zero constant or varying curvature, 
that is 

i

C
i

p S

pε
∈

= ∪   such that ( )   C
i i ip pκ θ ε= ∀ ∈   

where iθ  is a non-zero constant, or a function of ip  
not zero at all points, and 

( )( )C C
26   i j j i jp p p N p pε ε∀ ∈ ∃ ∈ ∧ ∈ . The set of 
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all straight entities is 
S
i

S S
i

S

E
ε

ε
∈

= ∪  and the set of all 

curved entities is 
C
j

C C
j

S

E
ε

ε
∈

= ∪ .  

Loop Entities: A loop entity is a closed continuous 
skeletal entity which connects a skeletal point to 
itself. A loop entity L  can contain a set of line 
entities, that is 

i

i
E E

L E
∈

= ∪  where S CE E E= ∪ . 

Skeletal Graph: A skeletal graph G  is an 
undirected graph, represented as a tuple 

( ), , ,G V E v e=  where V  is a finite set of vertices, 
V φ≠ , E V V⊆ ×  is a finite set of edges, : Vv V W→  
a mapping for assigning attributes to the vertices ( VW  
is a finite set of attributes for vertices), : Ee E W→  a 
mapping for assigning attributes to the edges ( EW  is 
a finite set of attributes for the edges). Vertices V  
represent skeletal (line and loop) entities, while edges 
E  represent connectivity between skeletal entities. 
The set of attributes VW  represent the local properties 
of skeletal entities such as length, curvature, 
moments, distances and volumes. The set of 
attributes EW  represent relational information 
between connected entities such as angle, relative 
length ratios and relative volume ratios. 

Figure 2 shows an example of a 3D model together 
with its skeleton model and skeletal graph. Similarity 
between two 3D models is determined by matching 
their skeletal graphs thereby yielding a similarity 
score as well as the correspondences between the 
various entities. 

4.1. Levels of detail 
In our technique a 3D model is represented at 
different levels of resolution by a hierarchical set of 
skeletal graphs. The various hierarchical skeletal 
graphs are generated by varying the voxel resolution 
for the 3D model as described in Figure 1. We 
determine the number of voxels for a 3D model 
based on the smallest dimension of its bounding box. 
The voxel size is calculated as 2n

d  where d is the 

smallest bounding box dimension and n is the level 
of resolution desired. Figure 3 shows some skeletons 
generated by varying the value of n. 

Hierarchical structures are well supported by studies 
in human cognition. Koenderink, J. J., and van 
Doorn, A. J., (1986) suggest that that the perceptual 

approach to shape organization is dynamic. A partial 
order is apparent that relies on a hypothetical 
evolution or morphogenesis that is an integral part of 
the shape description. In the conventional approach, 
shapes that are visually not all that different end up in 
different ball parks. In general, comprehension of an 
objects shape by humans follows the principle of 
“from remote to closer”, “from outer to inner”, “from 
total to detail” (Wang, C., et al., 2002). 

 

 
  (a)              (b)             (c) 

 
(e)  (f)  

Figure 3 (a) 3D model, (b) Levels of detail (LOD) for n 
= 2, (c) LOD for n = 3, (d) LOD for n = 4, (d) 
LOD for n = 5 

The hierarchical skeletal graph structure is an 
example of a dynamic approach to shape description. 
The advantage of using a dynamic approach is that 
similar shapes can be detected at different 
resolutions. For example, consider the shapes in 
Figure 4. Although these shapes can be perceived as 
visually similar, conventional approaches cannot 
detect them as similar. The skeletons for these shapes 
at the same voxel resolution will also be different. 
However, they will yield similar skeletons at 
individually different voxel resolutions. Thus, we 
will be able to detect them as similar at some level of 
detail.

 
Figure 4 Models that may be perceived as visually 

similar but cannot be detected as similar by 
conventional approaches 
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4.2. Local Shape Information 
Our hierarchical graph structure stores local shape 
information such as normalized entity lengths and 
curvature distribution. Topological as well as 
geometric relationships among entities such as 
internal angles as well as degree and length ratios are 
used to enrich the graph structure. These attributes 
are used in the graph matching process in a weighted 
fashion.  

In our future implementations we plan to use other 
local information including local distances obtained 
through the use of distance transform for each 
skeletal voxel, normalized volumes, volume 
distribution along each entity and principal moments 
for each entity. We believe that the use of such local 
properties will restore most of the shape-related 
information lost during skeletonization, without 
affecting the complexity of graph matching 
considerably. 

In summary, by using a hierarchical skeletal graph 
structure with local information we have tried to 
explicitly address the issues of multi-scale support 
and local support as detailed in the criteria for shape 
representation (see Section 3).  

5. SKELETAL GRAPH MATCHING 
The process of converting 3D models into skeletal 
graphs converts the problem of matching shapes into 
one of matching their skeletal graphs. Graph 
matching has been well-studied for various 
theoretical as well as real-world applications 
including computer vision and pattern recognition 
(Christmas, W.J., et. al., (1999), and Myers, R., and 
Hancock, E. R., (1999)). As a result, a large number 
of algorithms have been proposed many of which 
compare a query graph with each of the database 
graphs providing a measure of similarity between 
them (Jolion, J. M., (2001)). Messmer, B. T., and 
Bunke, H. J., (1985) proposed a decision-tree based 
approach for indexing all graphs in a database, 
thereby making similarity a decision, whereby 
traversal of a query graph through the tree resulted in 
a set of similar models. This approach was employed 
in Lou, K. et al. (2003) for indexing and searching 
from a set of skeletal graphs of engineering shapes. 
Although the search time is linearly proportional to 
the size of the query graph, this approach becomes 
intractable when indexing skeletal graphs with sizes 
larger than 10 nodes. 

In this paper, we have made use of the association 
graph technique that converts the graph matching 

problem into one of finding the maximum weighted 
clique in a composite graph called an association 
graph. Details of this approach are provided in the 
subsections below (also see Ballard, D., and Brown. 
C., (1982) and, Horaud, R., and Skordas, T., (1989)). 
Subsequent to forming an association graph, a 
heuristics-based Genetic Algorithm (GA) developed 
by Marchiori, E., (1998) is employed to determine 
the maximum weighted clique of the association 
graph. The maximum weight of the clique therefore 
represents the ‘best similarity’ between the two 
graphs. 

5.1. Topology and local shape matching 
We devote this section to describe the association 
graph based shape matching algorithm in detail. An 
association graph relates two graphs in order to find 
homeomorphism between both graphs. It is 
composed of nodes, and arcs connecting nodes. 
Although the terms ‘vertex’ and ‘node’ as well as 
‘edge’ and ‘arc’ are interchangeably used in graph 
theory, for the sake of clarity, we describe a skeletal 
graph as being made up of vertices and edges, while 
an association graph as composed of nodes and arcs.  

 

Figure 5 Association graph construction for determining 
similarity between two skeletal graphs 

The association graph Γ  between two graphs 
( )1 1 1 1 1, , ,G V E v e=  and ( )2 2 2 2 2, , ,G V E v e=  is defined 

as the complete graph ( )AAAA AN αη ,,,=Γ  with 
nodes 1 2AN V V= × , arcs A A AA N N= × , node 
attributes Aη and arc attributes Aα . Node attributes 
represent a measure of similarity between the skeletal 
vertices it represents. For example, a node i

An  
representing the association between the vertices 1

lV  
and 2

mV  of two skeletal graphs 1G  and 2G , 
respectively, will represent the similarity between 
their attributes 1

lv  and 2
mv . The similarity measure is 

formed as a weighted sum of the individual attribute 
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similarities for the corresponding skeletal vertices. 
An arc ij

Aa   between two nodes i
An  and j

An has 
positive attributes if the two nodes are compatible 
(subject to constraints), and negative otherwise. 

Similarity between the two graphs 1G  and 2G  now is 
a question of finding the homeomorphism of the 
association graph Γ . A graph homeomorphism h is a 
mapping  1 2 1 1 2 2: ,h V V v V v V→ ∀ ∈ ∀ ∈  , such that 

if ( )1 1, 2v v E∈ , then ( ) ( )( )1 2 2,h v h v E∈ . In terms of 
the association graph, a homeomorphism is a 
subgraph ' ( ', ', ', ')A A A AN A n aΓ =  of the association 
graph, which forms the maximal-weighted clique if 
the attributes are considered as weights. There exist 
many such homeomorphism mappings between any 
two skeletal graphs. However, the best similarity 
between the two graphs is the homeomorphism 
yielding the highest value of similarity among 
skeletal vertices and edges. Hence, the problem is 
one of maximizing the combined weight of a clique, 
also called a ‘similarity function’, S(Γ’), as described 
below: 

( ) ( ) ( )
1 2

1 2
( , ) ' '

(1 )' ,
' '

v v

n n N a A

S nodeSim n n arcSim a
N E
ω ω

∈ ∈

−
Γ = +∑ ∑  

where a is the arc representing the relationships 
between edge ( )1 1,n m  of G1 and edge ( )2 2,n m  of 
G2. The term arcSim(a) represents the compatibility 
value of the arc a, 1 2 1 2(( , ), ( , ))a n n m m= , while 
nodeSim(n1,n2) represents the similarity between 
nodes n1 and n2. 

Compatibility constraints ensure the validity of graph 
matching with constraints such as one-to-one 
correspondence between skeletal graph vertices, 
matching nodes only if the corresponding edges of 
the skeletal graph are sufficiently similar, etc.  

5.2. Similarity determination 
The problem of finding the ‘best similarity’ between 
two models is essentially a combinatorial 
optimization problem where the objective function is 
the similarity measure. We have utilized a heuristic-
based Genetic Algorithm approach (Marchiori, E., 
1998) to explore the maximal weighted clique of the 
association graph. The algorithm starts by initially 
picking a number of random subgraphs of the 
association graph. A heuristic algorithm is then used 
to randomly prune and relax the subgraph in order to 
obtain a maximal weighted clique. Subsequently, this 
population of cliques serves as the input to a GA that 

searches for better solutions with the aid of a set of 
crossover and mutation operations. Although 
globally optimal solutions are not guaranteed for 
large graphs, this method avoids exhaustive search 
which becomes intractable for medium to large graph 
sizes. However, this algorithm is capable of finding 
near-optimal solutions for fairly large graphs. The 
reasonably small sizes of our skeletal graphs 
guarantee accurate similarity determination with high 
probability.  

6. RESULTS AND DISCUSSION 
Figures 6 and 7 present some search results for two 
queries on a database of 200 parts. For both sets of 
results, equal weights were given to geometry and 
topology during graph matching. Addition of 
geometric information to the skeletal graph improves 
the similarity between models and retrieves more 
similar models while discarding dissimilar models. 

 
Figure 6  Effect of local geometry for Query model 1 

 

Figure 7 Effect of local geometry for Query model 2 

Inclusion of local geometry in the skeletal graph 
further refines the similarity values to account for 
noise. Therefore, for some queries (e.g. Figure 6) 
more similar models are retrieved even in the 
presence of noise. However, for other queries this 
refinement does not alter the ordering of search 
results significantly (e.g. Figure 7), although the 
similarity values are more in correspondence with 
reality. However, a systematic study of the 
effectiveness of the local geometry is needed to 
assert the effectiveness of such refinement. We 
believe that including additional geometric properties 
such as local volumes will further refine the 
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similarity metric and make it more consistent with 
human perception of similarity. 

 
Figure 8 Search results for two queries using two levels 

of detail for a model using both geometry and 
topology of the graph 

We also tested the effectiveness of using graphs at 
various levels of detail for shape matching. Separate 
graphs at two different levels of detail for the model 
shown in Figure 3 were stored in the database and 
were tested for similarity against other models. 
Figure 8 shows some representative search results. 
As observed from the figures, different models are 
retrieved for the same query model with different 
LODs, thereby providing flexible search intent and 
multi-scale support to the user. However, skeletal 
graph matching based on LOD needs a lot of 
refinement. Specifically, the similarity metric needs 
to be modified to consider what level of detail 
matches best with the query model. 

Our current implementation of graph matching 
controls the number of iterations during optimization 
based on the corresponding size of the association 
graph. In essence, the similarity metric is not an 
absolute, but an approximate measure. The search 
time for a query is dependent not only on the size of 
the database but also the sizes of the skeletal graphs 
in the database. For example, the times taken for the 
queries in Figure 6 and 7 were 2 seconds and 92 
seconds respectively. 

7. CONCLUSIONS 
The hierarchical shape representation proposed in 
this paper was based on human cognition. Parts that 
are visually similar but could not be retrieved using 
skeletal graphs at a single level of detail were 
retrieved as similar with this new representation. 
Additionally, local shape information is used to 
finely discriminate between shapes. It helped reduce 
the semantic gap, which is the difference in 
perception of similarity between the system and a 
user. 

As part of our future work, we propose to use this 
method for a larger database of parts. Careful studies 
of time taken for skeletal graph matching will also be 
conducted along with database pruning to reduce the 
number of graph comparisons. We expect that the 
use of additional local information will greatly enrich 
the hierarchical graph, thereby reducing the semantic 
gap further. 
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