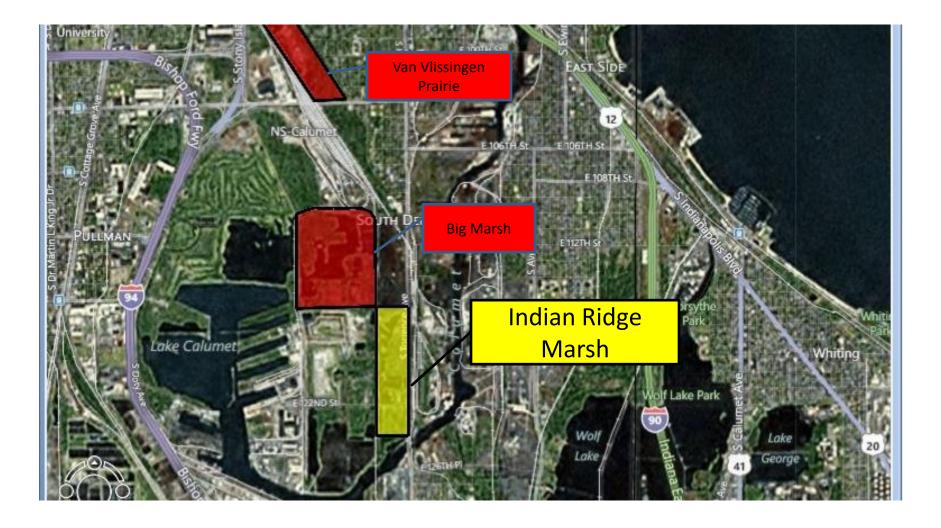
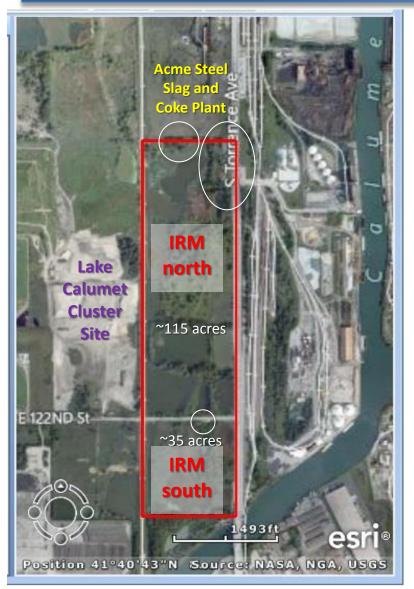
Incorporating Sustainability into Remediation of Indian Ridge Marsh, Chicago, IL


Erin Yargicoglu^{*}, Jennifer Welch^{*}, Gregory Bourgon^{*}, and Krishna Reddy^{**} ^{*}Graduate Student, ^{**}Professor

University of Illinois at Chicago


Purdue Geotechnical Society Workshop Lafayette, Indiana April 19th, 2013

- Site Background
 - Location & Restoration Initiatives
 - Site Characterization
 - Identified Site Contamination
- Human and Ecological Risk Assessment
 - Establishment of Remedial Objectives
- Remedy Selection
 - Site-specific Considerations & Remedial Options
 - Sustainability Metrics & Remedy Selection
- Remedial Design
- Final Recommendations

Site Location: Southeast Chicago

Site Description & Sources of Contamination

- Indian Ridge Marsh (IRM) (~150 acres) is bounded by:
 - North: E. 116th Street
 - East: S. Torrence Avenue
 - South: Calumet River
 - West: Norfolk & Southern Railroad
- Mixed wetland/marsh, prairie, and woodland
 - IRM has existed primarily as wooded marsh and swamp land since about 1930
 - Residential parcels along 116th St. and at northeast corner of site; industrial structure on 122nd St.
 - Contamination sources:
 - Onsite: Dumping /infilling (illegal and historic legal)
 - Offsite: Fomer/current heavy manufacturing, use/presence of USTs, landfills, illegal dumping
 - Lake Calumet Cluster Site (Superfund) west of IRM
 - Acme Steel Slag and Coke Plant (listed in CERCLIS, but not on NPL) north of IRM

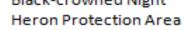
Current Site Uses & Future Redevelopment

UNVERSITY OF ILLINOIS ATCHICAGO MATERIALS Engineering

Currently not open for public use

- Prior/Current Human Uses
 - Historic Illegal dumping throughout site
 - Adjacent landfills; Cluster Sites
- Ecological Value
 - Nesting site for endangered wetland bird species (e.g. black-crowned night heron)

Future Uses:


- Human Recreation & Open Space
 - Calumet Open Space Reserve (COSR)
- *Ecological* Habitat Preservation
 - Calumet Wetland Unit

<u>Right</u>: Previously proposed restoration design plan

(Ecotoxicology Report, 1999)

- Plan proposed:

- Prairie rehabilitation
- Naturalization of marsh & pond shorelines
- Enhancement of pond habitat
 - Deep and Shallow marsh
 Wet Prairie/shoreline
 Mesic Prairie
 Mesic Woodland
 Wet Woodland
 Shrub Shoreline
 Shoreline Grading
 Trail (10' wide)
 Boardwalk
 Staging Area
 Black-crowned Night

- <u>Not</u> federally mandated
- Voluntary State Remediation Program (SRP)
- Illinois Administrative Code (IAC)
 - —Title 35, Part 742
 - Tiered Approach to Corrective Action Objectives (TACO)
 - —Title 35, Part 302, Section 407
 - Water Quality Standards, Secondary Contact and Indigenous Aquatic Life Standards

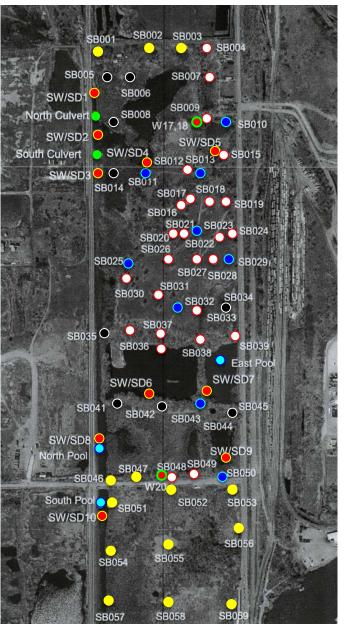
Site Characterization - Prior Site Investigations

Year	Туре	Performed By
1998	Phase I ESA	DOE
1999	Phase I ESA	Mostardi-Platt Associates, Inc.
1999	Phase II ESA	Earth Tech, Inc.
2001	Phase II ESA	Harza Engineering Co.
2002	Additional sediment data	MWH Americas, Inc.
2007	Additional groundwater data from cluster site	Ecology & Environment (E&E)
2009	Ecotoxicology Evaluation	Tetra Tech Inc.
2011	Phase I ESA	Terracon, Inc.

Phase I Results:

- Formerly SWDS
- Illegal fly/open dumping of slag and other materials
- Adjacent properties: solid waste disposal sites
- Northern property (offsite): Acme Steel Slag & Coke Plant (no longer in operation; listed in CERCLIS database)

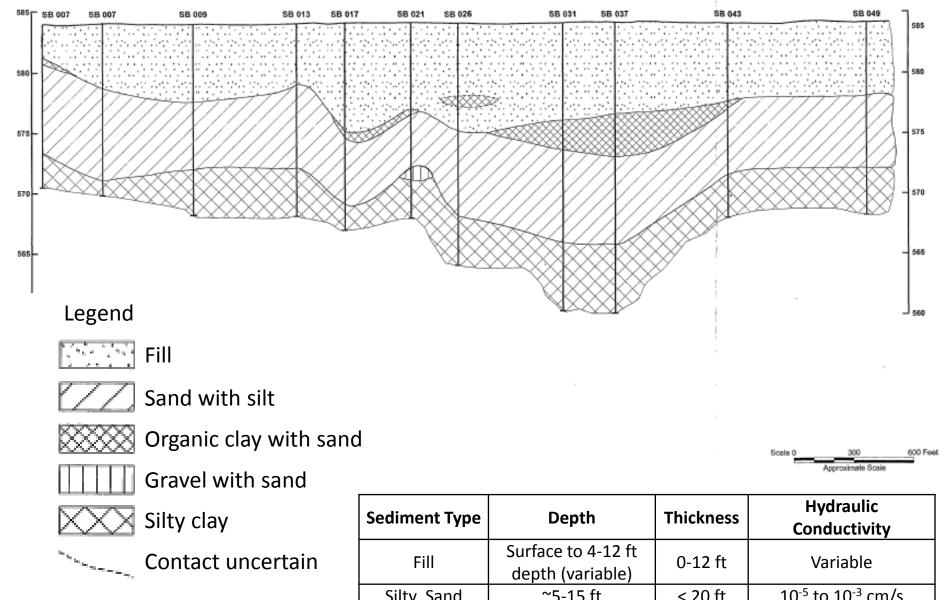
Phase II Results:


- Samples taken & analyzed (140+ soil; 20+ GW, 25+ sediment, 25+ SW)
- Documented contamination with SVOCs,
 VOCs (TCE, PCE, Vinyl Chloride), heavy metals
- LNAPL found in one borehole (Well#20) with Total Petroleum Hydrocarbons (TPH), e.g. gasoline, diesel, oil

Sampling Locations

- Site contains sediments & surface water samples that exceeded allowable criteria for SVOCs, VOCs, RCRA metals, and TPH.
- Chlorinated solvent impact to the groundwater in the vicinity of Well #20.

400 Feet



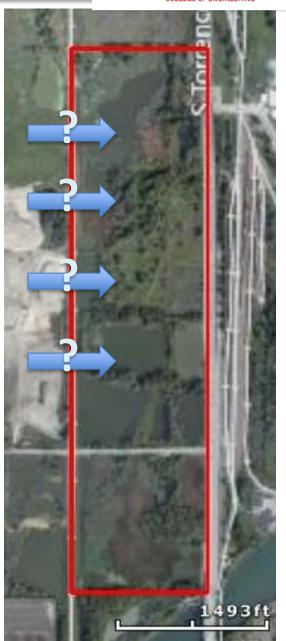
	SOIL	GROUNDWATER	SEDIMENT	SURFACE WATER
PAHs	Benzo(a)pyrene (C; GI) Benzo(a)anthracene (C; GI) Benzo(b)fluoranthene (C; GI) Benzo(k)fluoranthene (C; GI) Dibenzo(a,h)anthracene (C; GI) Indeno(1,2,3-cd)pyrene (C; GI)	Benzo(a)pyrene (C; GI) Benzo(a)anthracene (C; GI) Benzo(b)fluoranthene (C; GI) Benzo(k)fluoranthene (C; GI) Bis(2-Ethylhexyl) Phthalate (C; L) Chrysene (C; GI) 1991-92 GW data: trans-1,2-trans-Dichloroethene, cis-1,2- Dichloroethene, 1,1-Dichloroethene, Benzene	Benzo(a)anthracene (C; GI) Benzo(a)pyrene (C; GI) Dibenz(a,h)anthracene (C; GI) Naphthalene (C; R)	
VOCs	Tetrachloroethene (PCE) (C; L) Trichloroethene (TCE) (C; L) Vinyl chloride (C; L, RS)	Vinyl chloride (C; L, RS) LNAPL (containing total petrolium hydrocarbons (TPH) gasoline, diesel, and oil)		
METALS	Lead Mercury (NC; CNS, IS)	Iron Lead Manganese (NC; CNS)	Antimony (NC; CS) Arsenic (C; RS) Cadmium (NC; K) Chromium Copper Lead Nickel Thallium Zinc (NC; CS)	Iron Manganese (NC; CNS)

			Non-	CS -	Circulatory System	IM -	Immune System	L-	Liver
C	Carcinogen	NC	Carcinogen	GI -	Gastrointestinal System	К -	Kidney	RS -	Respiratory System

N-S Geologic Cross Section

UNVERSITY OF ILLINOIS Materials Engineering COLLEGE OF ENGINEERING

Harza Engineering Company June 2001


Fill	Surface to 4-12 ft depth (variable)	0-12 ft	Variable
Silty Sand	~5-15 ft	< 20 ft	10 ⁻⁵ to 10 ⁻³ cm/s
Clayey till/Clay	~15-40 ft	12-20 ft	10 ⁻⁹ to 10 ⁻⁷ cm/s

Hydrogeologic Considerations - Groundwater

- Hydrogeology strongly influenced by heterogeneous distribution of fill materials throughout pre-existing wetland complex
 - > GW flow & direction not easily quantified; highly variable
- Higher permeability surface soils, fill, and till (12-20 ft) overly a clay-rich layer

→ acts as an aquitard limiting vertical groundwater migration

- Primary Bedrock Aquifer:
 - Silurian Dolomite (Top elevation ~ 500ft)
- Seasonal groundwater fluctuation of ±3.5 ft
- Possible groundwater contribution from LCCS to the west following E-NE topographic gradient.
 Actual seepage not observed.
 - Potential off-site source of contamination
- Low hydraulic gradient estimated at 0.002 0.025 cm/cm

UNIVERSITY OF ILLINOIS ATCHICAGO MATERIALS Engineering COLLEGE OF ENGINEERING

Human and Ecological Risk Assessment

Purpose:

- <u>Identify remedial goals by assessing</u> <u>risk to human and ecological health</u>
 - Harza (2001) human health COPCs
 - Tetra Tech (2009) ecotoxicological COPCs

Approach:

- Compare human health and ecotoxicological RBSLs to chemical concentrations
 - Tiered Approach to Corrective Action Objectives (TACO) (IAC, Title 35, Part 742)

- Tier 1 - Residential

- Calumet Area Ecotoxicological Protocol (CAEP)
 - <u>Benchmark</u>
- IAC, Title 35, Part 302, Section 401, Secondary Contact and Indigenous Life Standards

Assumptions:

- Soil
 - Ingestion and inhalation only (no dermal)
- Groundwater
 - Direct ingestion only (no soil component to groundwater)
 - Human Health Class II
 - Ecotoxicological surface water

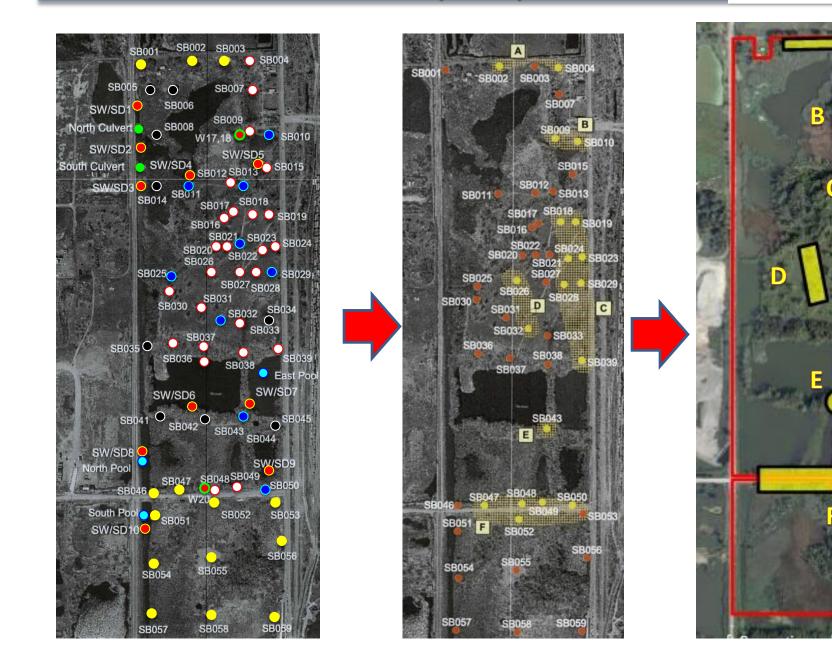
Results:

- Table of media specific ROs
- 6 soil and groundwater remedial areas

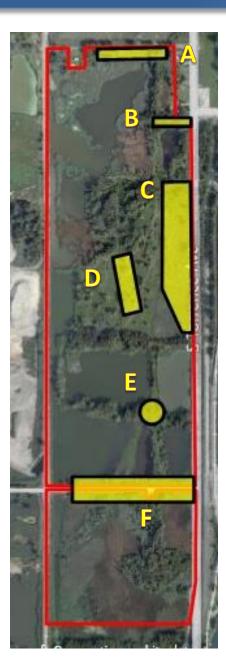
Exposure Pathways & Sensitive Receptors

Primary Human Exposure Pathways

- Soil
 - Ingestion
 - Inhalation of particulates
 - Inhalation of volatiles
- Excluded pathways for RA
 - Dermal, sediment, surface water
 - Groundwater ingestion


Ecological Pathways (media exposure)

- Soil
- Groundwater/surface water
- Sediment


Sensitive Receptors

- Ecological
 - Wetland birds 6 T&E species
 - 1) Black-crowned night heron
 - 2) Least bittern
 - 3) Pied-billed grebe
 - 4) King rail
 - 5) Black tern
 - 6) Common moorhen
- Human
 - Visitors
 - Remediation workers (including construction)
 - Long-term monitors & researchers
 - Volunteers

Identified Areas of Concern (AOCs)

Contaminated AOCs Summary

	Surface	rface area		Media for Remediation		Maximum Depth to Contaminant (ft)	
	ft²	acres	Soil	GW	Soil	GW	Table (ft)
Α	60,000	1.4	х		2.0		1.3
В	27,000	0.6	x	x	3.0	14	2.8
С	320,000	7.3	х	x	6.5	13	6.6
D	85,000	2.0	х		7.0		4.1
Ε	50,000	1.1	х	x	2.0	13	2.5
F	186,000	4.3	x	х	2.0	19	2.3
Total	728,000	16.7					

рН	Dissolved O _{2(g)}	Hydraulic Conductivity (K)
7.8 - 9.0*	7.9 - 12.0 mg/L	10 ⁻⁵ – 10 ⁻³

*In some areas, pH as high as 12

Soil Remedial Objectives

Contaminants of Potential	Sample ID	Data Carrier	Sample Depth	Concentration	TACO Tier 1 R	esidential SROs	Calumet Are	ea Ecotoxicolo; (CAEP) SROs	gy Protocol
Concern (COPC)	(Maximum Concentration)	Data Source	(ft bgs)	(mg/kg)	Ingestion	Inhalation	Background	Threshold	Benchmark
	concentration				(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	1			Area A					
Benzo(a)pyrene	SB002	Harza (2001)	2	0.22	0.09		0.68	1	
			_	Area B					
Benzo(a)anthracene	SB009		3	3.62	0.9		1.1		
Benzo(a)pyrene	SB009		3	3.13	0.09		0.0013	0.0113	0.113
Benzo(b)fluoranthene	SB009	Harza (2001)	3	3.41	0.9		1.5	1	10
Dibenzo(a,h)anthracene	SB009	. ,	3	0.47	0.09		0.2		
Indeno(1,2,3-c,d)pyrene	SB009		3	1.49	0.9		0.86	1	10
			-	Area C	0.0		0.00	_	
Benzo(a)anthracene	SB028		6.5	44.1	0.9		1.1		
Benzo(a)pyrene	SB028		6.5	29.5	0.09		0.68		
Benzo(b)fluoranthene	SB028		6.5	26.8	0.9		1.5	1	10
Benzo(k)fluoranthene	SB028		6.5	31.8	9				
Dibenzo(a,h)anthracene		Harza (2001)							
	SB029	Harza (2001)	2.5	8.43	0.09		0.2		
Indeno(1,2,3-c,d)pyrene	SB028		6.5						
				12.9	0.9		0.86	1	10
Lead	SB023		5.5	1800	400		36	16	430
Mercury	SB023		5.5	81.3	23	10	0.06	0.07	1.3
				Area D					
Benzo(a)pyrene	SB032	Harza (2001)	7	0.21	0.09		0.0013	0.0113	0.113
-				Area E					
Lead	SB043	Harza (2001)	2	499	400		36	16	430
				Area F					
Benzo(a)pyrene	SB050		2	1.23	0.09		0.0013	0.0113	0.113
Tetrachloroethylene	SB050		2	21.1	12	11			
Trichloroethylene	SB049		1	41.2	58	5			
Benzo(a)anthracene	SB050		2	2.6	0.9		1.1		
Benzo(b)fluoranthene	SB050	Harza (2001)	2	1.2	0.9		1.5	1	10
Dibenzo(a,h)anthracene	SB050		2	0.28	0.09		0.2		
Vinyl Chloride	SB050		2	0.64	0.46	0.28			
Lead	SB049		1	648	400		36	16	430

Contaminants of Potential Concern (COPC)	(Max.	ata Contar urce De _l		Concentration (mg/L)	Direct Ingestion		Area Ecoto Surface W Threshold (mg/L)	ater ROs
	I		Area	a B			ļ	
Manganese	SB010 Harza	(2001) <u>14</u>	ļ.	1.11	10	0.042	1.0	1.0
			Area	a C				
Manganese	SB029 Harza	(2001) <u>1</u> 3	;	1.19	10	0.042	1.0	1.0
			Area	a E				
Manganese	SB043 Harza	2001) <u>13</u>	;	1.48	10	0.042	1.0	1.0
			Area	a F				
Benzo(a)anthracene	SB050	10)	1.50E-03	6.50E-04		3.00E-05	2.00E-04
Vinyl Chloride	SB056	16	5	5.70E-02	1.00E-02			
Iron	SB057 Harza	2001) 17	,	16	5	0.71	1	1
Lead	SB058	18	}	2.56	0.1	< 0.002	1.67E-02	3.18E-01
Manganese	SB059	19)	1.8	10	0.042	1.0	1.0
	Additional Samples Outside of Areas of Soil Contamination							
Manganese	SB025 Harza	(2001) <u>14</u>	ļ 👘	1.82	10	0.042	1.0	1.0

Remedial Goals

UNVERSITY OF ILLINOIS ATCHICAGO MATERIALS Engineering COLLEGE OF ENGINEERING

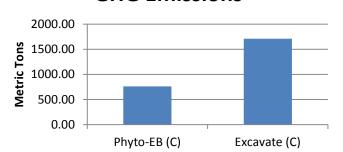
Area	Media	СОРС	Maximum Depth of Contamination	Contaminant Concentration	RO	% Exceedence	Gover	ning RO
			(ft bgs)	(mg/kg or mg/L)	(mg/kg or mg/L)		НН	Ecotox
Α	Soil	Benzo(a)pyrene	2	0.22	0.09	144	х	
В	Soil	Benzo(a)anthracene		3.62	0.9	302	Х	
		Benzo(a)pyrene		3.13	0.09	3,378	х	
		Benzo(b)fluoranthene	3	3.41	0.9	279	х	
		Dibenzo(a,h)anthracene		0.47	0.09	422	х	
		Indeno(1,2,3-c,d)pyrene		1.49	0.9	66	х	
	GW	Manganese	14	1.11	1.0	11		х
С	Soil	Benzo(a)anthracene		44.1	0.9	4,800	Х	
		Benzo(a)pyrene		29.5	0.09	32,678	Х	
		Benzo(b)fluoranthene		26.8	0.9	2,878	х	
		Benzo(k)fluoranthene		31.8	9	253	х	
		Dibenzo(a,h)anthracene	6.5	8.43	0.09	9,267	x	
		Dibenzo(a,njantinacene		0.45	0.09	9,207	^	
		Indeno(1,2,3-c,d)pyrene		12.9	0.9	1,333	х	
		Lead		1800	400	350	Х	
		Mercury		81.3	1.3	6,154		Х
	GW	Manganese	13	1.19	1.0	19		х
D	Soil	Benzo(a)pyrene	7	0.21	0.09	133	х	
E	Soil	Lead	2	499	400	25	х	
	GW	Manganese	13	1.48	1.0	48		
F	Soil	Benzo(a)pyrene		1.23	0.09	1,267	х	
		Tetrachloroethylene		21.1	11	92	х	
		Trichloroethylene		41.2	5	724	x	
		Benzo(a)anthracene	_	2.6	0.9	189	Х	
		Benzo(b)fluoranthene	2	1.2	0.9	33	х	
		Dibenzo(a,h)anthracene		0.28	0.09	211	х	
		Vinyl Chloride		0.64	0.28	129	х	
		Lead		648	400	62	х	
	GW	Benzo(a)anthracene		1.50E-03	2.00E-04	650		х
		Vinyl Chloride		5.70E-02	1.00E-02	470	х	
		Iron	19	16	1	1,500		x
		Lead		2.56	0.1	2,460	х	
		Manganese		1.8	1.0	80		Х

Remedial Technology Selection - Soil

Technology	Disqualifying Site Conditions
Soil Vapor Extraction	Less effective for removal of SVOCs than VOCs; N/A for saturated soils; ineffective for heavy metals
Soil Washing	Ineffective for low-permeability soils; high cost (\$\$\$)
In-situ Chemical Oxidation	Not appropriate for mixed contaminant classes
Stabilization/ Solidification	Shallow depth & large distribution of soil COPCs; potential for desorption of heavy metals (lead) from cement matrix over time; detrimental to plant growth & wetland restoration
Monitored Natural Attenuation (MNA)	Ineffective with some radioactive metals, and has potential for contaminant migration
Electrokinetic Remediation	Potential for significant soil pH changes incompatible with long-term habitat/wetland restoration goals
Thermal Desorption	Ineffective for heavy metals, high water table requires dewatering, Ineffective with silty soils
Vitrification	Inefficient with organic-rich soils, energy intensive, large treatment area
Bioremediation	Heavy metals resistant to degradation, partial degradation of organics generates potentially more toxic intermediaries, difficult to maintain optimal environmental conditions

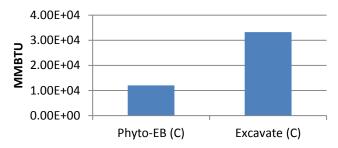
Technology	Disqualifying Site Conditions
Pump & Treat	Residual contamination due to tailing, rebound; high cost (\$\$\$), less effective in silty and heterogeneous soils
In-Situ Flushing	Ineffective for silty and heterogeneous soils, unintentional contaminant spread may occur; large treatment area
Permeable Reactive Barrier (PRB)	Low horizontal hydraulic gradient, potential for clogging due to iron precipitation, potential need for media replacement
Air Sparging	Ineffective for heavy metals, inefficient for silty and heterogeneous soils.
Bioremediation	Heavy metals resistant to degradation, partial degradation of organics generates potentially more toxic intermediaries, inefficient in low-permeability or heterogeneous soils, difficult to maintain optimal environmental conditions

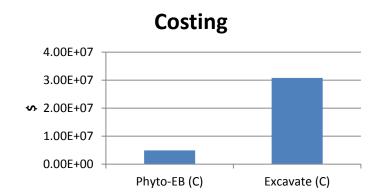
Soil Technology	Qualifying Site Conditions
Phytoremediation/ enhanced Biostimulation	Effective with a variety of mixed contaminants (heavy metals, PAHs, VOCs, SVOCs) in soil and groundwater
Excavate	Effective with non-hazardous and hazardous soils (PCBs, chlorinated solvents, lead)
Cap/Cover + vertical barrier	Prevents infiltration, which can lead to leaching

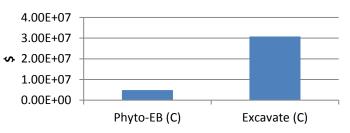

GW Technology	Qualifying Site Conditions
Phytoremediation/ enhanced Biostimulation	Effective with a variety of mixed contaminants (heavy metals, PAHs, VOCs, SVOCs) in soil and groundwater
In-situ Containment – Slurry Trench	Effective for containing a variety of organic & inorganic contaminants, it's cost-effective

GREM Matrix

Stressors	Affected Media	Mechanism/Effect		Sco	re		
			Excavate	Phytoremediation	Сар	Slurry Trench	
Substance Release/Production							
Airborne NOx & SOx	Air	Acid rain & photochemical smog	Average	Below Avg	Average	Average	
Chloro-fluorocarbon vapors	Air	Ozone depletion	Below Avg	Below Avg	Average	Average	
Greenhouse gas emissions	Air	Atmospheric warming	Above Avg	Below Avg	Average	Average	
Airborne particulates/toxic vapors/gases/water vapor	Air	General air pollution/toxic air/humidity increase	Average	Below Avg	Average	Average	
Liquid waste production	Water	Water toxicity/sediment toxicity/sediment	Average	Average	Below Avg	Below Avg	
Solid waste production	Land	Land use/toxicity	Above Avg	Average	Below Avg	Average	
Thermal Releases							
Warm water	Water	Habitat warming	N/A	Average	N/A	N/A	
Warm vapor	Air	Atmospheric humidity	N/A	Average	N/A	N/A	
Physical Disturbances/Disruptions							
Soil structure disruption	Land	Habitat destruction/ soil Infertility	Above Avg	Average	Above Avg	Above Avg	
Noise/Odor/Vibration/Aesthetics	General environment	Nuisance & safety	Above Avg	Below Avg	Above Avg	Average	
Traffic	Land; general environment	Nuisance & safety	Above Avg	Below Avg	Above Avg	Average	
Land Stagnation	Land; general environment	Remediation time; cleanup efficiency;re-development	Above Avg	Above Avg	Average	Average	
Resource Depletion/Gain (Recycling)							
Petroleum (energy)	Subsurface	Consumption	Average	N/A	Average	Average	
Mineral	Subsurface	Consumption	Average	N/A	Below Avg	Average	
Construction materials (soil/concrete/plastic)	Land	Consumption/reuse	Above Avg	Below Avg	Above Avg	Average	
Land & space	Land	Impoundment/reuse	Average	Above Avg	Above Avg	Average	
Surface water &	Water, land	Impoundment/					
groundwater	(subsidence)	sequester/reuse	Average	Average	Above Avg	Average	
Biology resources (plants/trees/animals/microorganisms)	Air, water, land/forest, subsurface	Species disappearance/ diversity reduction regenerative ability reduction	Average	Average	Above Avg	Above Avg	

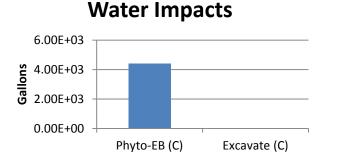

Relative Impact


Remedial Alternatives	GHG Emissions	Energy Usage	Water Usage	NOx emissions	SOx Emissions	PM10 Emissions	*Accident Risk Fatality	*Accident Risk Injury
Phyto-EB (C)	Medium	Medium	High	Medium	Low	Low	High	High
Excavate (C)	High	High	Low	High	High	High	High	Medium

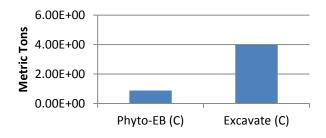

GHG Emissions

Total Energy Used

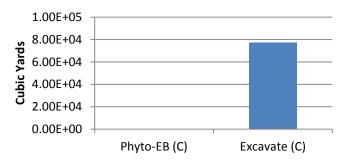
Final Cost with Footprint Reduction

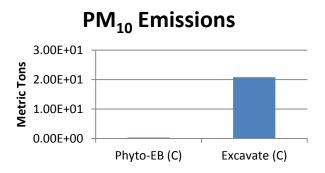


Final Remedial Selection


- Preliminary evaluation of potential remedial technologies allowed disqualification of multiple methods based on site-specific conditions:
 - Incompatibility with heterogeneous and silty soils
 - Saturated soils due to high water table
 - Chemical impacts on soil composition unsuitable for habitat rehabilitation
 - Uncertainty of long-term containment
 - Incompatibility with particular COC's and Mixtures
 - Low or uncertain groundwater flow
- Qualitative (GREM) and Quantitative analysis (Sitewise[™], Sustainable Remediation Tool[™]) allowed comparison of energy inputs and environmental sustainability of remaining technologies :
 - Site disturbance
 - Material, energy, and total water inputs
 - Particulate (PM₁₀) and GHG emissions (i.e. CO₂, NO_x, SO_x)
 - Cost estimate comparison
 - Long-term waste disposal and treatment needs
 - Worker health & safety risks
- Site-Specific engineering requirements: 122nd St. causeway located within remediation Area F
 poses technical challenges influencing final cost and input projections

Final Remedial Selection:


Phytoremediation & Enhanced Biostimulation


SO_x Emissions

Topsoil Consumption

NO_x Emissions

Other Metrics Evaluated with SiteWise™:

- Accident Risk of Fatality & Injury
- Lost hours due to Injury
- Hazardous & Non-Hazardous Landfill Space (tons)

Mechanism	Description	Remedial Goal	
Phytosequestration	Sequestration of some contaminants in rhizosphere via exudation of phytochemicals & transport proteins & cellular processes on root	Containment	
Rhizodegradation	Exudation of phytochemicals enhances microbial degradation of contaminants in the rhizosphere	<i>In-Situ</i> degradation of contaminants	
Phytohydraulics	Ability of plants to evapotranspire sources of surface water and groundwater	Containment via hydrologic controls; will be applied at riparian buffer zones*	
Phytoextraction	The ability of plant roots to extract, transport & accumulate contaminants aboveground in the shoots/leaves	Removal of COPC by disposal of plants*	
Phytodegradation	Ability of plants to break down contaminants in the transpiration stream via internal enzymatic activity & photosynthetic oxidation/reduction	<i>In-Situ</i> degradation of contaminants	
Phytovolatilization	Ability of plants to translocate & transpire volatile contaminants	Removal of COPCs (VOC, PAHs) through plants	

ITRC - Phytotechnology Technical and Regulatory Guidance and Decision Trees (2009).

Phytoremediation - Design Specifications

Selected Tree & Plant Species:

- Chosen based on maximum uptake of organic and inorganic contaminants
- Demonstrated remedial efficacy at sites in the region
 - Argonne National Laboratory-East : nearby site; similar climate, local flora & fauna, and hydrogeology
- Phreatophyte tree stands (Willows, Cottonwoods, and Poplars)
 - High transpiration and growth rates; high water consumption
 - Long root systems that maximize contact with pollutants in groundwater
- Grasses and legumes used as vegetative cover within and around treated areas
 - Minimize erosion and stabilize soil; also serve to remediate shallow subsurface contamination
 - Enhance overall water consumption and reduce infiltration (minimizing leachate production)
 - Keep shallow soils dry to promote deeper rooting depths of the phreatophytic trees
- **Riparian buffer** of Reeds, Bulrush & Cattails around surface waters
 - Increase infiltration & minimize erosion of wetland shores; minimize runoff & migration of contaminated surface waters

Existing Vegetation:

- Native vegetation with known phytoremedial properties left in place
- Vegetation not applicable for phytoremediation AND not considered an invasive species will be cleared and chipped for compost
- Non-native invasive species will be removed completely (not composted to reduce possibility of reincorporation of invasive species into soil)

Existing Vegetation

- Only 51% of on-site vegetation identified as native species (marked by an *)
- Dominant existing vegetation Common Reed (*Phragmites* spp.) is more tolerant to high salinity (~20,000 mg/kg) than native vegetation
 - Common Reed also provides interim nesting habitat for black-crowned night heron

Plant Name/Species	Targeted Contaminants	Recommendation for Use?		
Common water plantain (<i>Alisma subcordatum</i>)*	TBD or N/A	Determination based on analysis		
Path rush (Juncus tenuis)*	TBD or N/A	Determination based on analysis		
Small duckweed (<i>Lemna minor</i>)*	Pb, Cr(VI), certain pesticides	Yes		
Switchgrass (Panicum virgatum)	Anthracene, PAHs, Pyrene	Yes		
Common reed (<i>Phragmities</i> spp.)	Benzene, Trichloroethane, Toulene, PCE, TCE, Cu, Fe, Mn	Yes		
Eastern cottonwood (<i>Populus deltoides</i>)	TCE, PCE	Yes		
Box elder (Acer negundo)	TBD or N/A	Determination based on analysis		
Hackberry (Celtis occidentalis)	TBD or N/A	Determination based on analysis		
Green ash (Fraxinus penn.)	TBD or N/A	Determination based on analysis		

Purpose:

- Support plant growth & enhance phytoremedial processes
- Stimulate the natural microbial population in rhizosphere of trees
- Improve overall soil quality & stimulate soil microbial community

Strategy: Incorporation of O₂ and nutrients in tilled soil

- O₂ Amendment
 - Supplied via **ORC**s (Oxygen Release Compounds MgO₂)
 - >Instead of direct injection (reducing energy and equipment costs)
 - \geq Soil pH must be monitored (MgO₂ can raise pH)
- NPK fertilizer (10-10-10)
 - ➤One initial application after tree installation
 - Further applications as needed to prevent excessive losses
- Additional amendments as needed
 - ⇒Granular Sulfur or $Al_2(SO_4)_3$ to reduce soil pH to levels for optimal tree growth (ex: Poplar grows optimally with pH of 5.5-8.0) at select locations >Additional organic compost each spring to promote optimal plant growth & maintain pH

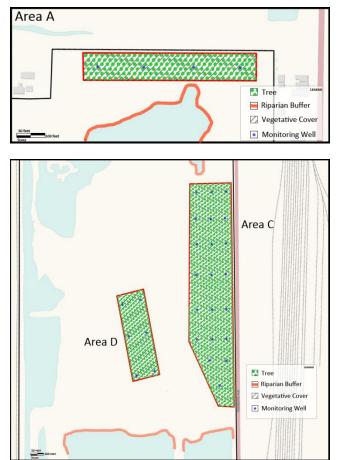
Time of Year

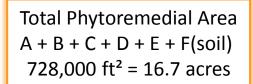
 Trees and plants installed early in year (spring) to take advantage of entire growing season; remedial progress greatest during growth

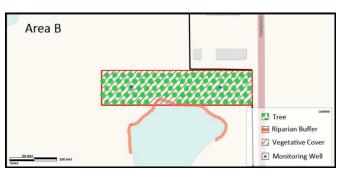
Soil Preparation

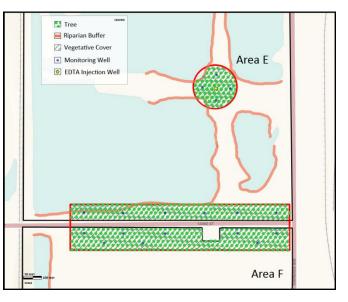
- Areas to be tilled to aerate soil prior to planting (12-24 in); soil amendments added during tilling, eliminating need for injection wells
- Soil should be damp during installation to minimize dust production & potential exposure of contaminated soils/sediments to workers

Dimensions & Placement


- Each tree placed in <u>2 ft diameter trench</u> dug to <u>variable depths 10-15 ft bgs</u>
- In areas with GW contamination, 50% of trees will be lined with tree wells to promote downward root growth into the aquifer
- Trees <u>spaced ~10 feet apart</u> to achieve high growth density → maximum remedial efficiency
- *Area E Only: Installation of 1 injection well for application of EDTA (chelating agent) to enhance Pb uptake


	Seed Mix (lbs)	Willows	Cottonwoods	Hybrid Poplars	Fencing (yards)	Fertilizer (lbs)	Rows	Columns
Area A	128	48	48	96	481	180	6	32
Area B	54	21	21	43	280	81	5	17
Area C	640	250	250	500	1040	960	69	13
Area D	170	67	67	135	270	255	27	10
Area E	100	40	40	80	225	150	10	10
Area F (North)	141	36	36	72	780	325	4	35
Area F (South)	202	82	82	165	805	250	6	55
Sum	1435	544	544	1091	3381	2201	127	299


Planting Scheme


UNVERSITY OF ILLINOIS AT CHICAGO MATERIALS Engineering COLLEGE OF ENGINEERING

Initiate phytoremediation at all Areas of Concern

- \succ Mixed tree stands of Willows, Cottonwoods, and Poplars \rightarrow Soil/GW
- Vegetative cover of grasses and legumes to address shallow subsurface soils
- Riparian buffer zones of cattails, bulrush, and reeds around surface water bodies to minimize runoff and interaction with contaminated groundwater

Long-term Monitoring:

- Minimize potential adverse effects on native vegetation and wildlife
- Ensure non-native/invasive species are not introduced into seedbank
- Install additional monitoring wells at under-represented areas for LTM
- Ensure adequate habitat is preserved for seasonal migratory birds during earthwork & agricultural activities
- Gain public support & awareness of phytoremediation and sustainable practices used at Indian Ridge Marsh
 - Community involvement through educational activities & bulletins describing habitat restoration, native species and phytoremedial progress

Thanks for listening!

Acknowledgements:

Purdue Geotechnical Society

Chicago Park District

Terracon Consultants, Naperville, IL

My advisor, Prof. Krishna Reddy and my former classmates Jennifer Welch and Gregory Bourgon who also assisted in this work