

21st Gerald A. Leonards Lecture 11 April 2025, Purdue University, Lafayette Indiana

ENGINEERING FROZEN GROUND UNDERSTANDING THE BEHAVIOUR OF SOIL ON FREEZING AND THAWING

Line 1 of Napoli underground

project layout ground conditions design issues use of Artificial Ground Freezing (AGF)

Line 1 of Napoli underground

early applications (Garibaldi)

observed phenomena heat propagation analyses method optimisation & control of construction

Line 1 of Napoli underground

early applications (Garibaldi & Municipio)

fully coupled THM modelling

predictive capabilities
TX data
thaw behaviour

Line 1 of Napoli underground

early applications (Garibaldi & Municipio)

fully coupled THM modelling

not just AGF

permafrost degradation frost heave apparatus what next?

Line 1 of Napoli underground

early applications (Garibaldi & Municipio)

fully coupled THM modelling

not just AGF

conclusions

13 km (9) completed 1998

8 km (5) completed 2002

6 km (5) completed 2013

16 km (6) construction

1 km (0) design

station	B (m)	L (m)	H (m)	Hs (m)	Hw (m)
Municipio	23.40	46.19	36.05	17.20	29.65
Università	16.20	43.55	34.85	20.40	33.50
Duomo	16.20	43.45	35.20	17.00+24.70	35.20
Garibaldi	21.00	46.00	44.70	29.00	35.30

section Y-Y

- bottom of excavation 35 to 50 m b.g.l.

- plan area $\sim 1000 \text{ m}^2$

- thickness of granular soils 20 to 30 m

- thickness of soft rock 10 to 15 m

- high water table 30 to 35 m a.d.l.

- bottom of excavation 35 to 50 m b.g.l.

- plan area $\sim 1000 \text{ m}^2$

- thickness of granular soils 20 to 30 m

- thickness of soft rock 10 to 15 m

- high water table 30 to 35 m a.d.l.

construction techniques

- RC diaphragm walls (hydromill)

- bottom of excavation 35 to 50 m b.g.l.

- plan area $\sim 1000 \text{ m}^2$

- thickness of granular soils 20 to 30 m

- thickness of soft rock 10 to 15 m

- high water table 30 to 35 m a.d.l.

construction techniques

- RC diaphragm walls (hydromill)
- props and anchors

- bottom of excavation 35 to 50 m b.g.l.

- plan area $\sim 1000 \text{ m}^2$

- thickness of granular soils 20 to 30 m

- thickness of soft rock 10 to 15 m

- high water table 30 to 35 m a.d.l.

construction techniques

- RC diaphragm walls (hydromill)
- props and anchors
- top-down construction

LINE 1 station tunnels

platform tunnels fractured soft rock (yellow tuff)

inclined passageways granular soil (pozzolana)

below the water table

construction techniques

ARTIFICIAL GROUND FREEZING

ARTIFICIAL GROUND FREEZING

ARTIFICIAL GROUND FREEZING

- ✓ increased strength
- ✓ low permeability

LINE 1 station tunnels

platform tunnels fractured soft rock (yellow tuff)

inclined passageways granular soil (pozzolana)

below the water table

construction techniques

* Artificial Ground Freezing

static inclined passageways

hydraulic platform tunnels/passageways

GARIBALDI (2002-2013)

GARIBALDI section

made ground pyroclastic sand

seabed deposits pozzolana

yellow tuff

GARIBALDI construction phases

GARIBALDI monitoring

- Casagrande piezometer
- inclinometer

anchor load cells

temperatures in the ground (TC in observation holes)

GARIBALDI freezing and observation tubes

observation hole

GARIBALDI temperatures

GARIBALDI construction phases

GARIBALDI convergence

GARIBALDI anchor loads

diameter 10.6 m 53 freezing tubes

temperature @ mid point frozen thickness

thermal conductivity $1.49 \div 2.69 \text{ W/m}^{\circ}\text{C}$ heat capacity $1604 \div 1134 \text{ J/(kg}^{\circ}\text{C)}$ specific heat $0.84 \div 0.60 \text{ J/m}^{3}^{\circ}\text{C}$

boundary conditions

15 °C @ mesh boundary -174/-40 °C @ freeze tubes

nitrogen activation

brine activation

OPTIMISATION

nitrogen activation thawing brine maintenance

1.00 m 1.18 m 1.48 m

OPTIMISATION

nitrogen activation thawing brine maintenance

1.00 m 1.18 m 1.48 m 0.90 m 1.14 m 1.37 m 0.85 m 1.05 m 1.34 m 0.80 m 0.90 m 1.35 m

end of nitrogen activation (7dd)

after brine maintenance (26 dd)

end of nitrogen activation (7dd)

after brine maintenance (26dd)

re-activation at crown with localised freezing

GARIBALDI construction phases

DEVELOPMENT OF SOIL FREEZING

reducing temperature

DEVELOPMENT OF SOIL FREEZING

thermo-dynamical equilibrium (Clausius-Clapeyron equation)

$$p_i = \frac{\rho_i}{\rho_w} p_w - \rho_i L \ln \left(\frac{T}{2/73.15 \text{K}} \right)$$

$$L = (s_l - s_i)T$$

latent heat of melting (333.7 kJ/kg)

thermo-dynamical equilibrium (Clausius-Clapeyron equation)

$$p_i = \frac{\rho_i}{\rho_w} p_w - \rho_i L \ln \left(\frac{T}{2/73.15 \text{K}} \right)$$

ice retention curve (van Genuchten equation)

$$p_{i} = \frac{\rho_{i}}{\rho_{w}} p_{w} - \rho_{i} L \ln \left(\frac{T}{2/73.15 \text{K}} \right) \qquad S_{w} = S_{\text{res}} + (1 - S_{\text{res}}) \left[1 + \left(\frac{p_{i} - p_{w}}{P} \right)^{\frac{1}{1 - M}} \right]^{-M}$$

thermo-dynamical equilibrium

$$p_i = \frac{\rho_i}{\rho_w} p_w - \rho_i L \ln \left(\frac{T}{2 \cdot 73.15 \text{K}} \right)$$

ice retention curve

(Clausius Clapeyron equation) (van Genuchten equation)
$$p_i = \frac{\rho_i}{\rho_w} p_w - \rho_i L \ln \left(\frac{T}{2/73.15 \text{K}} \right) \qquad S_w = S_{\text{res}} + (1 - S_{\text{res}}) \left[1 + \left(\frac{p_i - p_w}{P} \right)^{\frac{1}{1 - M}} \right]^{-M}$$

$$S_{w} = S_{\text{res}} + (1 - S_{\text{res}}) \left[1 + \left(\frac{p_{i}}{\rho_{w}} \right) \frac{1}{p_{w}} - \rho_{i} L \ln \frac{T}{273.15} \right)^{\frac{1}{1 - M}} \right]^{-M}$$

thermo-dynamical equilibrium (Clausius Clapeyron equation)

$$p_i = \frac{\rho_i}{\rho_w} p_w - \rho_i L \ln \left(\frac{T}{2/73.15 \text{K}} \right)$$

freezing retention curve (van Genuchten equation)

$$p_{i} = \frac{\rho_{i}}{\rho_{w}} p_{w} - \rho_{i} L \ln \left(\frac{T}{273.15 \text{K}} \right) \qquad S_{w} = S_{\text{res}} + (1 - S_{\text{res}}) \left[1 + \left(\frac{p_{i} - p_{w}}{P} \right)^{\frac{1}{1 - M}} \right]^{-M}$$

$$S_w = S_{\text{res}} + (1 - S_{\text{res}}) \left[1 + \left(\frac{-\rho_i L \ln \frac{T}{273.15}}{P} \right)^{\frac{1}{1-\mu}} \right]^{-\mu}$$

hydraulic conductivity

$$\mathbf{K} = k_r(S_w)\mathbf{K_{sat}}$$

mass balance of mineral (solid)
$$\frac{\partial}{\partial t} (\theta_s (1-n)) + \nabla (\mathbf{j}_s) = 0$$

mass balance of water (liquid and ice)

$$\frac{\partial}{\partial t} (\theta_l^w S_l n + \theta_i^w S_i n) + \nabla (\mathbf{j}_l^w + \mathbf{j}_i^w) = f^w$$

internal energy balance for the medium

$$\frac{\partial}{\partial t} (E_s \rho_s (1 - n) + E_l \rho_l S_l n + E_i \rho_i S_i n) + \nabla (\mathbf{i}_c + \mathbf{j}_{Es} + \mathbf{j}_{El} + \mathbf{j}_{Ei}) = f^Q$$

momentum balance for the medium (equilibrium)

$$\nabla \boldsymbol{\sigma} + \mathbf{b} = 0$$

adaptation of BBM (two stress variable elasto-plastic model)

mean net stress, $p_n = p - p_i$

Nishimura et al. (2009)

COUPLED THM MODELLING TX data

POZZOLANA

...... 200 kPa 350 kPa

 $\dot{\varepsilon}_{ax} = 0.06 \text{ mm/min}$

COUPLED THM MODELLING TX data vs model

POZZOLANA

----- 200 kPa ----- 350 kPa

 $\dot{\varepsilon}_{ax} = 0.06 \text{ mm/min}$

GARIBALDI surface settlements

TOLEDO surface settlements

THAW BEHAVIOUR testing programme

THAW BEHAVIOUR results

THAW BEHAVIOUR results

THAW BEHAVIOUR results

THAW BEHAVIOUR microstructure

X 3,000 2,00kV SEI SEM KI 10, 2m

after freezing

POZZOLANA

SEASONAL FREEZING/THAWING

55 to 60% of exposed land surface in northern hemisphere freezes & thaws seasonally

permanently frozen groundseasonally frozen ground (≥15 days/year)intermittently frozen ground (<15 days/year)

SEASONAL FREEZING/THAWING effects on infrastructure

irrigation canals

Li et al., 2019

road pavements

Ystenes, 2011

SEASONAL FREEZING/THAWING effects on infrastructure

bridges

Arpin, Beddoe & Take (2023)

THAW BEHAVIOUR equipment

FROST HEAVE APPARATUS (FHA)

FROST HEAVE APPARATUS (FHA)

(PSEUDO) 3D PHOTOGRAMMETRIC MODEL

DaHeng Vision MARS1231 camera (1/3 sample surface)

"one-shot" calibration (constant radius constraint)

new photogrammetric model cell wall-induced distortions

Stanier & Lattuada

(PSEUDO 3D) PHOTOGRAMMETRIC MODEL

OpenCV model exhibits systematic residual errors

newly implemented cubic model reduces errors by ~66%

precision in the micron range possible

FREEZING

50% Kaolin + 50% Hostun Sand

vertical stress: $\sigma_v = 100$ kPa

head temperature: +20°C to -10°C

base temperature: +2°C

free drainage: $u_{base} = 0$

FREEZING

FREEZING/THAWING 50%K-50%S -100kPa

w/c contours by PIV

46.1

38.9

31.7

24.4

17.2

10.0

initial w/c $\approx 32\%$

final w/c $\approx 24\%$

FREEZING/THAWING

FREEZING/THAWING

FREEZING/THAWING

thermal BC

mechanical BC

FROST HEAVE SUSCEPTIBILITY

$$\frac{u_w}{\rho_w} - \frac{u_i}{\rho_i} = L \ln\left(\frac{T}{T_0}\right)$$

Daichao Sheng et al. (1995)

ICE LENS INITIATION

$$\sigma' = \sigma - u_n$$

$$u_n = \frac{n - I}{n} u_w + \frac{I}{n} u_i$$

ICE LENSING

Pico RP2040 based I2C wireless data acquisition

measurement of suction

TE MS5837-02BA

3.3×3.3×2.75 mm

miniature X-Ray transparent FHA

Tom Mlady MSc (2023) Cino Viggiani, Giulia Guida

WHAT'S NEXT? THM-TX

WHAT'S NEXT? THM-TX

WHAT'S NEXT? THM-TX

true 3D imaging system

originally developed @ UWA

Raspberry Pi Zero W and HQ camera modules

UDP controlled acquisition via Python scripts

PIV-driven - stereophotogrammetry

all codes available on GitHub

displacements resolved to µm precision comparable with internal local gauges

CONCLUSIONS

relevance underground construction - AGF

climate change induced seasonal freezing and thawing

monitoring construction effects/ control processes

collect evidence

analysis data reduction

modelling

THM coupling volume expansion on freezing driven by

mass transfer under temperature gradients

equipment thermal & hydraulic boundary conditions

full field measurements of deformations by PIV

[...] Many of his research interests were motivated by his consulting activities wherein the state of the art fell short of explaining performance. [...]

Milton Harr (1998)

