From Theory to Practice: Design of Excavation Support

Richard J. Finno

Outline

- Fallacy in earth pressure calculations
 From theory to practice
 - Coulomb and Rankine limitations
 - Apparent earth pressure diagrams
 - Factors affecting loads in supports
 - Cross-lot vs tied-back ground anchors
- Serviceability: movement predictions
 From practice to theory and back again...
 - Precedent
 - FE simulations

Fallacy in earth pressure calculations

Terzaghi (1936)

Experience did not match Coulomb or Rankine earth pressure distributions for retained sands

Higher apparent stresses at top and lower at bottom of cut

Strut loads during excavation: HDR-4 project

Deformations during excavation: HDR-4 project

Apparent Earth Pressure Envelopes

- Measured loads in cross-lot braces
- For a given soil condition
 - At each excavation
 - Loads in each brace divided by tributary area
 - Selected maximum apparent pressure at each level
 - For all excavations, defined envelope of maxima
- Developed loading diagrams for sands, stiff clays and soft clays

T&P Apparent Earth Pressure Envelopes

Factors affecting strut loads

- Earth and water pressures
- Workmanship
- Preloading
- Temperature

Open circles – total force in member

Solid circles – temperature effects removed

Effects of temperature on strut loads

Cross lot brace vs Tied back ground anchor behavior

Cross lot brace vs Tied back ground anchor behavior

Anchor location affects lateral load distribution

Internally braced walls (T&P)

Tiedback walls (FHWA)

Comments

- Apparent earth pressure (AEP) envelopes developed in response of observed differences between theory and field performance
- No numerical methods existed at time of development of AEP envelopes
- Finite element simulations are being used to design support systems without including temperature-induced loadings in cross-lot braces

Serviceability

- Constraints in urban areas restrict magnitude of deformations
- Stiffness based design
- Need to develop design estimate of ground movements
 - Precedent
 - Numerical analysis

Iterations from practice to "theory"

Practice to "theory"

Observations of deformations during excavation – maximum movements and bounds

Finite element estimates of excavation-induced deformations: free field and "simple" constitutive models of soil behavior

"Theory" to practice

Practice to "theory"

Observations of deformations during excavation – distributions of settlements

Finite element estimates of deformations: construction simulation and more realistic constitutive models of soil behavior

Observations of deformations during excavation – maximum movements and bounds

Empirical

- Peck (1969)
- Goldberg et al. (1975)
- Clough and O'Rourke (1990) ~ lateral wall movement and settlement
- Long (2001)
- Kung (2008)

Peck (1969) diagram

Zone I: Sand and clay with average workmanship

Zone II: Very soft to soft clay with limited depth below b/cut

Zone III: Very soft clay to large depth below cut

Examples of performance data that does not fall within Peck diagram limits

Goldberg, Jaworski and Gordon (FHWA 1972)

Figure 4. Normalized vertical movements.

O * DIAPHRAGM WALL O * SOLDIER PILE OR STEEL SHEETING

Maximum settlement vs Depth of excavation (Clough and O'Rourke 1990)

Normalized movements: soft clays

Finite element estimates of excavation-induced deformations: free field and "simple" constitutive models of soil behavior

Adjust values for effects of wall stiffness strut stiffness depth to underlying firm layer excavation width strut preload modulus multiplier, m

Mana and Clough (1981)

$$\delta_{Vmax} = (0.6 - 1.0) \delta_{Hmax}$$

Estimate maximum lateral wall movement in clays

Free field movements

Adjustments if conditions are not plane strain

(Finno et al. 2007)

Assumed stress-strain responses

Mises elastic-perfectly plastic model 2 elastic parameters and failure parameters For undrained loadings on clay and Mohr Coulomb failure criteria:

$$\phi = 0$$
, $c = Su$
 $E = m Su$, $v \approx 0.5$

Implications of assumed constitutive responses

- Linear elastic and elasto-plastic models underpredict maximum settlement behind wall and overpredict extent of settlement trough
- Approach is to compute maximum lateral wall movement and estimate maximum vertical settlement ~ 60 to 100% of maximum wall movement per Mana and Clough (1981)

Observations of deformations during excavation – distributions of settlements

Settlement distribution – (Hsieh and Oh 1998)

"small" cantilever movements

"large" cantilever movements

Extents of settlement in Clough and O'Rourke charts are not distributions of settlements

Movements parallel to wall

Note: Roboski and Finno (2005) original publication contained typo

Example of fit of complimentary error function

Finite element estimates of deformations: construction simulation and more realistic constitutive models of soil behavior

FE procedures
Constitutive modeling
Instrumentation

Types of stress-strain models

All plasticity models have failure criteria, yield surface(s), flow rule(s) and hardening law(s)

Commonly employed in commercial finite element codes: Modified Cam-Clay Hardening Soil Model (many similarities to Duncan-Chang model but in plasticity framework)

Either more parameters or assumptions regarding soil behavior required Stiffness at small strains underestimated

Stress-strain characterization – incremental non-linearity

Bender elements
Internal instrumentation

Direction of loading - normalized secant shear

Data from Finno and Kim (2012)

Effect of constitutive model on computed

MC – underpredicts max. settlement and distortion but overpredicts extent of movements: true for any model with constant elastic modulus

Shear strains for 10 m cut

57 mm lateral wall movement

Lateral displacements near wall dominated by ε_H max

Settlement distribution depends on all strain levels

Variable moduli (e.g. elastoplastic model) can be used to compute lateral movements near wall

Small strain non-linearity and dilatancy must be included for settlement distributions

Movements from causes other than excavation and bracing cycles

- Removal of existing foundations
- Wall installation
 - Densification of sands from vibrations (Clough and Chameau 1980)
 - Displacements arising during installation
 - Slurry or secant pile wall (Clough and O'Rourke 1990 and Finno 2010)
 - Sheet-pile wall (Finno et al. 1988)
- Deep foundation installation (Lukas and Baker 1978)
- Concrete shrinkage during top-down construction (Arboleda and Finno 2015)

Presence of building adjacent to excavation affects movements

two factors: lower stress from basement stiffness of building

Concluding remarks

- Cycles of practice (precedent) and theory/ numerical analyses have defined the state-ofthe- art of deep excavation design
- Use of precedent provides estimates of support loads and deformations
- Numerical procedures can consider expected construction procedures explicitly – although constitutive responses and details and sequences of construction difficult to predict in design stage

Concluding remarks

- Monitor, monitor, monitor....
- Going through the process of making predictions of ground movements is an excellent approach to design of supported excavations
- Optimum choice of support systems may be one that allow movements to slightly damage adjacent structures; then include bid item to repair

Acknowledgements

- Schnabel Foundation Company
- Hayward Baker
- Case Foundation
- Thatcher Engineering Corp.
- GeoEngineers, Inc.
- WJE & Associates
- STS Consultants
- Ground Engineering, Inc.
- Scott Perkins, Steve Nerby, Sebastian Bryson, Michele Calvello, Paul Sabatini, Dan Priest, Jill Roboski, Kristi Kawamura, Tanner Blackburn, Terry Holman, Wanjei Cho, Young-Hoon Jung, Greg Andrianis, Miltos Langousis, Xuxin Tu, Cecilia Rechea, Taesik Kim, Fernando Sarabia, Luis Arboleda, Charlotte Insull -Northwestern University graduate students

- Turner Construction
- Walsh Construction
- O'Neill Construction
- Skanska
- Aldridge Drilling
- DBM
- Board of Underground City of Chicago
- Funding from National Science Foundation (CMS grant 0219123) and Infrastructure Technology Institute at Northwestern University

It is what your learn after you know it all that counts

References

- 1. Arboleda-Monsalve, L.G. and Finno, R.J. "Influence of Time-dependent Effects of Concrete in Long-Term Performance of Top-down Construction," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 141, No. 4, 2015, 04014120, 1-13.
- 2. Clough, G. W., Smith, E.M., and Sweeney, B.P., "Movement control of excavation support systems by iterative design." *Current Principles and Practices, Foundation Engineering Congress*, Vol. 2, ASCE, 1989, 869-884.
- 3. Clough, G.W. and Chameau, J.L., "Measured effects of vibratory sheet pile driving," Journal of Geotechnical Engineering, ASCE 106(GT10), 1980, 1081–1099.
- 4. Clough, G. W. and O'Rourke, T. D. (1990). "Construction induced movements of in-situ walls." *Design and Performance of Earth Retaining Structures, Proceedings of a Specialty Conference at Cornell University*, ASCE, New York, 439-470.
- 5. Finno, R.J., Blackburn, J.T. and Roboski, J.F., "Three-dimensional Effects for Supported Excavations in Clay," Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 1, January, 2007, 30-36.
- 6. Finno, R.J., Atmatzidis, D.K., and Nerby, S.M., "Ground Response to Sheet-pile Installation in Clay," Proceedings, Second International Conference on Case Histories in Geotechnical Engineering, St. Louis, MO, 1988.
- 7. Goldberg, D. T., Jaworski, W. E., and Gordon, M. D. (1976). "Lateral support systems and underpinning." Vol. 1 Design and Construction, April, FHWA-RD-75-128, Federal Highway Administration, Washington, D.C.
- 8. Hsieh, P. G., and Ou, C. Y. (1998). "Shape of ground surface settlement profiles caused by excavation." Canadian Geotechnical Journal, 35, 1004-1017.

References (continued)

- 9. Kung, G. T.-C. (2009). "Comparison of excavation-induced wall deflection using top-down and bottom-up construction methods in Taipei silty clay." Comput Geotech, 36(3), 373-385.
- 10. Lukas, R. G., and Baker, C. N. (1978). "Ground movement associated with driller pier installations." Proceedings, ASCE convention, Pittsburgh, PA, April, preprint 3266.
- Long, M. (2001). "Database for Retaining Wall and Ground Movements due to Deep Excavations." J. Geotech. Geoenv. Eng., 127(3), 203-224.
- 12. Mana, A. I., and Clough, G. W. (1981). "Prediction of Movements for Braced Cuts in Clay." Journal of the Geotechnical Engineering Division, 107(6), 759-777
- 13. Peck R.B. (1969). "Deep excavations and tunneling in soft ground." *Proceedings, 7th International Conference of Soil mechanics and Foundation Engineering, State-of-the-ArtVolume,* 225-290.
- 14. Roboski, J.F. and Finno, R.J., "Distributions of Ground Movements Parallel to Deep Excavations," Canadian Geotechnical Journal, Vol. 43 (1), 2006, 43-58.

