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Renewed Interest in Nuclear Power Iin the US
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Locations of Newly Proposed Nuclear Reactors

Active Continental
Tectonic l Region *

Qi

N

g

Information from Nuclear Energy Institute

! M ¥ ] |

At least 26 new commercial nuclear reactors at least 16 different sites in at least 12 different states



Percent Cost of a Nuclear Plant vs. Earthquake
Ground Acceleration
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Review of Earthquake Geology
and

Engineering Seismology



Geology of Earthquakes
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Geology of Earthquakes in Stable Continental Crust
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Geology of Earthquakes in Stable Continental Crust

Johnston and Kanter (1990)



Reelfoot Rift
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Seismicity of the Eastern United States: 1977 - 1997




Gutenberg-Richter Magnitude Recurrence
Relationship (b-line)
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Paleoliquefaction Features -- Secondary Evidence



Review of Liguefaction Phenomenon
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Review of Liguefaction Phenomenon

GRAVITY LOAD

DURING LIQUEFACTION



Review of Liguefaction Phenomenon
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Review of Liguefaction Phenomenon
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Review of Liguefaction Phenomenon
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Geologic Evidence of Earthquakes -
Liguefaction
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Review of “Simplified” Liquefaction
Evaluation Procedure
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Review of “Simplified” Liquefaction
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Review of “Simplified” Liquefaction
Evaluation Procedure
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dence of Large Paleoearthquakes
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Paleoliquefaction in the Wabash Valley

(Obermeier 1998)



Paleoliquefaction in the Wabash Valley
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Paleoliquefaction in the Wabash Valley
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Paleoliqguefaction in the Wabash Valley
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Simplified Liquefaction Evaluation Procedure
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Back Analyses (simplified procedure)

CRR g Sy,

FS

= =1 a = CRR MSF
CSR 7 e 0.65G,, I 4

0.25 1 | | | | 1 1
a...— M combinations

max

= requisite to induce
liguefaction: FS < 1

0.15

Em—])

0.10

a.— M combinations
0.05F . " :
insufficient to induce
liguefaction: FS > 1
0.00 1 ] ] ] ]
5.5 6.0 6.5 7.0 7.5 8.0 8.5

Magnitude




Back Analyses (simplified procedure)
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Wabash Valley Seismic Zone
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Wabash Valley Seismic Zone
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New Madrid Seismic Zone

New Madrid Seismic Zone Magnitude—Frequency
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Summary

The renewed interest in nuclear power will require

the accurate quantification of the earthquake
hazard.

In the low-to-moderate seismic zones,
paleoliquefaction studies have proven to be a
valuable tool in determining the recurrence time of
moderate-to-large earthquakes.
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