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DESIGN BASED ON STRAIN

What we can do but usually don'’t.
Let’s catch up to the Civil World.

Easy to measure moduli insitu.
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1st to do it: Bill SWI\
1974 - - Nuclear Poy ﬁf

e Stone and Webster heavily mto
nuclear power development.

e Used G/E from seismic waves to
design for settlement.

 TAMU Settlement Conference,
several settlement methods
used In prediction challenge
Including seismic modulus.



TAMU SETTLEME
CHALLENGE, 1994




Predicting Foundation -
Settlements

-" -‘-
<171 | s
- = e g
-

"
L



Shallow
Instrumented

/Zone




e foundation settlements
e retaining wall movements

e layering, ground water table, etc.
e underground cavity detection
e tunnel Investigations

s pavement studies

e grouting evaluations
e ground improvement studies
e areas of deterioration



Field Measurements
with Compression (P)
and Shear (S) Waves
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TOTAL WAVE FIELD
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FIG. 3-18 — DISTRIBUTION OF DISPLACEMENT WAVES FROM A CIRCULAR
FOOTING ON A HOMOGENEOUS, ISOTROPIC, ELASTIC HALF SPACE
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CURRENT APPLICATION OF
FOUNDATION DESIGN



EARLY WINDFARM




Oxuwuwzaxe X




WIND POWER FACT
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- WORLDWIDE: 74,000 MW, 2

- ALTAMONT PASS: USA FAMOUS
SITE, 6000 TURBINES @ 20 kW ea

 NEW MODELS 100 kW ea minimum
e COST $1600 per kW installed

« COST COMPETETIVE: GAS $52.50,
COAL $53.10, and WIND
$55.80/MWh

- POWER AVAILABLE % TIME:
Nuclear 90%, Coal 70%, Wind 35%




UNITED STATES ANNUAL AVERAGE WIND POWER
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WIND-ALTAMONT
Altamont Pass, CA




ECONOMIES

 Groups of footings could be
designed individually based on
ground profile

e Each footing could be
customized to minimize cost
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N MAGRATH WIND FARM, ALBERTA
REVISED SPACING




Small-Strain Seismic
Measurements
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Role of Stress Wave

Measurements
1. Soil Profile 2. Field: Linear
Vg (and V)
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Recent Field Methods

(1990s)
1. Surface Wave (SASW) Test

easure
Rayleigh
(R) Waves

2. P-S Suspension Logger

Direct P
and S Waves




Stress Wave (Seismic) N\ =
Measurements in the Field \7?
\

Objective: measure time, t, for a given str;\gs

wave to propagate a given
distance, d ... then velocity = dft

Source Point1 Point 2

% m m

Key characteristic: small-strain (linear)
measurements
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Tunnel Investigation

Concrete
Liner
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Some Questions :F\V/ 2\

77N
Quality of concrete Imer”(ﬁ/\1 z\?

Thickness of concrete liner? .
Quality of grout in crown?
Thickness of grout in crown?
Any voids behind liner?

. Stiffness of rock behind liner?
(Answered all Questions)

o 0k W F
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CRAWLER VEHICLE
AS SOURCE




VIBROSEIS




Solutions -
Dynamic Conditions

Site response, soll-structure
Interaction, liguefaction, etc.
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-EATHQUAKE HAZA
SEISMOMETER SITES ARE
USUALLY NOT WELL CHARACTERIZED
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Peak Shearing Strains:

La Cienega
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Figure A-5B, Comparison of Lithologic Log and Cavities
encountered in wells. (After R I, 1993;
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CANADIAN
SINKHOLES

at Windsor Br
1902 - 1954. Firs ear of drilling.
I:_'I:E-’!"I'IEIT"H'j 7 - Casti




R S
Surface Seismic, Vertical Seismic Reverse Vertice
Reflection Profiling (VSP)  Seismic Profilin
Technique (RVSP)

Target depths > 1,000ft.

Frequency (peak) with available sources <= 100Hz.

Frequency (peak) special downhole source 150Hz.

Information from MTU Test Site



Crosswell Reflection Geometry

Receiver

All possible retlection Well
points mapped

Trajectory linking Source
reflection points Receiver

defined

Samples mapped to
I eﬂection pOin’[ Reflectors
corresponding to ray

: Mapping
travel time Trajectory




Introduction to the Fresnel Zone

The fresnel zone is defined as the part of the

interface from which the energy returned to
a receiver, within half a wavelength of the
initial reflected arrival,interferes
constructively to build up the reflected
signal.



Geophysical Surface Methods Fresnel Zone
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Crosswell Fresnel Zone
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Crosswell Reflection Principles

« Routine data : :
— Direct arrivals
— Reflection information

o Additional data yields
specific information
(e.g. guided waves,
converted waves)

e Result—2-D or 3-D e
map (tomogram) et

Figure 1. Typical raypaths for direct and reflected arrivals




Modeling Results for a 300-foot Diameter
“Bulked Up” Cavit

Figure 28. Cro sswell seismic seetion for 300-foot bulke d-up cav ity.



Modeling Results 1Tor a 10U-100t Diameter

Figure 22. Crosswell seismic section 1or 100-1oot brine-tilled cavity,
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Figure 3. Yelocity mocel for 200-foot diametes brine filled cavity.

elocity Models

Figure &. Velocity medel for 100-foot diametar brine- filed cavity.
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Figure 7. Velocity madel bor namnal stratgraphy with B-sai siruchors.




. Static conditions

- dynamic conditions
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e Stress wave (seismic) measurements play an_
Important role in geotechnical engineering.

7

Conclusions and
Future Developments
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e This role will continue to grow.

e The growth will involve four areas:
1. education, 2. integration, 3. automation, and
4. innovation.
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USES OF GEOPHYSIC
POWER DEVELOPMENT

- SMALL SCALE GEOTECHNICAL
ACTIVITES - FOOTINGS FOR
WIND FARMS

TO

 LARGE SCALE GEOTECHNICAL
ACTIVITES - SITING FOR LARGE
POWER PLANTS



MANY THANKS
FROM ME TO:

- PURDUE GEOTECHNICAL -
SOCIETY FOR INCLUDING THIS
“IRISH WOLVERINE”

 PROF. VINCENT DRNEVICH

« ALL IN ATTENDENCE
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