Purdue Geotechnical Society Workshop

Purdue University, West Lafayette, Indiana
May 7, 2007

Instrumentation Results from Construction of a Utility Tunnel for the New Indianapolis International Airport

Scott J. Ludlow, Ph.D., P.E. Michael S. Wigger, P.E.

Earth Exploration Inc., Indianapolis, Indiana

Purpose

Representatives of the Indianapolis International Airport are currently building a new terminal and infrastructure elements (parking, roadways, etc.)

Need to provide steam and chilled water (among other utilities) to the new terminal area.

Install utilities via cut-and-cover (at least 3 mi .)
OR
Utilize a tunneling technique

Quick Stats

Approximate 8 -ft diameter tunnel; 2,000 ft long
Earth Pressure Balance (EPB) machine
Steel liner plates

Average 15 ft earth cover
Constructed below two active taxiways and one of the primary runways

Subsurface Profile along Tunnel

Profile provided by Gilco Group, Inc.

Instrumentation

53 surface points on taxiway and runway pavement

48 surface points in non-pavement (grass)

Five single-point borehole extensometers placed to within 3 to 5 ft of crown

Six structure points (placed to observe large culverts)

Instrumentation

Surface Points on Pavement:
Review level $1 / 2$ in., Alert level 1 in.
Surface Points in Grass:
Review level $3 / 4$ in., Alert level $1 \frac{1}{2}$ in.

Structure Points (Culverts)
Review level $1 / 2$ in., Alert level $3 / 4 \mathrm{in}$.

Extensometers
Review level 1 in., Alert level 13/4 in.

Instrumentation

Monitoring Frequency:

All instruments within 250 ft ahead of and 500 ft behind machine to be monitored on a daily basis.

All instruments to be read bi-monthly regardless of TBM location.

Extensometer

Extensometer Tip and Tunnel Crown in OC Till (CL-ML)

SPBX-1 Observations

Extensometer
 Extensometer Tip and Tunnel Crown near Granular Soils
 SPBX-2 Observations

Extensometer

Runway 5-23

Extensometer Tip and Tunnel Crown in Granular Soils

SPBX-3 Observations

Surface Settlement Estimate

Mixed Ground Conditions:

Reasonable prediction of volume loss $\left(\mathrm{V}_{\mathrm{l}}\right)$ in the range of 0.2% to 1% of tunnel volume.

Therefore, volume of surface settlement trough

$$
V_{s}=V_{1} *\left(P I^{*} D^{2 / 4}\right)
$$

Surface Settlement Estimate

Mixed Ground Conditions:

Reasonable prediction of settlement (to assist in establishing review and action levels):

$$
\begin{aligned}
& \quad \mathrm{S}=\mathrm{V}_{s} /[\mathrm{SQRT}(2 * \mathrm{PI}) * \mathrm{i}] \text { (Gaussian distribution) } \\
& \mathrm{i}=\text { function of soil type, depth to crown and tunnel diameter } \\
& \text { Predicted settlement in the range of } 0.2 \text { to } 1 \mathrm{in} \text {. }
\end{aligned}
$$

Trough at SPBX-1

STATION 28+14 (CULVERT)

Trough at SPBX-2

SPBX 2 - STATION 29+86

Trough at SPBX-3

STATION 35+95 (Runway 5-23)

Trough at SPBX-4

STATION 42+38 (Taxiway B)

Trough at SPBX-5

STATION 44+07 (Culvert)

Summary

Very little actual settlement likely due to: Good control of face pressures and subsequent minimal volume loss.

Highly over-consolidated and hard nature of the soil which likely led to some arching even with low cover.

Grouting procedures around liner plates.

Settlement Trough generally followed Gaussian

Thank You

May 7, 2007

Questions or Comments

Earth Exploration, Inc. 7770 W. New York Street Indianapolis, IN 46214

317-273-1690 / (FAX) 317-273-2250

