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Topics
Backfill Characteristics for Energy Trans. Lines

TDR test for water content and dry density (Xiong Yu)

TDR for accurate soil conductivity (resistivity) 
measurements (Teresa Dallinger)

TDR test for soil type identification (Carlos Zambrano)

Automating soil type identification (Pao-Tsung Huang 
and Sochan Jung)

TDR probe for cross-hole measurement of soil modulus 
(Xiong Yu)

Summary and conclusions
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Backfill Characteristics for Energy Trans. Lines

Energy Transmission Lines (ETLs) include:
Pipelines for oil, gasoline, gas, steam, etc.
Electrical power lines

Frequently, these lines are buried
Protection from weather
Reactions to inertial forces from flowing liquids
Security

Performance of the ETLs depend on
Soil backfill dry density & water content to control settlement
Soil Stiffness for pipes to control movement of the pipes
Soil Conductivity (Resistivity) to control corrosion for pipes, loss 
of energy power lines, even for above ground lines.
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TDR Method
One-Dimensional Electromagnetic Wave Propagation in 
a soil cable

A step D.C. voltage is applied to one end of the cable

Voltage travel speed is related to the apparent 
dielectric constant, √Ka, of the “insulating” material 
between the center lead and the outer shield (similar to 
shear wave velocity related to shear modulus, √G)

Center lead

Dielectric medium
Shield
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Compaction Mold as a Soil Cable
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Spikes Driven into Soil as a Soil Cable
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Probe Head

Mold Probe Multiple Rod Probe
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TDR Equipment
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The TDR curve – plot of Voltage vs Scaled Distance

TDR Device provides a step D.C. voltage with a very fast rise time.
When voltage encounters a “impedance mismatch ” (   ), a reflection occurs.
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Water Content and Dry Density
Yu and Drnevich (2004 and ASTM D 6780) established 
semi-empirical linear relationships
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TDR measures water content and dry density

Important for backfills to control settlement

Related to stiffness of backfill materials

Works for most soils except for highly conductive 
soils such as fat clays at high water contents
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Probe Geometry Corrections to Conductivity 
Measurements – Dallinger (2006)

 Probe Configuration  /f dn n  
PMTDR and MDI-PDA (default 

values) 
2.46 

4-in. mold (coaxial) with 5/16-in. 
center spike 
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MRP with four 3/8-in. spikes 
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Notes on Conductivity Measurements

1Resistivity=
Electrical Conductivity

Can be made on all 
soils, even fat clays at 
high water contents
Reasonably accurate 
measurements with 
probe geometry 
corrections
Useful for Corrosion 
Classification of soil

Ref. Liu, Henry, Pipeline Engineering, 
Lewis Publishers, 2003, pg. 327.

Classification
Soil 

Resistivity 
(Ohm-cm)

Soil 
Conductivity 

(mS/m)

Noncorrosive >10,000 < 10

Mildly 
corrosive

2,000 -
10,000

10 - 50

Moderately 
corrosive

1,000 -
2,000

50 - 100

Corrosive 500 - 1,000 100 - 200

Very 
corrosive

< 500 > 200
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Pulse Area Method for Soil 
Identification (Carlos Zambrano)

(Source: Zambrano, 2006)

TDR curve for 
Ottawa sand, w = 6%

Zoom in on portion 
between arrows

Derivative of TDR 
curve.  Pulse Area is 
soil type dependent
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TDR Output v.s. Normalized Distance
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Fitting functions
Initial Part of Curve
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TDR Output v.s. Normalized Distance
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Results
Comparison of Ka calculated from TDR software with 
calculation using the fitting function. 
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Notes of Soil Type Identification
Normalized Pulse Area is Pulse Area of the reflected 
signal divided by the Pulse Area associated with the input 
pulse.
Ka and Normalized Pulse Area are independent of 
calibrations
Ka values must be larger than 10 (water contents in range 
of optimum are almost always give Ka > 10)
Useful for 

Checking that backfill type meets specifications
Calibration factors for TDR measurements of water content and 
dry density
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Seismic Wave Measurement System

Attach accelerometers to several TDR 
spikes

Impact other spikes with instrumented 
hammer 

Measure acceleration-time history on 
spikes

Determine travel time

Calculate strain amplitude from 
particle velocity and wave propagation 
velocity

Ref. Yu and Drnevich, ICSMGE, Osaka, 
Japan, 2005.
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Conclusions

TDR method makes use of a step d.c. voltage where a 
wave front propagates down a probe embedded in the 
soil and reflects back from the end of the probe

The velocity of propagation is related to the apparent 
dielectric constant of the soil, Ka

The residual voltage after propagation is related to the 
electrical conductivity of the soil, ECb

Probe geometry affects the measured value of electrical 
conductivity and accurate corrections are now available
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Seismic Test Results 
Impacted spike act as a 
rigid penetrometer and 
instrumented spikes act 
as wave guides

Magnitude of hitting force 
determines strain 
amplitude

Results are consistent with 
values published in the 
literature
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Notes on Soil Stiffness Measurements

Made on same soil volume where electrical 
conductivity, water content and dry density are 
determined

Provide modulus degradation with strain

Important for pipeline support for liquid inertia 
forces
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Conclusions, Cont’d.

Conductivity is important for corrosion classification of 
backfills

Pulse area is an appropriate way to identify soil types.

Curve fitting works well in obtaining Ka and Pulse Area

The TDR Probe can be used as a waveguide for 
transmitting shear waves from one probe spike to 
adjacent spikes

Measurements with TDR probes provide useful 
information for transmission line backfills
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