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Research Interest

� Current program affiliation

� Geotechnical engineering

� Infrastructure engineering

� EECS

� Current research focus

� Design and analyses of civil infrastructures

� Civil engineering materials

� Sensor technology and field instrumentation

� Sustainability (green design, risk assessment, 
environmental geotechnology, etc)



Instrument Assisted Criteria for 

Freezing Damage of Concrete



Introduction

� Freeze-thaw damage of pavement in cold region

� Pavement structure

� Thermal crack

� Debonding

� Subgrade properties

� Stiffness 

� Strength 

� Drainage

� Thermal expansion (earth pressure..)



Preventing Freezing Damages of 

Early Stage Concrete

� Important for concrete pouring in cold 
weather

� Significant cost added for heat curing or 
construction delay

� Highly empirical at this moment
� ODOT mandate 5-day thermal curing



Mechanism of Freezing Damages

� Volume of water expand while freezing

� Migration of moisture in micro-pores

� Mechanical criteria for preventing freezing 
damage
� Phase criteria: Vair>10%Vfree water

� Strength criteria: fc,t>pice crystal



Summary of Concrete Materials 

Investigated

Name Design 
28 day 
strength

Slump Water-
cement 
ratio

Actual w-
c ratio

Ordinary 4000 psi 4 inch 0.53 0.648

High 
strength

8000 psi 2 inch (6 
inch 
actual)

0.26 0.552

Self-
consolidati
ng 

6000 psi 6 inch 0.31 0.33

Laboratory Tests



� Experimental 
program
� Specimen preparation simulate 

actual production process

� Subject to different curing 
conditions

� Both 4 inch and 6 inch molds 
prepared,2000 lbs concrete 
within 1 hour

� 60     4 inch

� 30     6 inch
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Finished specimen with sensors Monitoring system: Serial or USB 

� Monitor under controlled curing conditions



� Air void content during curing process: ordinary concrete 
without air entry admix
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� Air void content during curing process: high strength 
concrete with air entry admix
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� Early freezing damage assessment: Concrete mix with 
no air entry admix

� Water content

� Air void content
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� Concrete mix with air entry admix
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Assistance in the Spring Load 

Restrictions



Spring Load Restrictions

Pavement Load Reduction During 
Thaw
(%)

Expected Increase in Pavement 
Life 

(%)

20 62

30 78

40 88

50 95

Isotal 1993 

� Commonly used for pavement 
preservation

� Around 20 states and foreign regions



Implementation of SLR

Country Start of SLR End of SLR Restriction Technology for
Determining
Restriction

France n/a n/a 2.5- 4-, 6-, 8- ton for
single dual tire
axles

Frost depth
measurements

Finland April May Gross weights”

4-, 8-, 12-, 18 ton;
total shutdown

FWD, experience

Iceland 30 cm of thaw n/a Depends on vehicle
type and axle
configuration

Frost depth
measurements

Sweden April May 4-,6-,8-ton per axle FWD, frost depth
measurements,
experience

Norway 5-15 cm of
thaw

Min 90% of summer
bearing capacity

Change yearly FWD, frost depth
measurements

Prediction 4-8 weeks after
imposing

As needed



Practice in U.S.

State Start of SLR
(around)

End of SLR
(around)

Restriction Technology for
Determining
Restriction

North
Dakota

March 15 June 1 Differs between trunk
highways and
county roads

Deflection measurement and
experience

South
Dakota

February 28 April 27 6-,7- ton per axle Deflection measurement and
experience

Iowa March 1 May 1 No overloads Road Rater and experience

Wisconsin March 10 May 10 No overloads Deflection measurement and
experience

Michigan Every March Late May 70% of gross weight
for HMA roads

experience

Minnesota March May 5-,7-, 9-ton per axle Design testing and
experience



Freeze-Thaw Measurements

� Frost tubes (plastic fluorescent dye 
tubes)

� Manual, subjective, slow responses

� Resistivity probe

� Subjective

� Thermal method

� No discretion of freeze-thaw status

� Affected by salt and pressure 



Implementation Challenges

� Technology for freeze-thaw status

� Mechanistic relationships

� Sound load restriction practice

� Level

� Duration



Dielectric Constant of Phases

� Air: 1

� Soil solids: ~ 3-7

� Water: 81

� Ice: ~ 3

� TDR for freeze-thaw measurement?



1st sponage    2nd sponage   Moisture tin

Figure TDR signal for bare strip sensor and that with moisture spot along it

Distributive Sensing

� Example of Sensor Responses



Comparison with Existing Probes
� Mobility

� Installation

� Cable 

� Labor

                                       a)                                                                   b) 

   
                                 c)                                                                       d) 

   



Field Installation



Freezing Process
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Schematic Presentation
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TDR PVC Sensor
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Unconfined Compression TestSoil Specimen being frozen and monitored
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PC

USB Scope

Substrate

Sensor

Waves Go Beyond and Support  

Traditional Civil Engineering

 

ECG EEG 

detecting sensor 

Prototype 

electronic board 

Tao et al. 2010

Sun et al. 2010



Conclusion

� EM Wave Technologies have great 
potential in infrastructure applications

� Understanding the principles and explore 
innovations is the key

� Requires interdisciplinary collaborations 
and close integration with professionals in 
engineering practice
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